| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 7cn | Structured version Visualization version GIF version | ||
| Description: The number 7 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
| Ref | Expression |
|---|---|
| 7cn | ⊢ 7 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-7 12261 | . 2 ⊢ 7 = (6 + 1) | |
| 2 | 6cn 12284 | . . 3 ⊢ 6 ∈ ℂ | |
| 3 | ax-1cn 11133 | . . 3 ⊢ 1 ∈ ℂ | |
| 4 | 2, 3 | addcli 11187 | . 2 ⊢ (6 + 1) ∈ ℂ |
| 5 | 1, 4 | eqeltri 2825 | 1 ⊢ 7 ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7390 ℂcc 11073 1c1 11076 + caddc 11078 6c6 12252 7c7 12253 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-1cn 11133 ax-addcl 11135 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-clel 2804 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 |
| This theorem is referenced by: 8cn 12290 8m1e7 12321 7p2e9 12349 7p3e10 12731 7t2e14 12765 7t4e28 12767 7t7e49 12770 cos2bnd 16163 23prm 17096 139prm 17101 163prm 17102 317prm 17103 631prm 17104 1259lem1 17108 1259lem2 17109 1259lem3 17110 1259lem4 17111 1259lem5 17112 1259prm 17113 2503lem1 17114 2503lem2 17115 2503lem3 17116 4001lem1 17118 4001lem4 17121 4001prm 17122 log2ublem3 26865 log2ub 26866 bclbnd 27198 bposlem8 27209 2lgslem3d 27317 ex-prmo 30395 hgt750lem 34649 hgt750lem2 34650 60lcm7e420 42005 3exp7 42048 3lexlogpow5ineq1 42049 aks4d1p1 42071 sq7 42291 235t711 42300 ex-decpmul 42301 3cubeslem3r 42682 fmtno5lem4 47561 257prm 47566 fmtno4nprmfac193 47579 fmtno5fac 47587 m3prm 47597 139prmALT 47601 127prm 47604 m7prm 47605 2exp340mod341 47738 8exp8mod9 47741 |
| Copyright terms: Public domain | W3C validator |