| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 7cn | Structured version Visualization version GIF version | ||
| Description: The number 7 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
| Ref | Expression |
|---|---|
| 7cn | ⊢ 7 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-7 12214 | . 2 ⊢ 7 = (6 + 1) | |
| 2 | 6cn 12237 | . . 3 ⊢ 6 ∈ ℂ | |
| 3 | ax-1cn 11086 | . . 3 ⊢ 1 ∈ ℂ | |
| 4 | 2, 3 | addcli 11140 | . 2 ⊢ (6 + 1) ∈ ℂ |
| 5 | 1, 4 | eqeltri 2824 | 1 ⊢ 7 ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7353 ℂcc 11026 1c1 11029 + caddc 11031 6c6 12205 7c7 12206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-1cn 11086 ax-addcl 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 |
| This theorem is referenced by: 8cn 12243 8m1e7 12274 7p2e9 12302 7p3e10 12684 7t2e14 12718 7t4e28 12720 7t7e49 12723 cos2bnd 16115 23prm 17048 139prm 17053 163prm 17054 317prm 17055 631prm 17056 1259lem1 17060 1259lem2 17061 1259lem3 17062 1259lem4 17063 1259lem5 17064 1259prm 17065 2503lem1 17066 2503lem2 17067 2503lem3 17068 4001lem1 17070 4001lem4 17073 4001prm 17074 log2ublem3 26874 log2ub 26875 bclbnd 27207 bposlem8 27218 2lgslem3d 27326 ex-prmo 30421 hgt750lem 34621 hgt750lem2 34622 60lcm7e420 41986 3exp7 42029 3lexlogpow5ineq1 42030 aks4d1p1 42052 sq7 42272 235t711 42281 ex-decpmul 42282 3cubeslem3r 42663 fmtno5lem4 47544 257prm 47549 fmtno4nprmfac193 47562 fmtno5fac 47570 m3prm 47580 139prmALT 47584 127prm 47587 m7prm 47588 2exp340mod341 47721 8exp8mod9 47724 |
| Copyright terms: Public domain | W3C validator |