![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 7cn | Structured version Visualization version GIF version |
Description: The number 7 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
Ref | Expression |
---|---|
7cn | ⊢ 7 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-7 12304 | . 2 ⊢ 7 = (6 + 1) | |
2 | 6cn 12327 | . . 3 ⊢ 6 ∈ ℂ | |
3 | ax-1cn 11190 | . . 3 ⊢ 1 ∈ ℂ | |
4 | 2, 3 | addcli 11244 | . 2 ⊢ (6 + 1) ∈ ℂ |
5 | 1, 4 | eqeltri 2824 | 1 ⊢ 7 ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2099 (class class class)co 7414 ℂcc 11130 1c1 11133 + caddc 11135 6c6 12295 7c7 12296 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 ax-1cn 11190 ax-addcl 11192 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1775 df-cleq 2719 df-clel 2805 df-2 12299 df-3 12300 df-4 12301 df-5 12302 df-6 12303 df-7 12304 |
This theorem is referenced by: 8cn 12333 8m1e7 12369 7p2e9 12397 7p3e10 12776 7t2e14 12810 7t4e28 12812 7t7e49 12815 cos2bnd 16158 23prm 17081 139prm 17086 163prm 17087 317prm 17088 631prm 17089 1259lem1 17093 1259lem2 17094 1259lem3 17095 1259lem4 17096 1259lem5 17097 1259prm 17098 2503lem1 17099 2503lem2 17100 2503lem3 17101 4001lem1 17103 4001lem4 17106 4001prm 17107 log2ublem3 26873 log2ub 26874 bclbnd 27206 bposlem8 27217 2lgslem3d 27325 ex-prmo 30262 hgt750lem 34273 hgt750lem2 34274 60lcm7e420 41470 3exp7 41513 3lexlogpow5ineq1 41514 aks4d1p1 41536 235t711 41839 ex-decpmul 41840 3cubeslem3r 42079 fmtno5lem4 46868 257prm 46873 fmtno4nprmfac193 46886 fmtno5fac 46894 m3prm 46904 139prmALT 46908 127prm 46911 m7prm 46912 2exp340mod341 47045 8exp8mod9 47048 |
Copyright terms: Public domain | W3C validator |