Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 6p1e7 | Structured version Visualization version GIF version |
Description: 6 + 1 = 7. (Contributed by Mario Carneiro, 18-Apr-2015.) |
Ref | Expression |
---|---|
6p1e7 | ⊢ (6 + 1) = 7 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-7 12041 | . 2 ⊢ 7 = (6 + 1) | |
2 | 1 | eqcomi 2747 | 1 ⊢ (6 + 1) = 7 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 (class class class)co 7275 1c1 10872 + caddc 10874 6c6 12032 7c7 12033 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2730 df-7 12041 |
This theorem is referenced by: 9t8e72 12565 s7len 14615 37prm 16822 163prm 16826 317prm 16827 631prm 16828 1259lem1 16832 1259lem3 16834 1259lem4 16835 1259lem5 16836 2503lem1 16838 2503lem2 16839 2503lem3 16840 2503prm 16841 4001lem1 16842 4001lem4 16845 4001prm 16846 log2ublem3 26098 log2ub 26099 hgt750lemd 32628 hgt750lem2 32632 3exp7 40061 3lexlogpow5ineq1 40062 235t711 40319 ex-decpmul 40320 3cubeslem3l 40508 3cubeslem3r 40509 fmtno2 45002 fmtno3 45003 fmtno4 45004 fmtno5lem4 45008 fmtno5 45009 fmtno4nprmfac193 45026 fmtno5fac 45034 127prm 45051 mod42tp1mod8 45054 2exp340mod341 45185 gbowge7 45215 sbgoldbwt 45229 nnsum3primesle9 45246 |
Copyright terms: Public domain | W3C validator |