| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 6p1e7 | Structured version Visualization version GIF version | ||
| Description: 6 + 1 = 7. (Contributed by Mario Carneiro, 18-Apr-2015.) |
| Ref | Expression |
|---|---|
| 6p1e7 | ⊢ (6 + 1) = 7 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-7 12230 | . 2 ⊢ 7 = (6 + 1) | |
| 2 | 1 | eqcomi 2738 | 1 ⊢ (6 + 1) = 7 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7369 1c1 11045 + caddc 11047 6c6 12221 7c7 12222 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-7 12230 |
| This theorem is referenced by: 9t8e72 12753 s7len 14844 37prm 17067 163prm 17071 317prm 17072 631prm 17073 1259lem1 17077 1259lem3 17079 1259lem4 17080 1259lem5 17081 2503lem1 17083 2503lem2 17084 2503lem3 17085 2503prm 17086 4001lem1 17087 4001lem4 17090 4001prm 17091 log2ublem3 26834 log2ub 26835 hgt750lemd 34612 hgt750lem2 34616 3exp7 42014 3lexlogpow5ineq1 42015 235t711 42266 ex-decpmul 42267 3cubeslem3l 42647 3cubeslem3r 42648 fmtno2 47524 fmtno3 47525 fmtno4 47526 fmtno5lem4 47530 fmtno5 47531 fmtno4nprmfac193 47548 fmtno5fac 47556 127prm 47573 mod42tp1mod8 47576 2exp340mod341 47707 gbowge7 47737 sbgoldbwt 47751 nnsum3primesle9 47768 |
| Copyright terms: Public domain | W3C validator |