Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 9t7e63 | Structured version Visualization version GIF version |
Description: 9 times 7 equals 63. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
9t7e63 | ⊢ (9 · 7) = ;63 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 9nn0 12002 | . 2 ⊢ 9 ∈ ℕ0 | |
2 | 6nn0 11999 | . 2 ⊢ 6 ∈ ℕ0 | |
3 | df-7 11786 | . 2 ⊢ 7 = (6 + 1) | |
4 | 9t6e54 12307 | . 2 ⊢ (9 · 6) = ;54 | |
5 | 5nn0 11998 | . . 3 ⊢ 5 ∈ ℕ0 | |
6 | 4nn0 11997 | . . 3 ⊢ 4 ∈ ℕ0 | |
7 | eqid 2738 | . . 3 ⊢ ;54 = ;54 | |
8 | 5p1e6 11865 | . . 3 ⊢ (5 + 1) = 6 | |
9 | 3nn0 11996 | . . 3 ⊢ 3 ∈ ℕ0 | |
10 | 1 | nn0cni 11990 | . . . 4 ⊢ 9 ∈ ℂ |
11 | 6 | nn0cni 11990 | . . . 4 ⊢ 4 ∈ ℂ |
12 | 9p4e13 12270 | . . . 4 ⊢ (9 + 4) = ;13 | |
13 | 10, 11, 12 | addcomli 10912 | . . 3 ⊢ (4 + 9) = ;13 |
14 | 5, 6, 1, 7, 8, 9, 13 | decaddci 12242 | . 2 ⊢ (;54 + 9) = ;63 |
15 | 1, 2, 3, 4, 14 | 4t3lem 12278 | 1 ⊢ (9 · 7) = ;63 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 (class class class)co 7172 1c1 10618 · cmul 10622 3c3 11774 4c4 11775 5c5 11776 6c6 11777 7c7 11778 9c9 11780 ;cdc 12181 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7481 ax-resscn 10674 ax-1cn 10675 ax-icn 10676 ax-addcl 10677 ax-addrcl 10678 ax-mulcl 10679 ax-mulrcl 10680 ax-mulcom 10681 ax-addass 10682 ax-mulass 10683 ax-distr 10684 ax-i2m1 10685 ax-1ne0 10686 ax-1rid 10687 ax-rnegex 10688 ax-rrecex 10689 ax-cnre 10690 ax-pre-lttri 10691 ax-pre-lttrn 10692 ax-pre-ltadd 10693 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7129 df-ov 7175 df-oprab 7176 df-mpo 7177 df-om 7602 df-wrecs 7978 df-recs 8039 df-rdg 8077 df-er 8322 df-en 8558 df-dom 8559 df-sdom 8560 df-pnf 10757 df-mnf 10758 df-ltxr 10760 df-sub 10952 df-nn 11719 df-2 11781 df-3 11782 df-4 11783 df-5 11784 df-6 11785 df-7 11786 df-8 11787 df-9 11788 df-n0 11979 df-dec 12182 |
This theorem is referenced by: 9t8e72 12309 139prm 16562 163prm 16563 631prm 16565 log2ublem3 25688 hgt750lem2 32204 3lexlogpow5ineq1 39704 139prmALT 44611 8exp8mod9 44751 |
Copyright terms: Public domain | W3C validator |