![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 7cn | Structured version Visualization version GIF version |
Description: The number 7 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
Ref | Expression |
---|---|
7cn | ⊢ 7 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-7 12277 | . 2 ⊢ 7 = (6 + 1) | |
2 | 6cn 12300 | . . 3 ⊢ 6 ∈ ℂ | |
3 | ax-1cn 11164 | . . 3 ⊢ 1 ∈ ℂ | |
4 | 2, 3 | addcli 11217 | . 2 ⊢ (6 + 1) ∈ ℂ |
5 | 1, 4 | eqeltri 2821 | 1 ⊢ 7 ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2098 (class class class)co 7401 ℂcc 11104 1c1 11107 + caddc 11109 6c6 12268 7c7 12269 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 ax-1cn 11164 ax-addcl 11166 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1774 df-cleq 2716 df-clel 2802 df-2 12272 df-3 12273 df-4 12274 df-5 12275 df-6 12276 df-7 12277 |
This theorem is referenced by: 8cn 12306 8m1e7 12342 7p2e9 12370 7p3e10 12749 7t2e14 12783 7t4e28 12785 7t7e49 12788 cos2bnd 16128 23prm 17051 139prm 17056 163prm 17057 317prm 17058 631prm 17059 1259lem1 17063 1259lem2 17064 1259lem3 17065 1259lem4 17066 1259lem5 17067 1259prm 17068 2503lem1 17069 2503lem2 17070 2503lem3 17071 4001lem1 17073 4001lem4 17076 4001prm 17077 log2ublem3 26796 log2ub 26797 bclbnd 27129 bposlem8 27140 2lgslem3d 27248 ex-prmo 30181 hgt750lem 34152 hgt750lem2 34153 60lcm7e420 41368 3exp7 41411 3lexlogpow5ineq1 41412 aks4d1p1 41434 235t711 41694 ex-decpmul 41695 3cubeslem3r 41914 fmtno5lem4 46709 257prm 46714 fmtno4nprmfac193 46727 fmtno5fac 46735 m3prm 46745 139prmALT 46749 127prm 46752 m7prm 46753 2exp340mod341 46886 8exp8mod9 46889 |
Copyright terms: Public domain | W3C validator |