| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 6p1e7 | Structured version Visualization version GIF version | ||
| Description: 6 + 1 = 7. (Contributed by Mario Carneiro, 18-Apr-2015.) |
| Ref | Expression |
|---|---|
| 6p1e7 | ⊢ (6 + 1) = 7 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-7 12334 | . 2 ⊢ 7 = (6 + 1) | |
| 2 | 1 | eqcomi 2746 | 1 ⊢ (6 + 1) = 7 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7431 1c1 11156 + caddc 11158 6c6 12325 7c7 12326 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2729 df-7 12334 |
| This theorem is referenced by: 9t8e72 12861 s7len 14941 37prm 17158 163prm 17162 317prm 17163 631prm 17164 1259lem1 17168 1259lem3 17170 1259lem4 17171 1259lem5 17172 2503lem1 17174 2503lem2 17175 2503lem3 17176 2503prm 17177 4001lem1 17178 4001lem4 17181 4001prm 17182 log2ublem3 26991 log2ub 26992 hgt750lemd 34663 hgt750lem2 34667 3exp7 42054 3lexlogpow5ineq1 42055 235t711 42339 ex-decpmul 42340 3cubeslem3l 42697 3cubeslem3r 42698 fmtno2 47537 fmtno3 47538 fmtno4 47539 fmtno5lem4 47543 fmtno5 47544 fmtno4nprmfac193 47561 fmtno5fac 47569 127prm 47586 mod42tp1mod8 47589 2exp340mod341 47720 gbowge7 47750 sbgoldbwt 47764 nnsum3primesle9 47781 |
| Copyright terms: Public domain | W3C validator |