![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 6p1e7 | Structured version Visualization version GIF version |
Description: 6 + 1 = 7. (Contributed by Mario Carneiro, 18-Apr-2015.) |
Ref | Expression |
---|---|
6p1e7 | ⊢ (6 + 1) = 7 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-7 12361 | . 2 ⊢ 7 = (6 + 1) | |
2 | 1 | eqcomi 2749 | 1 ⊢ (6 + 1) = 7 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 (class class class)co 7448 1c1 11185 + caddc 11187 6c6 12352 7c7 12353 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-7 12361 |
This theorem is referenced by: 9t8e72 12886 s7len 14951 37prm 17168 163prm 17172 317prm 17173 631prm 17174 1259lem1 17178 1259lem3 17180 1259lem4 17181 1259lem5 17182 2503lem1 17184 2503lem2 17185 2503lem3 17186 2503prm 17187 4001lem1 17188 4001lem4 17191 4001prm 17192 log2ublem3 27009 log2ub 27010 hgt750lemd 34625 hgt750lem2 34629 3exp7 42010 3lexlogpow5ineq1 42011 235t711 42293 ex-decpmul 42294 3cubeslem3l 42642 3cubeslem3r 42643 fmtno2 47424 fmtno3 47425 fmtno4 47426 fmtno5lem4 47430 fmtno5 47431 fmtno4nprmfac193 47448 fmtno5fac 47456 127prm 47473 mod42tp1mod8 47476 2exp340mod341 47607 gbowge7 47637 sbgoldbwt 47651 nnsum3primesle9 47668 |
Copyright terms: Public domain | W3C validator |