Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphtcphnm Structured version   Visualization version   GIF version

Theorem cphtcphnm 23844
 Description: The norm of a norm-augmented subcomplex pre-Hilbert space is the same as the original norm on it. (Contributed by Mario Carneiro, 11-Oct-2015.)
Hypotheses
Ref Expression
tcphval.n 𝐺 = (toℂPreHil‘𝑊)
cphtcphnm.n 𝑁 = (norm‘𝑊)
Assertion
Ref Expression
cphtcphnm (𝑊 ∈ ℂPreHil → 𝑁 = (norm‘𝐺))

Proof of Theorem cphtcphnm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2798 . . 3 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2798 . . 3 (·𝑖𝑊) = (·𝑖𝑊)
3 cphtcphnm.n . . 3 𝑁 = (norm‘𝑊)
41, 2, 3cphnmfval 23807 . 2 (𝑊 ∈ ℂPreHil → 𝑁 = (𝑥 ∈ (Base‘𝑊) ↦ (√‘(𝑥(·𝑖𝑊)𝑥))))
5 cphlmod 23789 . . 3 (𝑊 ∈ ℂPreHil → 𝑊 ∈ LMod)
6 lmodgrp 19638 . . 3 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
7 tcphval.n . . . 4 𝐺 = (toℂPreHil‘𝑊)
8 eqid 2798 . . . 4 (norm‘𝐺) = (norm‘𝐺)
97, 8, 1, 2tchnmfval 23842 . . 3 (𝑊 ∈ Grp → (norm‘𝐺) = (𝑥 ∈ (Base‘𝑊) ↦ (√‘(𝑥(·𝑖𝑊)𝑥))))
105, 6, 93syl 18 . 2 (𝑊 ∈ ℂPreHil → (norm‘𝐺) = (𝑥 ∈ (Base‘𝑊) ↦ (√‘(𝑥(·𝑖𝑊)𝑥))))
114, 10eqtr4d 2836 1 (𝑊 ∈ ℂPreHil → 𝑁 = (norm‘𝐺))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538   ∈ wcel 2111   ↦ cmpt 5111  ‘cfv 6325  (class class class)co 7136  √csqrt 14587  Basecbs 16478  ·𝑖cip 16565  Grpcgrp 18098  LModclmod 19631  normcnm 23193  ℂPreHilccph 23781  toℂPreHilctcph 23782 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6117  df-ord 6163  df-on 6164  df-lim 6165  df-suc 6166  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-riota 7094  df-ov 7139  df-oprab 7140  df-mpo 7141  df-om 7564  df-1st 7674  df-2nd 7675  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-er 8275  df-en 8496  df-dom 8497  df-sdom 8498  df-sup 8893  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11629  df-2 11691  df-3 11692  df-4 11693  df-5 11694  df-6 11695  df-7 11696  df-8 11697  df-9 11698  df-n0 11889  df-z 11973  df-dec 12090  df-uz 12235  df-rp 12381  df-seq 13368  df-exp 13429  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-plusg 16573  df-tset 16579  df-ds 16582  df-0g 16710  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-grp 18101  df-minusg 18102  df-sbg 18103  df-lmod 19633  df-nm 23199  df-tng 23201  df-nlm 23203  df-cph 23783  df-tcph 23784 This theorem is referenced by:  ipcau  23852
 Copyright terms: Public domain W3C validator