![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 7cn | Structured version Visualization version GIF version |
Description: The number 7 is a complex number. (Contributed by David A. Wheeler, 8-Dec-2018.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022.) |
Ref | Expression |
---|---|
7cn | ⊢ 7 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-7 12361 | . 2 ⊢ 7 = (6 + 1) | |
2 | 6cn 12384 | . . 3 ⊢ 6 ∈ ℂ | |
3 | ax-1cn 11242 | . . 3 ⊢ 1 ∈ ℂ | |
4 | 2, 3 | addcli 11296 | . 2 ⊢ (6 + 1) ∈ ℂ |
5 | 1, 4 | eqeltri 2840 | 1 ⊢ 7 ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 (class class class)co 7448 ℂcc 11182 1c1 11185 + caddc 11187 6c6 12352 7c7 12353 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-1cn 11242 ax-addcl 11244 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-clel 2819 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 |
This theorem is referenced by: 8cn 12390 8m1e7 12426 7p2e9 12454 7p3e10 12833 7t2e14 12867 7t4e28 12869 7t7e49 12872 cos2bnd 16236 23prm 17166 139prm 17171 163prm 17172 317prm 17173 631prm 17174 1259lem1 17178 1259lem2 17179 1259lem3 17180 1259lem4 17181 1259lem5 17182 1259prm 17183 2503lem1 17184 2503lem2 17185 2503lem3 17186 4001lem1 17188 4001lem4 17191 4001prm 17192 log2ublem3 27009 log2ub 27010 bclbnd 27342 bposlem8 27353 2lgslem3d 27461 ex-prmo 30491 hgt750lem 34628 hgt750lem2 34629 60lcm7e420 41967 3exp7 42010 3lexlogpow5ineq1 42011 aks4d1p1 42033 sq7 42284 235t711 42293 ex-decpmul 42294 3cubeslem3r 42643 fmtno5lem4 47430 257prm 47435 fmtno4nprmfac193 47448 fmtno5fac 47456 m3prm 47466 139prmALT 47470 127prm 47473 m7prm 47474 2exp340mod341 47607 8exp8mod9 47610 |
Copyright terms: Public domain | W3C validator |