| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 7cn | Structured version Visualization version GIF version | ||
| Description: The number 7 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
| Ref | Expression |
|---|---|
| 7cn | ⊢ 7 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-7 12254 | . 2 ⊢ 7 = (6 + 1) | |
| 2 | 6cn 12277 | . . 3 ⊢ 6 ∈ ℂ | |
| 3 | ax-1cn 11126 | . . 3 ⊢ 1 ∈ ℂ | |
| 4 | 2, 3 | addcli 11180 | . 2 ⊢ (6 + 1) ∈ ℂ |
| 5 | 1, 4 | eqeltri 2824 | 1 ⊢ 7 ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7387 ℂcc 11066 1c1 11069 + caddc 11071 6c6 12245 7c7 12246 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-1cn 11126 ax-addcl 11128 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 |
| This theorem is referenced by: 8cn 12283 8m1e7 12314 7p2e9 12342 7p3e10 12724 7t2e14 12758 7t4e28 12760 7t7e49 12763 cos2bnd 16156 23prm 17089 139prm 17094 163prm 17095 317prm 17096 631prm 17097 1259lem1 17101 1259lem2 17102 1259lem3 17103 1259lem4 17104 1259lem5 17105 1259prm 17106 2503lem1 17107 2503lem2 17108 2503lem3 17109 4001lem1 17111 4001lem4 17114 4001prm 17115 log2ublem3 26858 log2ub 26859 bclbnd 27191 bposlem8 27202 2lgslem3d 27310 ex-prmo 30388 hgt750lem 34642 hgt750lem2 34643 60lcm7e420 41998 3exp7 42041 3lexlogpow5ineq1 42042 aks4d1p1 42064 sq7 42284 235t711 42293 ex-decpmul 42294 3cubeslem3r 42675 fmtno5lem4 47557 257prm 47562 fmtno4nprmfac193 47575 fmtno5fac 47583 m3prm 47593 139prmALT 47597 127prm 47600 m7prm 47601 2exp340mod341 47734 8exp8mod9 47737 |
| Copyright terms: Public domain | W3C validator |