| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 6p1e7 | Structured version Visualization version GIF version | ||
| Description: 6 + 1 = 7. (Contributed by Mario Carneiro, 18-Apr-2015.) |
| Ref | Expression |
|---|---|
| 6p1e7 | ⊢ (6 + 1) = 7 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-7 12196 | . 2 ⊢ 7 = (6 + 1) | |
| 2 | 1 | eqcomi 2738 | 1 ⊢ (6 + 1) = 7 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7349 1c1 11010 + caddc 11012 6c6 12187 7c7 12188 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-7 12196 |
| This theorem is referenced by: 9t8e72 12719 s7len 14809 37prm 17032 163prm 17036 317prm 17037 631prm 17038 1259lem1 17042 1259lem3 17044 1259lem4 17045 1259lem5 17046 2503lem1 17048 2503lem2 17049 2503lem3 17050 2503prm 17051 4001lem1 17052 4001lem4 17055 4001prm 17056 log2ublem3 26856 log2ub 26857 hgt750lemd 34616 hgt750lem2 34620 3exp7 42026 3lexlogpow5ineq1 42027 235t711 42278 ex-decpmul 42279 3cubeslem3l 42659 3cubeslem3r 42660 fmtno2 47534 fmtno3 47535 fmtno4 47536 fmtno5lem4 47540 fmtno5 47541 fmtno4nprmfac193 47558 fmtno5fac 47566 127prm 47583 mod42tp1mod8 47586 2exp340mod341 47717 gbowge7 47747 sbgoldbwt 47761 nnsum3primesle9 47778 |
| Copyright terms: Public domain | W3C validator |