| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 6p1e7 | Structured version Visualization version GIF version | ||
| Description: 6 + 1 = 7. (Contributed by Mario Carneiro, 18-Apr-2015.) |
| Ref | Expression |
|---|---|
| 6p1e7 | ⊢ (6 + 1) = 7 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-7 12254 | . 2 ⊢ 7 = (6 + 1) | |
| 2 | 1 | eqcomi 2738 | 1 ⊢ (6 + 1) = 7 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7387 1c1 11069 + caddc 11071 6c6 12245 7c7 12246 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-7 12254 |
| This theorem is referenced by: 9t8e72 12777 s7len 14868 37prm 17091 163prm 17095 317prm 17096 631prm 17097 1259lem1 17101 1259lem3 17103 1259lem4 17104 1259lem5 17105 2503lem1 17107 2503lem2 17108 2503lem3 17109 2503prm 17110 4001lem1 17111 4001lem4 17114 4001prm 17115 log2ublem3 26858 log2ub 26859 hgt750lemd 34639 hgt750lem2 34643 3exp7 42041 3lexlogpow5ineq1 42042 235t711 42293 ex-decpmul 42294 3cubeslem3l 42674 3cubeslem3r 42675 fmtno2 47551 fmtno3 47552 fmtno4 47553 fmtno5lem4 47557 fmtno5 47558 fmtno4nprmfac193 47575 fmtno5fac 47583 127prm 47600 mod42tp1mod8 47603 2exp340mod341 47734 gbowge7 47764 sbgoldbwt 47778 nnsum3primesle9 47795 |
| Copyright terms: Public domain | W3C validator |