MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  log2ublem2 Structured version   Visualization version   GIF version

Theorem log2ublem2 26857
Description: Lemma for log2ub 26859. (Contributed by Mario Carneiro, 17-Apr-2015.)
Hypotheses
Ref Expression
log2ublem2.1 (((3↑7) · (5 · 7)) · Σ𝑛 ∈ (0...𝐾)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))) ≤ (2 · 𝐵)
log2ublem2.2 𝐵 ∈ ℕ0
log2ublem2.3 𝐹 ∈ ℕ0
log2ublem2.4 𝑁 ∈ ℕ0
log2ublem2.5 (𝑁 − 1) = 𝐾
log2ublem2.6 (𝐵 + 𝐹) = 𝐺
log2ublem2.7 𝑀 ∈ ℕ0
log2ublem2.8 (𝑀 + 𝑁) = 3
log2ublem2.9 ((5 · 7) · (9↑𝑀)) = (((2 · 𝑁) + 1) · 𝐹)
Assertion
Ref Expression
log2ublem2 (((3↑7) · (5 · 7)) · Σ𝑛 ∈ (0...𝑁)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))) ≤ (2 · 𝐺)
Distinct variable groups:   𝑛,𝐾   𝑛,𝑁
Allowed substitution hints:   𝐵(𝑛)   𝐹(𝑛)   𝐺(𝑛)   𝑀(𝑛)

Proof of Theorem log2ublem2
StepHypRef Expression
1 log2ublem2.1 . 2 (((3↑7) · (5 · 7)) · Σ𝑛 ∈ (0...𝐾)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))) ≤ (2 · 𝐵)
2 fzfid 13938 . . . 4 (⊤ → (0...𝐾) ∈ Fin)
3 elfznn0 13581 . . . . . 6 (𝑛 ∈ (0...𝐾) → 𝑛 ∈ ℕ0)
43adantl 481 . . . . 5 ((⊤ ∧ 𝑛 ∈ (0...𝐾)) → 𝑛 ∈ ℕ0)
5 2re 12260 . . . . . 6 2 ∈ ℝ
6 3nn 12265 . . . . . . . 8 3 ∈ ℕ
7 2nn0 12459 . . . . . . . . . 10 2 ∈ ℕ0
8 nn0mulcl 12478 . . . . . . . . . 10 ((2 ∈ ℕ0𝑛 ∈ ℕ0) → (2 · 𝑛) ∈ ℕ0)
97, 8mpan 690 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (2 · 𝑛) ∈ ℕ0)
10 nn0p1nn 12481 . . . . . . . . 9 ((2 · 𝑛) ∈ ℕ0 → ((2 · 𝑛) + 1) ∈ ℕ)
119, 10syl 17 . . . . . . . 8 (𝑛 ∈ ℕ0 → ((2 · 𝑛) + 1) ∈ ℕ)
12 nnmulcl 12210 . . . . . . . 8 ((3 ∈ ℕ ∧ ((2 · 𝑛) + 1) ∈ ℕ) → (3 · ((2 · 𝑛) + 1)) ∈ ℕ)
136, 11, 12sylancr 587 . . . . . . 7 (𝑛 ∈ ℕ0 → (3 · ((2 · 𝑛) + 1)) ∈ ℕ)
14 9nn 12284 . . . . . . . 8 9 ∈ ℕ
15 nnexpcl 14039 . . . . . . . 8 ((9 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (9↑𝑛) ∈ ℕ)
1614, 15mpan 690 . . . . . . 7 (𝑛 ∈ ℕ0 → (9↑𝑛) ∈ ℕ)
1713, 16nnmulcld 12239 . . . . . 6 (𝑛 ∈ ℕ0 → ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)) ∈ ℕ)
18 nndivre 12227 . . . . . 6 ((2 ∈ ℝ ∧ ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)) ∈ ℕ) → (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ∈ ℝ)
195, 17, 18sylancr 587 . . . . 5 (𝑛 ∈ ℕ0 → (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ∈ ℝ)
204, 19syl 17 . . . 4 ((⊤ ∧ 𝑛 ∈ (0...𝐾)) → (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ∈ ℝ)
212, 20fsumrecl 15700 . . 3 (⊤ → Σ𝑛 ∈ (0...𝐾)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ∈ ℝ)
2221mptru 1547 . 2 Σ𝑛 ∈ (0...𝐾)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ∈ ℝ
23 log2ublem2.4 . . . . . 6 𝑁 ∈ ℕ0
247, 23nn0mulcli 12480 . . . . 5 (2 · 𝑁) ∈ ℕ0
25 nn0p1nn 12481 . . . . 5 ((2 · 𝑁) ∈ ℕ0 → ((2 · 𝑁) + 1) ∈ ℕ)
2624, 25ax-mp 5 . . . 4 ((2 · 𝑁) + 1) ∈ ℕ
276, 26nnmulcli 12211 . . 3 (3 · ((2 · 𝑁) + 1)) ∈ ℕ
28 nnexpcl 14039 . . . 4 ((9 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (9↑𝑁) ∈ ℕ)
2914, 23, 28mp2an 692 . . 3 (9↑𝑁) ∈ ℕ
3027, 29nnmulcli 12211 . 2 ((3 · ((2 · 𝑁) + 1)) · (9↑𝑁)) ∈ ℕ
31 log2ublem2.2 . . 3 𝐵 ∈ ℕ0
327, 31nn0mulcli 12480 . 2 (2 · 𝐵) ∈ ℕ0
33 log2ublem2.3 . . 3 𝐹 ∈ ℕ0
347, 33nn0mulcli 12480 . 2 (2 · 𝐹) ∈ ℕ0
35 nn0uz 12835 . . . . . . 7 0 = (ℤ‘0)
3623, 35eleqtri 2826 . . . . . 6 𝑁 ∈ (ℤ‘0)
3736a1i 11 . . . . 5 (⊤ → 𝑁 ∈ (ℤ‘0))
38 elfznn0 13581 . . . . . . 7 (𝑛 ∈ (0...𝑁) → 𝑛 ∈ ℕ0)
3938adantl 481 . . . . . 6 ((⊤ ∧ 𝑛 ∈ (0...𝑁)) → 𝑛 ∈ ℕ0)
4019recnd 11202 . . . . . 6 (𝑛 ∈ ℕ0 → (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ∈ ℂ)
4139, 40syl 17 . . . . 5 ((⊤ ∧ 𝑛 ∈ (0...𝑁)) → (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) ∈ ℂ)
42 oveq2 7395 . . . . . . . . 9 (𝑛 = 𝑁 → (2 · 𝑛) = (2 · 𝑁))
4342oveq1d 7402 . . . . . . . 8 (𝑛 = 𝑁 → ((2 · 𝑛) + 1) = ((2 · 𝑁) + 1))
4443oveq2d 7403 . . . . . . 7 (𝑛 = 𝑁 → (3 · ((2 · 𝑛) + 1)) = (3 · ((2 · 𝑁) + 1)))
45 oveq2 7395 . . . . . . 7 (𝑛 = 𝑁 → (9↑𝑛) = (9↑𝑁))
4644, 45oveq12d 7405 . . . . . 6 (𝑛 = 𝑁 → ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)) = ((3 · ((2 · 𝑁) + 1)) · (9↑𝑁)))
4746oveq2d 7403 . . . . 5 (𝑛 = 𝑁 → (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) = (2 / ((3 · ((2 · 𝑁) + 1)) · (9↑𝑁))))
4837, 41, 47fsumm1 15717 . . . 4 (⊤ → Σ𝑛 ∈ (0...𝑁)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) = (Σ𝑛 ∈ (0...(𝑁 − 1))(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) + (2 / ((3 · ((2 · 𝑁) + 1)) · (9↑𝑁)))))
4948mptru 1547 . . 3 Σ𝑛 ∈ (0...𝑁)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) = (Σ𝑛 ∈ (0...(𝑁 − 1))(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) + (2 / ((3 · ((2 · 𝑁) + 1)) · (9↑𝑁))))
50 log2ublem2.5 . . . . . 6 (𝑁 − 1) = 𝐾
5150oveq2i 7398 . . . . 5 (0...(𝑁 − 1)) = (0...𝐾)
5251sumeq1i 15663 . . . 4 Σ𝑛 ∈ (0...(𝑁 − 1))(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) = Σ𝑛 ∈ (0...𝐾)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))
5352oveq1i 7397 . . 3 𝑛 ∈ (0...(𝑁 − 1))(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) + (2 / ((3 · ((2 · 𝑁) + 1)) · (9↑𝑁)))) = (Σ𝑛 ∈ (0...𝐾)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) + (2 / ((3 · ((2 · 𝑁) + 1)) · (9↑𝑁))))
5449, 53eqtri 2752 . 2 Σ𝑛 ∈ (0...𝑁)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) = (Σ𝑛 ∈ (0...𝐾)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) + (2 / ((3 · ((2 · 𝑁) + 1)) · (9↑𝑁))))
55 2cn 12261 . . . 4 2 ∈ ℂ
5631nn0cni 12454 . . . 4 𝐵 ∈ ℂ
5733nn0cni 12454 . . . 4 𝐹 ∈ ℂ
5855, 56, 57adddii 11186 . . 3 (2 · (𝐵 + 𝐹)) = ((2 · 𝐵) + (2 · 𝐹))
59 log2ublem2.6 . . . 4 (𝐵 + 𝐹) = 𝐺
6059oveq2i 7398 . . 3 (2 · (𝐵 + 𝐹)) = (2 · 𝐺)
6158, 60eqtr3i 2754 . 2 ((2 · 𝐵) + (2 · 𝐹)) = (2 · 𝐺)
62 7nn 12278 . . . . . . . . 9 7 ∈ ℕ
6362nnnn0i 12450 . . . . . . . 8 7 ∈ ℕ0
64 nnexpcl 14039 . . . . . . . 8 ((3 ∈ ℕ ∧ 7 ∈ ℕ0) → (3↑7) ∈ ℕ)
656, 63, 64mp2an 692 . . . . . . 7 (3↑7) ∈ ℕ
66 5nn 12272 . . . . . . . 8 5 ∈ ℕ
6766, 62nnmulcli 12211 . . . . . . 7 (5 · 7) ∈ ℕ
6865, 67nnmulcli 12211 . . . . . 6 ((3↑7) · (5 · 7)) ∈ ℕ
6968nnrei 12195 . . . . 5 ((3↑7) · (5 · 7)) ∈ ℝ
7069, 5remulcli 11190 . . . 4 (((3↑7) · (5 · 7)) · 2) ∈ ℝ
7170leidi 11712 . . 3 (((3↑7) · (5 · 7)) · 2) ≤ (((3↑7) · (5 · 7)) · 2)
726nnnn0i 12450 . . . . . . . . . . . 12 3 ∈ ℕ0
73 nnexpcl 14039 . . . . . . . . . . . 12 ((9 ∈ ℕ ∧ 3 ∈ ℕ0) → (9↑3) ∈ ℕ)
7414, 72, 73mp2an 692 . . . . . . . . . . 11 (9↑3) ∈ ℕ
7574nncni 12196 . . . . . . . . . 10 (9↑3) ∈ ℂ
7667nncni 12196 . . . . . . . . . 10 (5 · 7) ∈ ℂ
7775, 76mulcomi 11182 . . . . . . . . 9 ((9↑3) · (5 · 7)) = ((5 · 7) · (9↑3))
78 log2ublem2.8 . . . . . . . . . . . . 13 (𝑀 + 𝑁) = 3
79 log2ublem2.7 . . . . . . . . . . . . . . 15 𝑀 ∈ ℕ0
8079nn0cni 12454 . . . . . . . . . . . . . 14 𝑀 ∈ ℂ
8123nn0cni 12454 . . . . . . . . . . . . . 14 𝑁 ∈ ℂ
8280, 81addcomi 11365 . . . . . . . . . . . . 13 (𝑀 + 𝑁) = (𝑁 + 𝑀)
8378, 82eqtr3i 2754 . . . . . . . . . . . 12 3 = (𝑁 + 𝑀)
8483oveq2i 7398 . . . . . . . . . . 11 (9↑3) = (9↑(𝑁 + 𝑀))
8514nncni 12196 . . . . . . . . . . . 12 9 ∈ ℂ
86 expadd 14069 . . . . . . . . . . . 12 ((9 ∈ ℂ ∧ 𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (9↑(𝑁 + 𝑀)) = ((9↑𝑁) · (9↑𝑀)))
8785, 23, 79, 86mp3an 1463 . . . . . . . . . . 11 (9↑(𝑁 + 𝑀)) = ((9↑𝑁) · (9↑𝑀))
8884, 87eqtri 2752 . . . . . . . . . 10 (9↑3) = ((9↑𝑁) · (9↑𝑀))
8988oveq2i 7398 . . . . . . . . 9 ((5 · 7) · (9↑3)) = ((5 · 7) · ((9↑𝑁) · (9↑𝑀)))
9029nncni 12196 . . . . . . . . . 10 (9↑𝑁) ∈ ℂ
91 nnexpcl 14039 . . . . . . . . . . . 12 ((9 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (9↑𝑀) ∈ ℕ)
9214, 79, 91mp2an 692 . . . . . . . . . . 11 (9↑𝑀) ∈ ℕ
9392nncni 12196 . . . . . . . . . 10 (9↑𝑀) ∈ ℂ
9476, 90, 93mul12i 11369 . . . . . . . . 9 ((5 · 7) · ((9↑𝑁) · (9↑𝑀))) = ((9↑𝑁) · ((5 · 7) · (9↑𝑀)))
9577, 89, 943eqtri 2756 . . . . . . . 8 ((9↑3) · (5 · 7)) = ((9↑𝑁) · ((5 · 7) · (9↑𝑀)))
96 log2ublem2.9 . . . . . . . . 9 ((5 · 7) · (9↑𝑀)) = (((2 · 𝑁) + 1) · 𝐹)
9796oveq2i 7398 . . . . . . . 8 ((9↑𝑁) · ((5 · 7) · (9↑𝑀))) = ((9↑𝑁) · (((2 · 𝑁) + 1) · 𝐹))
9895, 97eqtri 2752 . . . . . . 7 ((9↑3) · (5 · 7)) = ((9↑𝑁) · (((2 · 𝑁) + 1) · 𝐹))
9998oveq2i 7398 . . . . . 6 (3 · ((9↑3) · (5 · 7))) = (3 · ((9↑𝑁) · (((2 · 𝑁) + 1) · 𝐹)))
100 df-7 12254 . . . . . . . . . 10 7 = (6 + 1)
101100oveq2i 7398 . . . . . . . . 9 (3↑7) = (3↑(6 + 1))
102 3cn 12267 . . . . . . . . . . 11 3 ∈ ℂ
103 6nn0 12463 . . . . . . . . . . 11 6 ∈ ℕ0
104 expp1 14033 . . . . . . . . . . 11 ((3 ∈ ℂ ∧ 6 ∈ ℕ0) → (3↑(6 + 1)) = ((3↑6) · 3))
105102, 103, 104mp2an 692 . . . . . . . . . 10 (3↑(6 + 1)) = ((3↑6) · 3)
106 expmul 14072 . . . . . . . . . . . . 13 ((3 ∈ ℂ ∧ 2 ∈ ℕ0 ∧ 3 ∈ ℕ0) → (3↑(2 · 3)) = ((3↑2)↑3))
107102, 7, 72, 106mp3an 1463 . . . . . . . . . . . 12 (3↑(2 · 3)) = ((3↑2)↑3)
10855, 102mulcomi 11182 . . . . . . . . . . . . . 14 (2 · 3) = (3 · 2)
109 3t2e6 12347 . . . . . . . . . . . . . 14 (3 · 2) = 6
110108, 109eqtri 2752 . . . . . . . . . . . . 13 (2 · 3) = 6
111110oveq2i 7398 . . . . . . . . . . . 12 (3↑(2 · 3)) = (3↑6)
112 sq3 14163 . . . . . . . . . . . . 13 (3↑2) = 9
113112oveq1i 7397 . . . . . . . . . . . 12 ((3↑2)↑3) = (9↑3)
114107, 111, 1133eqtr3i 2760 . . . . . . . . . . 11 (3↑6) = (9↑3)
115114oveq1i 7397 . . . . . . . . . 10 ((3↑6) · 3) = ((9↑3) · 3)
116105, 115eqtri 2752 . . . . . . . . 9 (3↑(6 + 1)) = ((9↑3) · 3)
11775, 102mulcomi 11182 . . . . . . . . 9 ((9↑3) · 3) = (3 · (9↑3))
118101, 116, 1173eqtri 2756 . . . . . . . 8 (3↑7) = (3 · (9↑3))
119118oveq1i 7397 . . . . . . 7 ((3↑7) · (5 · 7)) = ((3 · (9↑3)) · (5 · 7))
120102, 75, 76mulassi 11185 . . . . . . 7 ((3 · (9↑3)) · (5 · 7)) = (3 · ((9↑3) · (5 · 7)))
121119, 120eqtri 2752 . . . . . 6 ((3↑7) · (5 · 7)) = (3 · ((9↑3) · (5 · 7)))
12226nncni 12196 . . . . . . . . 9 ((2 · 𝑁) + 1) ∈ ℂ
123102, 122, 90mul32i 11370 . . . . . . . 8 ((3 · ((2 · 𝑁) + 1)) · (9↑𝑁)) = ((3 · (9↑𝑁)) · ((2 · 𝑁) + 1))
124123oveq1i 7397 . . . . . . 7 (((3 · ((2 · 𝑁) + 1)) · (9↑𝑁)) · 𝐹) = (((3 · (9↑𝑁)) · ((2 · 𝑁) + 1)) · 𝐹)
125102, 90mulcli 11181 . . . . . . . 8 (3 · (9↑𝑁)) ∈ ℂ
126125, 122, 57mulassi 11185 . . . . . . 7 (((3 · (9↑𝑁)) · ((2 · 𝑁) + 1)) · 𝐹) = ((3 · (9↑𝑁)) · (((2 · 𝑁) + 1) · 𝐹))
127122, 57mulcli 11181 . . . . . . . 8 (((2 · 𝑁) + 1) · 𝐹) ∈ ℂ
128102, 90, 127mulassi 11185 . . . . . . 7 ((3 · (9↑𝑁)) · (((2 · 𝑁) + 1) · 𝐹)) = (3 · ((9↑𝑁) · (((2 · 𝑁) + 1) · 𝐹)))
129124, 126, 1283eqtri 2756 . . . . . 6 (((3 · ((2 · 𝑁) + 1)) · (9↑𝑁)) · 𝐹) = (3 · ((9↑𝑁) · (((2 · 𝑁) + 1) · 𝐹)))
13099, 121, 1293eqtr4i 2762 . . . . 5 ((3↑7) · (5 · 7)) = (((3 · ((2 · 𝑁) + 1)) · (9↑𝑁)) · 𝐹)
131130oveq2i 7398 . . . 4 (2 · ((3↑7) · (5 · 7))) = (2 · (((3 · ((2 · 𝑁) + 1)) · (9↑𝑁)) · 𝐹))
13265nncni 12196 . . . . . 6 (3↑7) ∈ ℂ
133132, 76mulcli 11181 . . . . 5 ((3↑7) · (5 · 7)) ∈ ℂ
134133, 55mulcomi 11182 . . . 4 (((3↑7) · (5 · 7)) · 2) = (2 · ((3↑7) · (5 · 7)))
13530nncni 12196 . . . . 5 ((3 · ((2 · 𝑁) + 1)) · (9↑𝑁)) ∈ ℂ
136135, 55, 57mul12i 11369 . . . 4 (((3 · ((2 · 𝑁) + 1)) · (9↑𝑁)) · (2 · 𝐹)) = (2 · (((3 · ((2 · 𝑁) + 1)) · (9↑𝑁)) · 𝐹))
137131, 134, 1363eqtr4i 2762 . . 3 (((3↑7) · (5 · 7)) · 2) = (((3 · ((2 · 𝑁) + 1)) · (9↑𝑁)) · (2 · 𝐹))
13871, 137breqtri 5132 . 2 (((3↑7) · (5 · 7)) · 2) ≤ (((3 · ((2 · 𝑁) + 1)) · (9↑𝑁)) · (2 · 𝐹))
1391, 22, 7, 30, 32, 34, 54, 61, 138log2ublem1 26856 1 (((3↑7) · (5 · 7)) · Σ𝑛 ∈ (0...𝑁)(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))) ≤ (2 · 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wtru 1541  wcel 2109   class class class wbr 5107  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  cle 11209  cmin 11405   / cdiv 11835  cn 12186  2c2 12241  3c3 12242  5c5 12244  6c6 12245  7c7 12246  9c9 12248  0cn0 12442  cuz 12793  ...cfz 13468  cexp 14026  Σcsu 15652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653
This theorem is referenced by:  log2ublem3  26858
  Copyright terms: Public domain W3C validator