| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 7cn | Structured version Visualization version GIF version | ||
| Description: The number 7 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
| Ref | Expression |
|---|---|
| 7cn | ⊢ 7 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-7 12230 | . 2 ⊢ 7 = (6 + 1) | |
| 2 | 6cn 12253 | . . 3 ⊢ 6 ∈ ℂ | |
| 3 | ax-1cn 11102 | . . 3 ⊢ 1 ∈ ℂ | |
| 4 | 2, 3 | addcli 11156 | . 2 ⊢ (6 + 1) ∈ ℂ |
| 5 | 1, 4 | eqeltri 2824 | 1 ⊢ 7 ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7369 ℂcc 11042 1c1 11045 + caddc 11047 6c6 12221 7c7 12222 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-1cn 11102 ax-addcl 11104 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 |
| This theorem is referenced by: 8cn 12259 8m1e7 12290 7p2e9 12318 7p3e10 12700 7t2e14 12734 7t4e28 12736 7t7e49 12739 cos2bnd 16132 23prm 17065 139prm 17070 163prm 17071 317prm 17072 631prm 17073 1259lem1 17077 1259lem2 17078 1259lem3 17079 1259lem4 17080 1259lem5 17081 1259prm 17082 2503lem1 17083 2503lem2 17084 2503lem3 17085 4001lem1 17087 4001lem4 17090 4001prm 17091 log2ublem3 26834 log2ub 26835 bclbnd 27167 bposlem8 27178 2lgslem3d 27286 ex-prmo 30361 hgt750lem 34615 hgt750lem2 34616 60lcm7e420 41971 3exp7 42014 3lexlogpow5ineq1 42015 aks4d1p1 42037 sq7 42257 235t711 42266 ex-decpmul 42267 3cubeslem3r 42648 fmtno5lem4 47530 257prm 47535 fmtno4nprmfac193 47548 fmtno5fac 47556 m3prm 47566 139prmALT 47570 127prm 47573 m7prm 47574 2exp340mod341 47707 8exp8mod9 47710 |
| Copyright terms: Public domain | W3C validator |