MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  8t7e56 Structured version   Visualization version   GIF version

Theorem 8t7e56 12026
Description: 8 times 7 equals 56. (Contributed by Mario Carneiro, 19-Apr-2015.)
Assertion
Ref Expression
8t7e56 (8 · 7) = 56

Proof of Theorem 8t7e56
StepHypRef Expression
1 8nn0 11725 . 2 8 ∈ ℕ0
2 6nn0 11723 . 2 6 ∈ ℕ0
3 df-7 11501 . 2 7 = (6 + 1)
4 8t6e48 12025 . 2 (8 · 6) = 48
5 4nn0 11721 . . 3 4 ∈ ℕ0
6 eqid 2772 . . 3 48 = 48
7 4p1e5 11586 . . 3 (4 + 1) = 5
8 8p8e16 11992 . . 3 (8 + 8) = 16
95, 1, 1, 6, 7, 2, 8decaddci 11966 . 2 (48 + 8) = 56
101, 2, 3, 4, 94t3lem 12003 1 (8 · 7) = 56
Colors of variables: wff setvar class
Syntax hints:   = wceq 1507  (class class class)co 6970   · cmul 10332  4c4 11490  5c5 11491  6c6 11492  7c7 11493  8c8 11494  cdc 11904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-resscn 10384  ax-1cn 10385  ax-icn 10386  ax-addcl 10387  ax-addrcl 10388  ax-mulcl 10389  ax-mulrcl 10390  ax-mulcom 10391  ax-addass 10392  ax-mulass 10393  ax-distr 10394  ax-i2m1 10395  ax-1ne0 10396  ax-1rid 10397  ax-rnegex 10398  ax-rrecex 10399  ax-cnre 10400  ax-pre-lttri 10401  ax-pre-lttrn 10402  ax-pre-ltadd 10403
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-pss 3841  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5305  df-eprel 5310  df-po 5319  df-so 5320  df-fr 5359  df-we 5361  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-wrecs 7743  df-recs 7805  df-rdg 7843  df-er 8081  df-en 8299  df-dom 8300  df-sdom 8301  df-pnf 10468  df-mnf 10469  df-ltxr 10471  df-sub 10664  df-nn 11432  df-2 11496  df-3 11497  df-4 11498  df-5 11499  df-6 11500  df-7 11501  df-8 11502  df-9 11503  df-n0 11701  df-dec 11905
This theorem is referenced by:  8t8e64  12027  139prm  16303  317prm  16305  hgt750lem2  31532  139prmALT  43067  127prm  43071
  Copyright terms: Public domain W3C validator