Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 7cn | Structured version Visualization version GIF version |
Description: The number 7 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
Ref | Expression |
---|---|
7cn | ⊢ 7 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-7 11946 | . 2 ⊢ 7 = (6 + 1) | |
2 | 6cn 11969 | . . 3 ⊢ 6 ∈ ℂ | |
3 | ax-1cn 10835 | . . 3 ⊢ 1 ∈ ℂ | |
4 | 2, 3 | addcli 10887 | . 2 ⊢ (6 + 1) ∈ ℂ |
5 | 1, 4 | eqeltri 2836 | 1 ⊢ 7 ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2112 (class class class)co 7252 ℂcc 10775 1c1 10778 + caddc 10780 6c6 11937 7c7 11938 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2710 ax-1cn 10835 ax-addcl 10837 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1788 df-cleq 2731 df-clel 2818 df-2 11941 df-3 11942 df-4 11943 df-5 11944 df-6 11945 df-7 11946 |
This theorem is referenced by: 8cn 11975 8m1e7 12011 7p2e9 12039 7p3e10 12416 7t2e14 12450 7t4e28 12452 7t7e49 12455 cos2bnd 15800 23prm 16723 139prm 16728 163prm 16729 317prm 16730 631prm 16731 1259lem1 16735 1259lem2 16736 1259lem3 16737 1259lem4 16738 1259lem5 16739 1259prm 16740 2503lem1 16741 2503lem2 16742 2503lem3 16743 4001lem1 16745 4001lem4 16748 4001prm 16749 log2ublem3 25978 log2ub 25979 bclbnd 26308 bposlem8 26319 2lgslem3d 26427 ex-prmo 28699 hgt750lem 32506 hgt750lem2 32507 60lcm7e420 39925 3exp7 39968 3lexlogpow5ineq1 39969 aks4d1p1 39990 235t711 40212 ex-decpmul 40213 3cubeslem3r 40397 fmtno5lem4 44869 257prm 44874 fmtno4nprmfac193 44887 fmtno5fac 44895 m3prm 44905 139prmALT 44909 127prm 44912 m7prm 44913 2exp340mod341 45046 8exp8mod9 45049 |
Copyright terms: Public domain | W3C validator |