| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 7cn | Structured version Visualization version GIF version | ||
| Description: The number 7 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
| Ref | Expression |
|---|---|
| 7cn | ⊢ 7 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-7 12188 | . 2 ⊢ 7 = (6 + 1) | |
| 2 | 6cn 12211 | . . 3 ⊢ 6 ∈ ℂ | |
| 3 | ax-1cn 11059 | . . 3 ⊢ 1 ∈ ℂ | |
| 4 | 2, 3 | addcli 11113 | . 2 ⊢ (6 + 1) ∈ ℂ |
| 5 | 1, 4 | eqeltri 2827 | 1 ⊢ 7 ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 (class class class)co 7341 ℂcc 10999 1c1 11002 + caddc 11004 6c6 12179 7c7 12180 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-1cn 11059 ax-addcl 11061 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-clel 2806 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 |
| This theorem is referenced by: 8cn 12217 8m1e7 12248 7p2e9 12276 7p3e10 12658 7t2e14 12692 7t4e28 12694 7t7e49 12697 cos2bnd 16092 23prm 17025 139prm 17030 163prm 17031 317prm 17032 631prm 17033 1259lem1 17037 1259lem2 17038 1259lem3 17039 1259lem4 17040 1259lem5 17041 1259prm 17042 2503lem1 17043 2503lem2 17044 2503lem3 17045 4001lem1 17047 4001lem4 17050 4001prm 17051 log2ublem3 26880 log2ub 26881 bclbnd 27213 bposlem8 27224 2lgslem3d 27332 ex-prmo 30431 hgt750lem 34656 hgt750lem2 34657 60lcm7e420 42043 3exp7 42086 3lexlogpow5ineq1 42087 aks4d1p1 42109 sq7 42329 235t711 42338 ex-decpmul 42339 3cubeslem3r 42720 fmtno5lem4 47587 257prm 47592 fmtno4nprmfac193 47605 fmtno5fac 47613 m3prm 47623 139prmALT 47627 127prm 47630 m7prm 47631 2exp340mod341 47764 8exp8mod9 47767 |
| Copyright terms: Public domain | W3C validator |