![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 6p1e7 | Structured version Visualization version GIF version |
Description: 6 + 1 = 7. (Contributed by Mario Carneiro, 18-Apr-2015.) |
Ref | Expression |
---|---|
6p1e7 | ⊢ (6 + 1) = 7 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-7 12332 | . 2 ⊢ 7 = (6 + 1) | |
2 | 1 | eqcomi 2744 | 1 ⊢ (6 + 1) = 7 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 (class class class)co 7431 1c1 11154 + caddc 11156 6c6 12323 7c7 12324 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-cleq 2727 df-7 12332 |
This theorem is referenced by: 9t8e72 12859 s7len 14938 37prm 17155 163prm 17159 317prm 17160 631prm 17161 1259lem1 17165 1259lem3 17167 1259lem4 17168 1259lem5 17169 2503lem1 17171 2503lem2 17172 2503lem3 17173 2503prm 17174 4001lem1 17175 4001lem4 17178 4001prm 17179 log2ublem3 27006 log2ub 27007 hgt750lemd 34642 hgt750lem2 34646 3exp7 42035 3lexlogpow5ineq1 42036 235t711 42318 ex-decpmul 42319 3cubeslem3l 42674 3cubeslem3r 42675 fmtno2 47475 fmtno3 47476 fmtno4 47477 fmtno5lem4 47481 fmtno5 47482 fmtno4nprmfac193 47499 fmtno5fac 47507 127prm 47524 mod42tp1mod8 47527 2exp340mod341 47658 gbowge7 47688 sbgoldbwt 47702 nnsum3primesle9 47719 |
Copyright terms: Public domain | W3C validator |