Proof of Theorem 37prm
Step | Hyp | Ref
| Expression |
1 | | 3nn0 12364 |
. . 3
⊢ 3 ∈
ℕ0 |
2 | | 7nn 12178 |
. . 3
⊢ 7 ∈
ℕ |
3 | 1, 2 | decnncl 12570 |
. 2
⊢ ;37 ∈ ℕ |
4 | | 8nn0 12369 |
. . . 4
⊢ 8 ∈
ℕ0 |
5 | | 4nn0 12365 |
. . . 4
⊢ 4 ∈
ℕ0 |
6 | 4, 5 | deccl 12565 |
. . 3
⊢ ;84 ∈
ℕ0 |
7 | | 7nn0 12368 |
. . 3
⊢ 7 ∈
ℕ0 |
8 | | 1nn0 12362 |
. . 3
⊢ 1 ∈
ℕ0 |
9 | | 7lt10 12683 |
. . 3
⊢ 7 <
;10 |
10 | | 8nn 12181 |
. . . 4
⊢ 8 ∈
ℕ |
11 | | 3lt10 12687 |
. . . 4
⊢ 3 <
;10 |
12 | 10, 5, 1, 11 | declti 12588 |
. . 3
⊢ 3 <
;84 |
13 | 1, 6, 7, 8, 9, 12 | decltc 12579 |
. 2
⊢ ;37 < ;;841 |
14 | | 3nn 12165 |
. . 3
⊢ 3 ∈
ℕ |
15 | | 1lt10 12689 |
. . 3
⊢ 1 <
;10 |
16 | 14, 7, 8, 15 | declti 12588 |
. 2
⊢ 1 <
;37 |
17 | | 3t2e6 12252 |
. . 3
⊢ (3
· 2) = 6 |
18 | | df-7 12154 |
. . 3
⊢ 7 = (6 +
1) |
19 | 1, 1, 17, 18 | dec2dvds 16869 |
. 2
⊢ ¬ 2
∥ ;37 |
20 | | 2nn0 12363 |
. . . 4
⊢ 2 ∈
ℕ0 |
21 | 8, 20 | deccl 12565 |
. . 3
⊢ ;12 ∈
ℕ0 |
22 | | 1nn 12097 |
. . 3
⊢ 1 ∈
ℕ |
23 | | 6nn0 12367 |
. . . 4
⊢ 6 ∈
ℕ0 |
24 | | 6p1e7 12234 |
. . . 4
⊢ (6 + 1) =
7 |
25 | | eqid 2737 |
. . . . 5
⊢ ;12 = ;12 |
26 | | 0nn0 12361 |
. . . . 5
⊢ 0 ∈
ℕ0 |
27 | | 3cn 12167 |
. . . . . . . 8
⊢ 3 ∈
ℂ |
28 | 27 | mulid1i 11092 |
. . . . . . 7
⊢ (3
· 1) = 3 |
29 | 28 | oveq1i 7359 |
. . . . . 6
⊢ ((3
· 1) + 0) = (3 + 0) |
30 | 27 | addid1i 11275 |
. . . . . 6
⊢ (3 + 0) =
3 |
31 | 29, 30 | eqtri 2765 |
. . . . 5
⊢ ((3
· 1) + 0) = 3 |
32 | 23 | dec0h 12572 |
. . . . . 6
⊢ 6 = ;06 |
33 | 17, 32 | eqtri 2765 |
. . . . 5
⊢ (3
· 2) = ;06 |
34 | 1, 8, 20, 25, 23, 26, 31, 33 | decmul2c 12616 |
. . . 4
⊢ (3
· ;12) = ;36 |
35 | 1, 23, 24, 34 | decsuc 12581 |
. . 3
⊢ ((3
· ;12) + 1) = ;37 |
36 | | 1lt3 12259 |
. . 3
⊢ 1 <
3 |
37 | 14, 21, 22, 35, 36 | ndvdsi 16228 |
. 2
⊢ ¬ 3
∥ ;37 |
38 | | 2nn 12159 |
. . 3
⊢ 2 ∈
ℕ |
39 | | 2lt5 12265 |
. . 3
⊢ 2 <
5 |
40 | | 5p2e7 12242 |
. . 3
⊢ (5 + 2) =
7 |
41 | 1, 38, 39, 40 | dec5dvds2 16871 |
. 2
⊢ ¬ 5
∥ ;37 |
42 | | 5nn0 12366 |
. . 3
⊢ 5 ∈
ℕ0 |
43 | | 7t5e35 12662 |
. . . 4
⊢ (7
· 5) = ;35 |
44 | 1, 42, 20, 43, 40 | decaddi 12610 |
. . 3
⊢ ((7
· 5) + 2) = ;37 |
45 | | 2lt7 12276 |
. . 3
⊢ 2 <
7 |
46 | 2, 42, 38, 44, 45 | ndvdsi 16228 |
. 2
⊢ ¬ 7
∥ ;37 |
47 | 8, 22 | decnncl 12570 |
. . 3
⊢ ;11 ∈ ℕ |
48 | | 4nn 12169 |
. . 3
⊢ 4 ∈
ℕ |
49 | | eqid 2737 |
. . . 4
⊢ ;11 = ;11 |
50 | 27 | mulid2i 11093 |
. . . 4
⊢ (1
· 3) = 3 |
51 | 50 | oveq1i 7359 |
. . . . 5
⊢ ((1
· 3) + 4) = (3 + 4) |
52 | 48 | nncni 12096 |
. . . . . 6
⊢ 4 ∈
ℂ |
53 | | 4p3e7 12240 |
. . . . . 6
⊢ (4 + 3) =
7 |
54 | 52, 27, 53 | addcomli 11280 |
. . . . 5
⊢ (3 + 4) =
7 |
55 | 51, 54 | eqtri 2765 |
. . . 4
⊢ ((1
· 3) + 4) = 7 |
56 | 8, 8, 5, 49, 1, 50, 55 | decrmanc 12607 |
. . 3
⊢ ((;11 · 3) + 4) = ;37 |
57 | | 4lt10 12686 |
. . . 4
⊢ 4 <
;10 |
58 | 22, 8, 5, 57 | declti 12588 |
. . 3
⊢ 4 <
;11 |
59 | 47, 1, 48, 56, 58 | ndvdsi 16228 |
. 2
⊢ ¬
;11 ∥ ;37 |
60 | 8, 14 | decnncl 12570 |
. . 3
⊢ ;13 ∈ ℕ |
61 | | eqid 2737 |
. . . . 5
⊢ ;13 = ;13 |
62 | | 2cn 12161 |
. . . . . 6
⊢ 2 ∈
ℂ |
63 | 62 | mulid2i 11093 |
. . . . 5
⊢ (1
· 2) = 2 |
64 | 20, 8, 1, 61, 63, 17 | decmul1 12614 |
. . . 4
⊢ (;13 · 2) = ;26 |
65 | | 2p1e3 12228 |
. . . 4
⊢ (2 + 1) =
3 |
66 | 20, 23, 8, 8, 64, 49, 65, 24 | decadd 12604 |
. . 3
⊢ ((;13 · 2) + ;11) = ;37 |
67 | 8, 8, 14, 36 | declt 12578 |
. . 3
⊢ ;11 < ;13 |
68 | 60, 20, 47, 66, 67 | ndvdsi 16228 |
. 2
⊢ ¬
;13 ∥ ;37 |
69 | 8, 2 | decnncl 12570 |
. . 3
⊢ ;17 ∈ ℕ |
70 | | eqid 2737 |
. . . 4
⊢ ;17 = ;17 |
71 | 1 | dec0h 12572 |
. . . 4
⊢ 3 = ;03 |
72 | | 0p1e1 12208 |
. . . . . 6
⊢ (0 + 1) =
1 |
73 | 63, 72 | oveq12i 7361 |
. . . . 5
⊢ ((1
· 2) + (0 + 1)) = (2 + 1) |
74 | 73, 65 | eqtri 2765 |
. . . 4
⊢ ((1
· 2) + (0 + 1)) = 3 |
75 | | 7t2e14 12659 |
. . . . 5
⊢ (7
· 2) = ;14 |
76 | 8, 5, 1, 75, 53 | decaddi 12610 |
. . . 4
⊢ ((7
· 2) + 3) = ;17 |
77 | 8, 7, 26, 1, 70, 71, 20, 7, 8, 74, 76 | decmac 12602 |
. . 3
⊢ ((;17 · 2) + 3) = ;37 |
78 | 22, 7, 1, 11 | declti 12588 |
. . 3
⊢ 3 <
;17 |
79 | 69, 20, 14, 77, 78 | ndvdsi 16228 |
. 2
⊢ ¬
;17 ∥ ;37 |
80 | | 9nn 12184 |
. . . 4
⊢ 9 ∈
ℕ |
81 | 8, 80 | decnncl 12570 |
. . 3
⊢ ;19 ∈ ℕ |
82 | 8, 10 | decnncl 12570 |
. . 3
⊢ ;18 ∈ ℕ |
83 | | 9nn0 12370 |
. . . 4
⊢ 9 ∈
ℕ0 |
84 | 81 | nncni 12096 |
. . . . 5
⊢ ;19 ∈ ℂ |
85 | 84 | mulid1i 11092 |
. . . 4
⊢ (;19 · 1) = ;19 |
86 | | eqid 2737 |
. . . 4
⊢ ;18 = ;18 |
87 | | 1p1e2 12211 |
. . . . . 6
⊢ (1 + 1) =
2 |
88 | 87 | oveq1i 7359 |
. . . . 5
⊢ ((1 + 1)
+ 1) = (2 + 1) |
89 | 88, 65 | eqtri 2765 |
. . . 4
⊢ ((1 + 1)
+ 1) = 3 |
90 | | 9p8e17 12643 |
. . . 4
⊢ (9 + 8) =
;17 |
91 | 8, 83, 8, 4, 85, 86, 89, 7, 90 | decaddc 12605 |
. . 3
⊢ ((;19 · 1) + ;18) = ;37 |
92 | | 8lt9 12285 |
. . . 4
⊢ 8 <
9 |
93 | 8, 4, 80, 92 | declt 12578 |
. . 3
⊢ ;18 < ;19 |
94 | 81, 8, 82, 91, 93 | ndvdsi 16228 |
. 2
⊢ ¬
;19 ∥ ;37 |
95 | 20, 14 | decnncl 12570 |
. . 3
⊢ ;23 ∈ ℕ |
96 | 8, 48 | decnncl 12570 |
. . 3
⊢ ;14 ∈ ℕ |
97 | 95 | nncni 12096 |
. . . . 5
⊢ ;23 ∈ ℂ |
98 | 97 | mulid1i 11092 |
. . . 4
⊢ (;23 · 1) = ;23 |
99 | | eqid 2737 |
. . . 4
⊢ ;14 = ;14 |
100 | 20, 1, 8, 5, 98, 99, 65, 54 | decadd 12604 |
. . 3
⊢ ((;23 · 1) + ;14) = ;37 |
101 | | 1lt2 12257 |
. . . 4
⊢ 1 <
2 |
102 | 8, 20, 5, 1, 57, 101 | decltc 12579 |
. . 3
⊢ ;14 < ;23 |
103 | 95, 8, 96, 100, 102 | ndvdsi 16228 |
. 2
⊢ ¬
;23 ∥ ;37 |
104 | 3, 13, 16, 19, 37, 41, 46, 59, 68, 79, 94, 103 | prmlem2 16926 |
1
⊢ ;37 ∈ ℙ |