| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 6p1e7 | Structured version Visualization version GIF version | ||
| Description: 6 + 1 = 7. (Contributed by Mario Carneiro, 18-Apr-2015.) |
| Ref | Expression |
|---|---|
| 6p1e7 | ⊢ (6 + 1) = 7 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-7 12308 | . 2 ⊢ 7 = (6 + 1) | |
| 2 | 1 | eqcomi 2744 | 1 ⊢ (6 + 1) = 7 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7405 1c1 11130 + caddc 11132 6c6 12299 7c7 12300 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 df-7 12308 |
| This theorem is referenced by: 9t8e72 12836 s7len 14921 37prm 17140 163prm 17144 317prm 17145 631prm 17146 1259lem1 17150 1259lem3 17152 1259lem4 17153 1259lem5 17154 2503lem1 17156 2503lem2 17157 2503lem3 17158 2503prm 17159 4001lem1 17160 4001lem4 17163 4001prm 17164 log2ublem3 26910 log2ub 26911 hgt750lemd 34680 hgt750lem2 34684 3exp7 42066 3lexlogpow5ineq1 42067 235t711 42354 ex-decpmul 42355 3cubeslem3l 42709 3cubeslem3r 42710 fmtno2 47564 fmtno3 47565 fmtno4 47566 fmtno5lem4 47570 fmtno5 47571 fmtno4nprmfac193 47588 fmtno5fac 47596 127prm 47613 mod42tp1mod8 47616 2exp340mod341 47747 gbowge7 47777 sbgoldbwt 47791 nnsum3primesle9 47808 |
| Copyright terms: Public domain | W3C validator |