| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 7cn | Structured version Visualization version GIF version | ||
| Description: The number 7 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
| Ref | Expression |
|---|---|
| 7cn | ⊢ 7 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-7 12204 | . 2 ⊢ 7 = (6 + 1) | |
| 2 | 6cn 12227 | . . 3 ⊢ 6 ∈ ℂ | |
| 3 | ax-1cn 11075 | . . 3 ⊢ 1 ∈ ℂ | |
| 4 | 2, 3 | addcli 11129 | . 2 ⊢ (6 + 1) ∈ ℂ |
| 5 | 1, 4 | eqeltri 2829 | 1 ⊢ 7 ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 (class class class)co 7355 ℂcc 11015 1c1 11018 + caddc 11020 6c6 12195 7c7 12196 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-1cn 11075 ax-addcl 11077 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2725 df-clel 2808 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 |
| This theorem is referenced by: 8cn 12233 8m1e7 12264 7p2e9 12292 7p3e10 12673 7t2e14 12707 7t4e28 12709 7t7e49 12712 cos2bnd 16104 23prm 17037 139prm 17042 163prm 17043 317prm 17044 631prm 17045 1259lem1 17049 1259lem2 17050 1259lem3 17051 1259lem4 17052 1259lem5 17053 1259prm 17054 2503lem1 17055 2503lem2 17056 2503lem3 17057 4001lem1 17059 4001lem4 17062 4001prm 17063 log2ublem3 26905 log2ub 26906 bclbnd 27238 bposlem8 27249 2lgslem3d 27357 ex-prmo 30460 hgt750lem 34736 hgt750lem2 34737 60lcm7e420 42176 3exp7 42219 3lexlogpow5ineq1 42220 aks4d1p1 42242 sq7 42466 235t711 42475 ex-decpmul 42476 3cubeslem3r 42844 fmtno5lem4 47718 257prm 47723 fmtno4nprmfac193 47736 fmtno5fac 47744 m3prm 47754 139prmALT 47758 127prm 47761 m7prm 47762 2exp340mod341 47895 8exp8mod9 47898 |
| Copyright terms: Public domain | W3C validator |