| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 7cn | Structured version Visualization version GIF version | ||
| Description: The number 7 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
| Ref | Expression |
|---|---|
| 7cn | ⊢ 7 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-7 12308 | . 2 ⊢ 7 = (6 + 1) | |
| 2 | 6cn 12331 | . . 3 ⊢ 6 ∈ ℂ | |
| 3 | ax-1cn 11187 | . . 3 ⊢ 1 ∈ ℂ | |
| 4 | 2, 3 | addcli 11241 | . 2 ⊢ (6 + 1) ∈ ℂ |
| 5 | 1, 4 | eqeltri 2830 | 1 ⊢ 7 ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 (class class class)co 7405 ℂcc 11127 1c1 11130 + caddc 11132 6c6 12299 7c7 12300 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-1cn 11187 ax-addcl 11189 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 df-clel 2809 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 |
| This theorem is referenced by: 8cn 12337 8m1e7 12373 7p2e9 12401 7p3e10 12783 7t2e14 12817 7t4e28 12819 7t7e49 12822 cos2bnd 16206 23prm 17138 139prm 17143 163prm 17144 317prm 17145 631prm 17146 1259lem1 17150 1259lem2 17151 1259lem3 17152 1259lem4 17153 1259lem5 17154 1259prm 17155 2503lem1 17156 2503lem2 17157 2503lem3 17158 4001lem1 17160 4001lem4 17163 4001prm 17164 log2ublem3 26910 log2ub 26911 bclbnd 27243 bposlem8 27254 2lgslem3d 27362 ex-prmo 30440 hgt750lem 34683 hgt750lem2 34684 60lcm7e420 42023 3exp7 42066 3lexlogpow5ineq1 42067 aks4d1p1 42089 sq7 42345 235t711 42354 ex-decpmul 42355 3cubeslem3r 42710 fmtno5lem4 47570 257prm 47575 fmtno4nprmfac193 47588 fmtno5fac 47596 m3prm 47606 139prmALT 47610 127prm 47613 m7prm 47614 2exp340mod341 47747 8exp8mod9 47750 |
| Copyright terms: Public domain | W3C validator |