MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  log2ublem2 Structured version   Visualization version   GIF version

Theorem log2ublem2 27008
Description: Lemma for log2ub 27010. (Contributed by Mario Carneiro, 17-Apr-2015.)
Hypotheses
Ref Expression
log2ublem2.1 (((3↑7) · (5 · 7)) · Σ𝑛 ∈ (0...𝐾)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))) ≤ (2 · 𝐵)
log2ublem2.2 𝐵 ∈ ℕ0
log2ublem2.3 𝐹 ∈ ℕ0
log2ublem2.4 𝑁 ∈ ℕ0
log2ublem2.5 (𝑁 − 1) = 𝐾
log2ublem2.6 (𝐵 + 𝐹) = 𝐺
log2ublem2.7 𝑀 ∈ ℕ0
log2ublem2.8 (𝑀 + 𝑁) = 3
log2ublem2.9 ((5 · 7) · (9↑𝑀)) = (((2 · 𝑁) + 1) · 𝐹)
Assertion
Ref Expression
log2ublem2 (((3↑7) · (5 · 7)) · Σ𝑛 ∈ (0...𝑁)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))) ≤ (2 · 𝐺)
Distinct variable groups:   𝑛,𝐾   𝑛,𝑁
Allowed substitution hints:   𝐵(𝑛)   𝐹(𝑛)   𝐺(𝑛)   𝑀(𝑛)

Proof of Theorem log2ublem2
StepHypRef Expression
1 log2ublem2.1 . 2 (((3↑7) · (5 · 7)) · Σ𝑛 ∈ (0...𝐾)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))) ≤ (2 · 𝐵)
2 fzfid 14024 . . . 4 (⊤ → (0...𝐾) ∈ Fin)
3 elfznn0 13677 . . . . . 6 (𝑛 ∈ (0...𝐾) → 𝑛 ∈ ℕ0)
43adantl 481 . . . . 5 ((⊤ ∧ 𝑛 ∈ (0...𝐾)) → 𝑛 ∈ ℕ0)
5 2re 12367 . . . . . 6 2 ∈ ℝ
6 3nn 12372 . . . . . . . 8 3 ∈ ℕ
7 2nn0 12570 . . . . . . . . . 10 2 ∈ ℕ0
8 nn0mulcl 12589 . . . . . . . . . 10 ((2 ∈ ℕ0𝑛 ∈ ℕ0) → (2 · 𝑛) ∈ ℕ0)
97, 8mpan 689 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (2 · 𝑛) ∈ ℕ0)
10 nn0p1nn 12592 . . . . . . . . 9 ((2 · 𝑛) ∈ ℕ0 → ((2 · 𝑛) + 1) ∈ ℕ)
119, 10syl 17 . . . . . . . 8 (𝑛 ∈ ℕ0 → ((2 · 𝑛) + 1) ∈ ℕ)
12 nnmulcl 12317 . . . . . . . 8 ((3 ∈ ℕ ∧ ((2 · 𝑛) + 1) ∈ ℕ) → (3 · ((2 · 𝑛) + 1)) ∈ ℕ)
136, 11, 12sylancr 586 . . . . . . 7 (𝑛 ∈ ℕ0 → (3 · ((2 · 𝑛) + 1)) ∈ ℕ)
14 9nn 12391 . . . . . . . 8 9 ∈ ℕ
15 nnexpcl 14125 . . . . . . . 8 ((9 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (9↑𝑛) ∈ ℕ)
1614, 15mpan 689 . . . . . . 7 (𝑛 ∈ ℕ0 → (9↑𝑛) ∈ ℕ)
1713, 16nnmulcld 12346 . . . . . 6 (𝑛 ∈ ℕ0 → ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)) ∈ ℕ)
18 nndivre 12334 . . . . . 6 ((2 ∈ ℝ ∧ ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)) ∈ ℕ) → (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ∈ ℝ)
195, 17, 18sylancr 586 . . . . 5 (𝑛 ∈ ℕ0 → (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ∈ ℝ)
204, 19syl 17 . . . 4 ((⊤ ∧ 𝑛 ∈ (0...𝐾)) → (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ∈ ℝ)
212, 20fsumrecl 15782 . . 3 (⊤ → Σ𝑛 ∈ (0...𝐾)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ∈ ℝ)
2221mptru 1544 . 2 Σ𝑛 ∈ (0...𝐾)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ∈ ℝ
23 log2ublem2.4 . . . . . 6 𝑁 ∈ ℕ0
247, 23nn0mulcli 12591 . . . . 5 (2 · 𝑁) ∈ ℕ0
25 nn0p1nn 12592 . . . . 5 ((2 · 𝑁) ∈ ℕ0 → ((2 · 𝑁) + 1) ∈ ℕ)
2624, 25ax-mp 5 . . . 4 ((2 · 𝑁) + 1) ∈ ℕ
276, 26nnmulcli 12318 . . 3 (3 · ((2 · 𝑁) + 1)) ∈ ℕ
28 nnexpcl 14125 . . . 4 ((9 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (9↑𝑁) ∈ ℕ)
2914, 23, 28mp2an 691 . . 3 (9↑𝑁) ∈ ℕ
3027, 29nnmulcli 12318 . 2 ((3 · ((2 · 𝑁) + 1)) · (9↑𝑁)) ∈ ℕ
31 log2ublem2.2 . . 3 𝐵 ∈ ℕ0
327, 31nn0mulcli 12591 . 2 (2 · 𝐵) ∈ ℕ0
33 log2ublem2.3 . . 3 𝐹 ∈ ℕ0
347, 33nn0mulcli 12591 . 2 (2 · 𝐹) ∈ ℕ0
35 nn0uz 12945 . . . . . . 7 0 = (ℤ‘0)
3623, 35eleqtri 2842 . . . . . 6 𝑁 ∈ (ℤ‘0)
3736a1i 11 . . . . 5 (⊤ → 𝑁 ∈ (ℤ‘0))
38 elfznn0 13677 . . . . . . 7 (𝑛 ∈ (0...𝑁) → 𝑛 ∈ ℕ0)
3938adantl 481 . . . . . 6 ((⊤ ∧ 𝑛 ∈ (0...𝑁)) → 𝑛 ∈ ℕ0)
4019recnd 11318 . . . . . 6 (𝑛 ∈ ℕ0 → (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ∈ ℂ)
4139, 40syl 17 . . . . 5 ((⊤ ∧ 𝑛 ∈ (0...𝑁)) → (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ∈ ℂ)
42 oveq2 7456 . . . . . . . . 9 (𝑛 = 𝑁 → (2 · 𝑛) = (2 · 𝑁))
4342oveq1d 7463 . . . . . . . 8 (𝑛 = 𝑁 → ((2 · 𝑛) + 1) = ((2 · 𝑁) + 1))
4443oveq2d 7464 . . . . . . 7 (𝑛 = 𝑁 → (3 · ((2 · 𝑛) + 1)) = (3 · ((2 · 𝑁) + 1)))
45 oveq2 7456 . . . . . . 7 (𝑛 = 𝑁 → (9↑𝑛) = (9↑𝑁))
4644, 45oveq12d 7466 . . . . . 6 (𝑛 = 𝑁 → ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)) = ((3 · ((2 · 𝑁) + 1)) · (9↑𝑁)))
4746oveq2d 7464 . . . . 5 (𝑛 = 𝑁 → (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) = (2 / ((3 · ((2 · 𝑁) + 1)) · (9↑𝑁))))
4837, 41, 47fsumm1 15799 . . . 4 (⊤ → Σ𝑛 ∈ (0...𝑁)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) = (Σ𝑛 ∈ (0...(𝑁 − 1))(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) + (2 / ((3 · ((2 · 𝑁) + 1)) · (9↑𝑁)))))
4948mptru 1544 . . 3 Σ𝑛 ∈ (0...𝑁)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) = (Σ𝑛 ∈ (0...(𝑁 − 1))(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) + (2 / ((3 · ((2 · 𝑁) + 1)) · (9↑𝑁))))
50 log2ublem2.5 . . . . . 6 (𝑁 − 1) = 𝐾
5150oveq2i 7459 . . . . 5 (0...(𝑁 − 1)) = (0...𝐾)
5251sumeq1i 15745 . . . 4 Σ𝑛 ∈ (0...(𝑁 − 1))(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) = Σ𝑛 ∈ (0...𝐾)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))
5352oveq1i 7458 . . 3 𝑛 ∈ (0...(𝑁 − 1))(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) + (2 / ((3 · ((2 · 𝑁) + 1)) · (9↑𝑁)))) = (Σ𝑛 ∈ (0...𝐾)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) + (2 / ((3 · ((2 · 𝑁) + 1)) · (9↑𝑁))))
5449, 53eqtri 2768 . 2 Σ𝑛 ∈ (0...𝑁)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) = (Σ𝑛 ∈ (0...𝐾)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) + (2 / ((3 · ((2 · 𝑁) + 1)) · (9↑𝑁))))
55 2cn 12368 . . . 4 2 ∈ ℂ
5631nn0cni 12565 . . . 4 𝐵 ∈ ℂ
5733nn0cni 12565 . . . 4 𝐹 ∈ ℂ
5855, 56, 57adddii 11302 . . 3 (2 · (𝐵 + 𝐹)) = ((2 · 𝐵) + (2 · 𝐹))
59 log2ublem2.6 . . . 4 (𝐵 + 𝐹) = 𝐺
6059oveq2i 7459 . . 3 (2 · (𝐵 + 𝐹)) = (2 · 𝐺)
6158, 60eqtr3i 2770 . 2 ((2 · 𝐵) + (2 · 𝐹)) = (2 · 𝐺)
62 7nn 12385 . . . . . . . . 9 7 ∈ ℕ
6362nnnn0i 12561 . . . . . . . 8 7 ∈ ℕ0
64 nnexpcl 14125 . . . . . . . 8 ((3 ∈ ℕ ∧ 7 ∈ ℕ0) → (3↑7) ∈ ℕ)
656, 63, 64mp2an 691 . . . . . . 7 (3↑7) ∈ ℕ
66 5nn 12379 . . . . . . . 8 5 ∈ ℕ
6766, 62nnmulcli 12318 . . . . . . 7 (5 · 7) ∈ ℕ
6865, 67nnmulcli 12318 . . . . . 6 ((3↑7) · (5 · 7)) ∈ ℕ
6968nnrei 12302 . . . . 5 ((3↑7) · (5 · 7)) ∈ ℝ
7069, 5remulcli 11306 . . . 4 (((3↑7) · (5 · 7)) · 2) ∈ ℝ
7170leidi 11824 . . 3 (((3↑7) · (5 · 7)) · 2) ≤ (((3↑7) · (5 · 7)) · 2)
726nnnn0i 12561 . . . . . . . . . . . 12 3 ∈ ℕ0
73 nnexpcl 14125 . . . . . . . . . . . 12 ((9 ∈ ℕ ∧ 3 ∈ ℕ0) → (9↑3) ∈ ℕ)
7414, 72, 73mp2an 691 . . . . . . . . . . 11 (9↑3) ∈ ℕ
7574nncni 12303 . . . . . . . . . 10 (9↑3) ∈ ℂ
7667nncni 12303 . . . . . . . . . 10 (5 · 7) ∈ ℂ
7775, 76mulcomi 11298 . . . . . . . . 9 ((9↑3) · (5 · 7)) = ((5 · 7) · (9↑3))
78 log2ublem2.8 . . . . . . . . . . . . 13 (𝑀 + 𝑁) = 3
79 log2ublem2.7 . . . . . . . . . . . . . . 15 𝑀 ∈ ℕ0
8079nn0cni 12565 . . . . . . . . . . . . . 14 𝑀 ∈ ℂ
8123nn0cni 12565 . . . . . . . . . . . . . 14 𝑁 ∈ ℂ
8280, 81addcomi 11481 . . . . . . . . . . . . 13 (𝑀 + 𝑁) = (𝑁 + 𝑀)
8378, 82eqtr3i 2770 . . . . . . . . . . . 12 3 = (𝑁 + 𝑀)
8483oveq2i 7459 . . . . . . . . . . 11 (9↑3) = (9↑(𝑁 + 𝑀))
8514nncni 12303 . . . . . . . . . . . 12 9 ∈ ℂ
86 expadd 14155 . . . . . . . . . . . 12 ((9 ∈ ℂ ∧ 𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (9↑(𝑁 + 𝑀)) = ((9↑𝑁) · (9↑𝑀)))
8785, 23, 79, 86mp3an 1461 . . . . . . . . . . 11 (9↑(𝑁 + 𝑀)) = ((9↑𝑁) · (9↑𝑀))
8884, 87eqtri 2768 . . . . . . . . . 10 (9↑3) = ((9↑𝑁) · (9↑𝑀))
8988oveq2i 7459 . . . . . . . . 9 ((5 · 7) · (9↑3)) = ((5 · 7) · ((9↑𝑁) · (9↑𝑀)))
9029nncni 12303 . . . . . . . . . 10 (9↑𝑁) ∈ ℂ
91 nnexpcl 14125 . . . . . . . . . . . 12 ((9 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (9↑𝑀) ∈ ℕ)
9214, 79, 91mp2an 691 . . . . . . . . . . 11 (9↑𝑀) ∈ ℕ
9392nncni 12303 . . . . . . . . . 10 (9↑𝑀) ∈ ℂ
9476, 90, 93mul12i 11485 . . . . . . . . 9 ((5 · 7) · ((9↑𝑁) · (9↑𝑀))) = ((9↑𝑁) · ((5 · 7) · (9↑𝑀)))
9577, 89, 943eqtri 2772 . . . . . . . 8 ((9↑3) · (5 · 7)) = ((9↑𝑁) · ((5 · 7) · (9↑𝑀)))
96 log2ublem2.9 . . . . . . . . 9 ((5 · 7) · (9↑𝑀)) = (((2 · 𝑁) + 1) · 𝐹)
9796oveq2i 7459 . . . . . . . 8 ((9↑𝑁) · ((5 · 7) · (9↑𝑀))) = ((9↑𝑁) · (((2 · 𝑁) + 1) · 𝐹))
9895, 97eqtri 2768 . . . . . . 7 ((9↑3) · (5 · 7)) = ((9↑𝑁) · (((2 · 𝑁) + 1) · 𝐹))
9998oveq2i 7459 . . . . . 6 (3 · ((9↑3) · (5 · 7))) = (3 · ((9↑𝑁) · (((2 · 𝑁) + 1) · 𝐹)))
100 df-7 12361 . . . . . . . . . 10 7 = (6 + 1)
101100oveq2i 7459 . . . . . . . . 9 (3↑7) = (3↑(6 + 1))
102 3cn 12374 . . . . . . . . . . 11 3 ∈ ℂ
103 6nn0 12574 . . . . . . . . . . 11 6 ∈ ℕ0
104 expp1 14119 . . . . . . . . . . 11 ((3 ∈ ℂ ∧ 6 ∈ ℕ0) → (3↑(6 + 1)) = ((3↑6) · 3))
105102, 103, 104mp2an 691 . . . . . . . . . 10 (3↑(6 + 1)) = ((3↑6) · 3)
106 expmul 14158 . . . . . . . . . . . . 13 ((3 ∈ ℂ ∧ 2 ∈ ℕ0 ∧ 3 ∈ ℕ0) → (3↑(2 · 3)) = ((3↑2)↑3))
107102, 7, 72, 106mp3an 1461 . . . . . . . . . . . 12 (3↑(2 · 3)) = ((3↑2)↑3)
10855, 102mulcomi 11298 . . . . . . . . . . . . . 14 (2 · 3) = (3 · 2)
109 3t2e6 12459 . . . . . . . . . . . . . 14 (3 · 2) = 6
110108, 109eqtri 2768 . . . . . . . . . . . . 13 (2 · 3) = 6
111110oveq2i 7459 . . . . . . . . . . . 12 (3↑(2 · 3)) = (3↑6)
112 sq3 14247 . . . . . . . . . . . . 13 (3↑2) = 9
113112oveq1i 7458 . . . . . . . . . . . 12 ((3↑2)↑3) = (9↑3)
114107, 111, 1133eqtr3i 2776 . . . . . . . . . . 11 (3↑6) = (9↑3)
115114oveq1i 7458 . . . . . . . . . 10 ((3↑6) · 3) = ((9↑3) · 3)
116105, 115eqtri 2768 . . . . . . . . 9 (3↑(6 + 1)) = ((9↑3) · 3)
11775, 102mulcomi 11298 . . . . . . . . 9 ((9↑3) · 3) = (3 · (9↑3))
118101, 116, 1173eqtri 2772 . . . . . . . 8 (3↑7) = (3 · (9↑3))
119118oveq1i 7458 . . . . . . 7 ((3↑7) · (5 · 7)) = ((3 · (9↑3)) · (5 · 7))
120102, 75, 76mulassi 11301 . . . . . . 7 ((3 · (9↑3)) · (5 · 7)) = (3 · ((9↑3) · (5 · 7)))
121119, 120eqtri 2768 . . . . . 6 ((3↑7) · (5 · 7)) = (3 · ((9↑3) · (5 · 7)))
12226nncni 12303 . . . . . . . . 9 ((2 · 𝑁) + 1) ∈ ℂ
123102, 122, 90mul32i 11486 . . . . . . . 8 ((3 · ((2 · 𝑁) + 1)) · (9↑𝑁)) = ((3 · (9↑𝑁)) · ((2 · 𝑁) + 1))
124123oveq1i 7458 . . . . . . 7 (((3 · ((2 · 𝑁) + 1)) · (9↑𝑁)) · 𝐹) = (((3 · (9↑𝑁)) · ((2 · 𝑁) + 1)) · 𝐹)
125102, 90mulcli 11297 . . . . . . . 8 (3 · (9↑𝑁)) ∈ ℂ
126125, 122, 57mulassi 11301 . . . . . . 7 (((3 · (9↑𝑁)) · ((2 · 𝑁) + 1)) · 𝐹) = ((3 · (9↑𝑁)) · (((2 · 𝑁) + 1) · 𝐹))
127122, 57mulcli 11297 . . . . . . . 8 (((2 · 𝑁) + 1) · 𝐹) ∈ ℂ
128102, 90, 127mulassi 11301 . . . . . . 7 ((3 · (9↑𝑁)) · (((2 · 𝑁) + 1) · 𝐹)) = (3 · ((9↑𝑁) · (((2 · 𝑁) + 1) · 𝐹)))
129124, 126, 1283eqtri 2772 . . . . . 6 (((3 · ((2 · 𝑁) + 1)) · (9↑𝑁)) · 𝐹) = (3 · ((9↑𝑁) · (((2 · 𝑁) + 1) · 𝐹)))
13099, 121, 1293eqtr4i 2778 . . . . 5 ((3↑7) · (5 · 7)) = (((3 · ((2 · 𝑁) + 1)) · (9↑𝑁)) · 𝐹)
131130oveq2i 7459 . . . 4 (2 · ((3↑7) · (5 · 7))) = (2 · (((3 · ((2 · 𝑁) + 1)) · (9↑𝑁)) · 𝐹))
13265nncni 12303 . . . . . 6 (3↑7) ∈ ℂ
133132, 76mulcli 11297 . . . . 5 ((3↑7) · (5 · 7)) ∈ ℂ
134133, 55mulcomi 11298 . . . 4 (((3↑7) · (5 · 7)) · 2) = (2 · ((3↑7) · (5 · 7)))
13530nncni 12303 . . . . 5 ((3 · ((2 · 𝑁) + 1)) · (9↑𝑁)) ∈ ℂ
136135, 55, 57mul12i 11485 . . . 4 (((3 · ((2 · 𝑁) + 1)) · (9↑𝑁)) · (2 · 𝐹)) = (2 · (((3 · ((2 · 𝑁) + 1)) · (9↑𝑁)) · 𝐹))
137131, 134, 1363eqtr4i 2778 . . 3 (((3↑7) · (5 · 7)) · 2) = (((3 · ((2 · 𝑁) + 1)) · (9↑𝑁)) · (2 · 𝐹))
13871, 137breqtri 5191 . 2 (((3↑7) · (5 · 7)) · 2) ≤ (((3 · ((2 · 𝑁) + 1)) · (9↑𝑁)) · (2 · 𝐹))
1391, 22, 7, 30, 32, 34, 54, 61, 138log2ublem1 27007 1 (((3↑7) · (5 · 7)) · Σ𝑛 ∈ (0...𝑁)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))) ≤ (2 · 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1537  wtru 1538  wcel 2108   class class class wbr 5166  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  cle 11325  cmin 11520   / cdiv 11947  cn 12293  2c2 12348  3c3 12349  5c5 12351  6c6 12352  7c7 12353  9c9 12355  0cn0 12553  cuz 12903  ...cfz 13567  cexp 14112  Σcsu 15734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735
This theorem is referenced by:  log2ublem3  27009
  Copyright terms: Public domain W3C validator