| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 6p1e7 | Structured version Visualization version GIF version | ||
| Description: 6 + 1 = 7. (Contributed by Mario Carneiro, 18-Apr-2015.) |
| Ref | Expression |
|---|---|
| 6p1e7 | ⊢ (6 + 1) = 7 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-7 12188 | . 2 ⊢ 7 = (6 + 1) | |
| 2 | 1 | eqcomi 2740 | 1 ⊢ (6 + 1) = 7 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 (class class class)co 7341 1c1 11002 + caddc 11004 6c6 12179 7c7 12180 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-7 12188 |
| This theorem is referenced by: 9t8e72 12711 s7len 14804 37prm 17027 163prm 17031 317prm 17032 631prm 17033 1259lem1 17037 1259lem3 17039 1259lem4 17040 1259lem5 17041 2503lem1 17043 2503lem2 17044 2503lem3 17045 2503prm 17046 4001lem1 17047 4001lem4 17050 4001prm 17051 log2ublem3 26880 log2ub 26881 hgt750lemd 34653 hgt750lem2 34657 3exp7 42086 3lexlogpow5ineq1 42087 235t711 42338 ex-decpmul 42339 3cubeslem3l 42719 3cubeslem3r 42720 fmtno2 47581 fmtno3 47582 fmtno4 47583 fmtno5lem4 47587 fmtno5 47588 fmtno4nprmfac193 47605 fmtno5fac 47613 127prm 47630 mod42tp1mod8 47633 2exp340mod341 47764 gbowge7 47794 sbgoldbwt 47808 nnsum3primesle9 47825 |
| Copyright terms: Public domain | W3C validator |