![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 7cn | Structured version Visualization version GIF version |
Description: The number 7 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
Ref | Expression |
---|---|
7cn | ⊢ 7 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-7 12331 | . 2 ⊢ 7 = (6 + 1) | |
2 | 6cn 12354 | . . 3 ⊢ 6 ∈ ℂ | |
3 | ax-1cn 11210 | . . 3 ⊢ 1 ∈ ℂ | |
4 | 2, 3 | addcli 11264 | . 2 ⊢ (6 + 1) ∈ ℂ |
5 | 1, 4 | eqeltri 2834 | 1 ⊢ 7 ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 (class class class)co 7430 ℂcc 11150 1c1 11153 + caddc 11155 6c6 12322 7c7 12323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-1cn 11210 ax-addcl 11212 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-cleq 2726 df-clel 2813 df-2 12326 df-3 12327 df-4 12328 df-5 12329 df-6 12330 df-7 12331 |
This theorem is referenced by: 8cn 12360 8m1e7 12396 7p2e9 12424 7p3e10 12805 7t2e14 12839 7t4e28 12841 7t7e49 12844 cos2bnd 16220 23prm 17152 139prm 17157 163prm 17158 317prm 17159 631prm 17160 1259lem1 17164 1259lem2 17165 1259lem3 17166 1259lem4 17167 1259lem5 17168 1259prm 17169 2503lem1 17170 2503lem2 17171 2503lem3 17172 4001lem1 17174 4001lem4 17177 4001prm 17178 log2ublem3 27005 log2ub 27006 bclbnd 27338 bposlem8 27349 2lgslem3d 27457 ex-prmo 30487 hgt750lem 34644 hgt750lem2 34645 60lcm7e420 41991 3exp7 42034 3lexlogpow5ineq1 42035 aks4d1p1 42057 sq7 42308 235t711 42317 ex-decpmul 42318 3cubeslem3r 42674 fmtno5lem4 47480 257prm 47485 fmtno4nprmfac193 47498 fmtno5fac 47506 m3prm 47516 139prmALT 47520 127prm 47523 m7prm 47524 2exp340mod341 47657 8exp8mod9 47660 |
Copyright terms: Public domain | W3C validator |