| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 6p1e7 | Structured version Visualization version GIF version | ||
| Description: 6 + 1 = 7. (Contributed by Mario Carneiro, 18-Apr-2015.) |
| Ref | Expression |
|---|---|
| 6p1e7 | ⊢ (6 + 1) = 7 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-7 12261 | . 2 ⊢ 7 = (6 + 1) | |
| 2 | 1 | eqcomi 2739 | 1 ⊢ (6 + 1) = 7 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7390 1c1 11076 + caddc 11078 6c6 12252 7c7 12253 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-7 12261 |
| This theorem is referenced by: 9t8e72 12784 s7len 14875 37prm 17098 163prm 17102 317prm 17103 631prm 17104 1259lem1 17108 1259lem3 17110 1259lem4 17111 1259lem5 17112 2503lem1 17114 2503lem2 17115 2503lem3 17116 2503prm 17117 4001lem1 17118 4001lem4 17121 4001prm 17122 log2ublem3 26865 log2ub 26866 hgt750lemd 34646 hgt750lem2 34650 3exp7 42048 3lexlogpow5ineq1 42049 235t711 42300 ex-decpmul 42301 3cubeslem3l 42681 3cubeslem3r 42682 fmtno2 47555 fmtno3 47556 fmtno4 47557 fmtno5lem4 47561 fmtno5 47562 fmtno4nprmfac193 47579 fmtno5fac 47587 127prm 47604 mod42tp1mod8 47607 2exp340mod341 47738 gbowge7 47768 sbgoldbwt 47782 nnsum3primesle9 47799 |
| Copyright terms: Public domain | W3C validator |