Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 6p1e7 | Structured version Visualization version GIF version |
Description: 6 + 1 = 7. (Contributed by Mario Carneiro, 18-Apr-2015.) |
Ref | Expression |
---|---|
6p1e7 | ⊢ (6 + 1) = 7 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-7 11971 | . 2 ⊢ 7 = (6 + 1) | |
2 | 1 | eqcomi 2747 | 1 ⊢ (6 + 1) = 7 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 (class class class)co 7255 1c1 10803 + caddc 10805 6c6 11962 7c7 11963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 df-7 11971 |
This theorem is referenced by: 9t8e72 12494 s7len 14543 37prm 16750 163prm 16754 317prm 16755 631prm 16756 1259lem1 16760 1259lem3 16762 1259lem4 16763 1259lem5 16764 2503lem1 16766 2503lem2 16767 2503lem3 16768 2503prm 16769 4001lem1 16770 4001lem4 16773 4001prm 16774 log2ublem3 26003 log2ub 26004 hgt750lemd 32528 hgt750lem2 32532 3exp7 39989 3lexlogpow5ineq1 39990 235t711 40240 ex-decpmul 40241 3cubeslem3l 40424 3cubeslem3r 40425 fmtno2 44890 fmtno3 44891 fmtno4 44892 fmtno5lem4 44896 fmtno5 44897 fmtno4nprmfac193 44914 fmtno5fac 44922 127prm 44939 mod42tp1mod8 44942 2exp340mod341 45073 gbowge7 45103 sbgoldbwt 45117 nnsum3primesle9 45134 |
Copyright terms: Public domain | W3C validator |