Proof of Theorem log2ublem3
Step | Hyp | Ref
| Expression |
1 | | 0le0 12004 |
. . . . . . 7
⊢ 0 ≤
0 |
2 | | risefall0lem 15664 |
. . . . . . . . . . 11
⊢ (0...(0
− 1)) = ∅ |
3 | 2 | sumeq1i 15338 |
. . . . . . . . . 10
⊢
Σ𝑛 ∈
(0...(0 − 1))(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) = Σ𝑛 ∈ ∅ (2 / ((3 · ((2
· 𝑛) + 1)) ·
(9↑𝑛))) |
4 | | sum0 15361 |
. . . . . . . . . 10
⊢
Σ𝑛 ∈
∅ (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) = 0 |
5 | 3, 4 | eqtri 2766 |
. . . . . . . . 9
⊢
Σ𝑛 ∈
(0...(0 − 1))(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛))) = 0 |
6 | 5 | oveq2i 7266 |
. . . . . . . 8
⊢
(((3↑7) · (5 · 7)) · Σ𝑛 ∈ (0...(0 − 1))(2 / ((3 ·
((2 · 𝑛) + 1))
· (9↑𝑛)))) =
(((3↑7) · (5 · 7)) · 0) |
7 | | 3cn 11984 |
. . . . . . . . . . 11
⊢ 3 ∈
ℂ |
8 | | 7nn0 12185 |
. . . . . . . . . . 11
⊢ 7 ∈
ℕ0 |
9 | | expcl 13728 |
. . . . . . . . . . 11
⊢ ((3
∈ ℂ ∧ 7 ∈ ℕ0) → (3↑7) ∈
ℂ) |
10 | 7, 8, 9 | mp2an 688 |
. . . . . . . . . 10
⊢
(3↑7) ∈ ℂ |
11 | | 5cn 11991 |
. . . . . . . . . . 11
⊢ 5 ∈
ℂ |
12 | | 7cn 11997 |
. . . . . . . . . . 11
⊢ 7 ∈
ℂ |
13 | 11, 12 | mulcli 10913 |
. . . . . . . . . 10
⊢ (5
· 7) ∈ ℂ |
14 | 10, 13 | mulcli 10913 |
. . . . . . . . 9
⊢
((3↑7) · (5 · 7)) ∈ ℂ |
15 | 14 | mul01i 11095 |
. . . . . . . 8
⊢
(((3↑7) · (5 · 7)) · 0) = 0 |
16 | 6, 15 | eqtri 2766 |
. . . . . . 7
⊢
(((3↑7) · (5 · 7)) · Σ𝑛 ∈ (0...(0 − 1))(2 / ((3 ·
((2 · 𝑛) + 1))
· (9↑𝑛)))) =
0 |
17 | | 2cn 11978 |
. . . . . . . 8
⊢ 2 ∈
ℂ |
18 | 17 | mul01i 11095 |
. . . . . . 7
⊢ (2
· 0) = 0 |
19 | 1, 16, 18 | 3brtr4i 5100 |
. . . . . 6
⊢
(((3↑7) · (5 · 7)) · Σ𝑛 ∈ (0...(0 − 1))(2 / ((3 ·
((2 · 𝑛) + 1))
· (9↑𝑛)))) ≤
(2 · 0) |
20 | | 0nn0 12178 |
. . . . . 6
⊢ 0 ∈
ℕ0 |
21 | | 2nn0 12180 |
. . . . . . . . . 10
⊢ 2 ∈
ℕ0 |
22 | | 5nn0 12183 |
. . . . . . . . . 10
⊢ 5 ∈
ℕ0 |
23 | 21, 22 | deccl 12381 |
. . . . . . . . 9
⊢ ;25 ∈
ℕ0 |
24 | 23, 22 | deccl 12381 |
. . . . . . . 8
⊢ ;;255 ∈ ℕ0 |
25 | | 1nn0 12179 |
. . . . . . . 8
⊢ 1 ∈
ℕ0 |
26 | 24, 25 | deccl 12381 |
. . . . . . 7
⊢ ;;;2551
∈ ℕ0 |
27 | 26, 22 | deccl 12381 |
. . . . . 6
⊢ ;;;;25515 ∈
ℕ0 |
28 | | eqid 2738 |
. . . . . 6
⊢ (0
− 1) = (0 − 1) |
29 | 27 | nn0cni 12175 |
. . . . . . 7
⊢ ;;;;25515 ∈ ℂ |
30 | 29 | addid2i 11093 |
. . . . . 6
⊢ (0 +
;;;;25515) = ;;;;25515 |
31 | | 3nn0 12181 |
. . . . . 6
⊢ 3 ∈
ℕ0 |
32 | 7 | addid1i 11092 |
. . . . . 6
⊢ (3 + 0) =
3 |
33 | 29 | mulid2i 10911 |
. . . . . . 7
⊢ (1
· ;;;;25515) = ;;;;25515 |
34 | 18 | oveq1i 7265 |
. . . . . . . . 9
⊢ ((2
· 0) + 1) = (0 + 1) |
35 | | 0p1e1 12025 |
. . . . . . . . 9
⊢ (0 + 1) =
1 |
36 | 34, 35 | eqtri 2766 |
. . . . . . . 8
⊢ ((2
· 0) + 1) = 1 |
37 | 36 | oveq1i 7265 |
. . . . . . 7
⊢ (((2
· 0) + 1) · ;;;;25515)
= (1 · ;;;;25515) |
38 | 22, 8 | nn0mulcli 12201 |
. . . . . . . 8
⊢ (5
· 7) ∈ ℕ0 |
39 | 8, 21 | deccl 12381 |
. . . . . . . 8
⊢ ;72 ∈
ℕ0 |
40 | | 9nn0 12187 |
. . . . . . . 8
⊢ 9 ∈
ℕ0 |
41 | | 2p1e3 12045 |
. . . . . . . . 9
⊢ (2 + 1) =
3 |
42 | | 8nn0 12186 |
. . . . . . . . . 10
⊢ 8 ∈
ℕ0 |
43 | | 1p1e2 12028 |
. . . . . . . . . . 11
⊢ (1 + 1) =
2 |
44 | | 9cn 12003 |
. . . . . . . . . . . . . 14
⊢ 9 ∈
ℂ |
45 | | exp1 13716 |
. . . . . . . . . . . . . 14
⊢ (9 ∈
ℂ → (9↑1) = 9) |
46 | 44, 45 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢
(9↑1) = 9 |
47 | 46 | oveq1i 7265 |
. . . . . . . . . . . 12
⊢
((9↑1) · 9) = (9 · 9) |
48 | | 9t9e81 12495 |
. . . . . . . . . . . 12
⊢ (9
· 9) = ;81 |
49 | 47, 48 | eqtri 2766 |
. . . . . . . . . . 11
⊢
((9↑1) · 9) = ;81 |
50 | 40, 25, 43, 49 | numexpp1 16707 |
. . . . . . . . . 10
⊢
(9↑2) = ;81 |
51 | | 8cn 12000 |
. . . . . . . . . . 11
⊢ 8 ∈
ℂ |
52 | | 9t8e72 12494 |
. . . . . . . . . . 11
⊢ (9
· 8) = ;72 |
53 | 44, 51, 52 | mulcomli 10915 |
. . . . . . . . . 10
⊢ (8
· 9) = ;72 |
54 | 44 | mulid2i 10911 |
. . . . . . . . . 10
⊢ (1
· 9) = 9 |
55 | 40, 42, 25, 50, 53, 54 | decmul1 12430 |
. . . . . . . . 9
⊢
((9↑2) · 9) = ;;729 |
56 | 40, 21, 41, 55 | numexpp1 16707 |
. . . . . . . 8
⊢
(9↑3) = ;;729 |
57 | 31, 25 | deccl 12381 |
. . . . . . . 8
⊢ ;31 ∈
ℕ0 |
58 | | eqid 2738 |
. . . . . . . . 9
⊢ ;72 = ;72 |
59 | | eqid 2738 |
. . . . . . . . 9
⊢ ;31 = ;31 |
60 | | 7t5e35 12478 |
. . . . . . . . . . 11
⊢ (7
· 5) = ;35 |
61 | 12, 11, 60 | mulcomli 10915 |
. . . . . . . . . 10
⊢ (5
· 7) = ;35 |
62 | | 7p3e10 12441 |
. . . . . . . . . . 11
⊢ (7 + 3) =
;10 |
63 | 12, 7, 62 | addcomli 11097 |
. . . . . . . . . 10
⊢ (3 + 7) =
;10 |
64 | | ax-1cn 10860 |
. . . . . . . . . . . . 13
⊢ 1 ∈
ℂ |
65 | | 3p1e4 12048 |
. . . . . . . . . . . . 13
⊢ (3 + 1) =
4 |
66 | 7, 64, 65 | addcomli 11097 |
. . . . . . . . . . . 12
⊢ (1 + 3) =
4 |
67 | 66 | oveq2i 7266 |
. . . . . . . . . . 11
⊢ ((3
· 7) + (1 + 3)) = ((3 · 7) + 4) |
68 | | 4nn0 12182 |
. . . . . . . . . . . 12
⊢ 4 ∈
ℕ0 |
69 | | 7t3e21 12476 |
. . . . . . . . . . . . 13
⊢ (7
· 3) = ;21 |
70 | 12, 7, 69 | mulcomli 10915 |
. . . . . . . . . . . 12
⊢ (3
· 7) = ;21 |
71 | | 4cn 11988 |
. . . . . . . . . . . . 13
⊢ 4 ∈
ℂ |
72 | | 4p1e5 12049 |
. . . . . . . . . . . . 13
⊢ (4 + 1) =
5 |
73 | 71, 64, 72 | addcomli 11097 |
. . . . . . . . . . . 12
⊢ (1 + 4) =
5 |
74 | 21, 25, 68, 70, 73 | decaddi 12426 |
. . . . . . . . . . 11
⊢ ((3
· 7) + 4) = ;25 |
75 | 67, 74 | eqtri 2766 |
. . . . . . . . . 10
⊢ ((3
· 7) + (1 + 3)) = ;25 |
76 | 61 | oveq1i 7265 |
. . . . . . . . . . 11
⊢ ((5
· 7) + 0) = (;35 +
0) |
77 | 31, 22 | deccl 12381 |
. . . . . . . . . . . . 13
⊢ ;35 ∈
ℕ0 |
78 | 77 | nn0cni 12175 |
. . . . . . . . . . . 12
⊢ ;35 ∈ ℂ |
79 | 78 | addid1i 11092 |
. . . . . . . . . . 11
⊢ (;35 + 0) = ;35 |
80 | 76, 79 | eqtri 2766 |
. . . . . . . . . 10
⊢ ((5
· 7) + 0) = ;35 |
81 | 31, 22, 25, 20, 61, 63, 8, 22, 31, 75, 80 | decmac 12418 |
. . . . . . . . 9
⊢ (((5
· 7) · 7) + (3 + 7)) = ;;255 |
82 | 25 | dec0h 12388 |
. . . . . . . . . 10
⊢ 1 = ;01 |
83 | | 3t2e6 12069 |
. . . . . . . . . . . 12
⊢ (3
· 2) = 6 |
84 | 83, 35 | oveq12i 7267 |
. . . . . . . . . . 11
⊢ ((3
· 2) + (0 + 1)) = (6 + 1) |
85 | | 6p1e7 12051 |
. . . . . . . . . . 11
⊢ (6 + 1) =
7 |
86 | 84, 85 | eqtri 2766 |
. . . . . . . . . 10
⊢ ((3
· 2) + (0 + 1)) = 7 |
87 | | 5t2e10 12466 |
. . . . . . . . . . 11
⊢ (5
· 2) = ;10 |
88 | 25, 20, 35, 87 | decsuc 12397 |
. . . . . . . . . 10
⊢ ((5
· 2) + 1) = ;11 |
89 | 31, 22, 20, 25, 61, 82, 21, 25, 25, 86, 88 | decmac 12418 |
. . . . . . . . 9
⊢ (((5
· 7) · 2) + 1) = ;71 |
90 | 8, 21, 31, 25, 58, 59, 38, 25, 8, 81, 89 | decma2c 12419 |
. . . . . . . 8
⊢ (((5
· 7) · ;72) + ;31) = ;;;2551 |
91 | | 9t3e27 12489 |
. . . . . . . . . . 11
⊢ (9
· 3) = ;27 |
92 | 44, 7, 91 | mulcomli 10915 |
. . . . . . . . . 10
⊢ (3
· 9) = ;27 |
93 | | 7p4e11 12442 |
. . . . . . . . . 10
⊢ (7 + 4) =
;11 |
94 | 21, 8, 68, 92, 41, 25, 93 | decaddci 12427 |
. . . . . . . . 9
⊢ ((3
· 9) + 4) = ;31 |
95 | | 9t5e45 12491 |
. . . . . . . . . 10
⊢ (9
· 5) = ;45 |
96 | 44, 11, 95 | mulcomli 10915 |
. . . . . . . . 9
⊢ (5
· 9) = ;45 |
97 | 40, 31, 22, 61, 22, 68, 94, 96 | decmul1c 12431 |
. . . . . . . 8
⊢ ((5
· 7) · 9) = ;;315 |
98 | 38, 39, 40, 56, 22, 57, 90, 97 | decmul2c 12432 |
. . . . . . 7
⊢ ((5
· 7) · (9↑3)) = ;;;;25515 |
99 | 33, 37, 98 | 3eqtr4ri 2777 |
. . . . . 6
⊢ ((5
· 7) · (9↑3)) = (((2 · 0) + 1) · ;;;;25515) |
100 | 19, 20, 27, 20, 28, 30, 31, 32, 99 | log2ublem2 26002 |
. . . . 5
⊢
(((3↑7) · (5 · 7)) · Σ𝑛 ∈ (0...0)(2 / ((3 · ((2 ·
𝑛) + 1)) ·
(9↑𝑛)))) ≤ (2
· ;;;;25515) |
101 | 40, 68 | deccl 12381 |
. . . . . 6
⊢ ;94 ∈
ℕ0 |
102 | 101, 22 | deccl 12381 |
. . . . 5
⊢ ;;945 ∈ ℕ0 |
103 | | 1m1e0 11975 |
. . . . 5
⊢ (1
− 1) = 0 |
104 | | eqid 2738 |
. . . . . 6
⊢ ;;;;25515 = ;;;;25515 |
105 | | eqid 2738 |
. . . . . 6
⊢ ;;945 = ;;945 |
106 | | 6nn0 12184 |
. . . . . . . . 9
⊢ 6 ∈
ℕ0 |
107 | 21, 106 | deccl 12381 |
. . . . . . . 8
⊢ ;26 ∈
ℕ0 |
108 | 107, 68 | deccl 12381 |
. . . . . . 7
⊢ ;;264 ∈ ℕ0 |
109 | | 5p1e6 12050 |
. . . . . . 7
⊢ (5 + 1) =
6 |
110 | | eqid 2738 |
. . . . . . . 8
⊢ ;;;2551 =
;;;2551 |
111 | | eqid 2738 |
. . . . . . . 8
⊢ ;94 = ;94 |
112 | | eqid 2738 |
. . . . . . . . 9
⊢ ;;255 = ;;255 |
113 | | eqid 2738 |
. . . . . . . . . 10
⊢ ;25 = ;25 |
114 | 21, 22, 109, 113 | decsuc 12397 |
. . . . . . . . 9
⊢ (;25 + 1) = ;26 |
115 | | 9p5e14 12456 |
. . . . . . . . . 10
⊢ (9 + 5) =
;14 |
116 | 44, 11, 115 | addcomli 11097 |
. . . . . . . . 9
⊢ (5 + 9) =
;14 |
117 | 23, 22, 40, 112, 114, 68, 116 | decaddci 12427 |
. . . . . . . 8
⊢ (;;255 + 9) = ;;264 |
118 | 24, 25, 40, 68, 110, 111, 117, 73 | decadd 12420 |
. . . . . . 7
⊢ (;;;2551 +
;94) = ;;;2645 |
119 | 108, 22, 109, 118 | decsuc 12397 |
. . . . . 6
⊢ ((;;;2551 +
;94) + 1) = ;;;2646 |
120 | | 5p5e10 12437 |
. . . . . 6
⊢ (5 + 5) =
;10 |
121 | 26, 22, 101, 22, 104, 105, 119, 120 | decaddc2 12422 |
. . . . 5
⊢ (;;;;25515 + ;;945) =
;;;;26460 |
122 | 44 | sqvali 13825 |
. . . . . . . 8
⊢
(9↑2) = (9 · 9) |
123 | | 3t3e9 12070 |
. . . . . . . . 9
⊢ (3
· 3) = 9 |
124 | 123 | oveq1i 7265 |
. . . . . . . 8
⊢ ((3
· 3) · 9) = (9 · 9) |
125 | 7, 7, 44 | mulassi 10917 |
. . . . . . . 8
⊢ ((3
· 3) · 9) = (3 · (3 · 9)) |
126 | 122, 124,
125 | 3eqtr2i 2772 |
. . . . . . 7
⊢
(9↑2) = (3 · (3 · 9)) |
127 | 126 | oveq2i 7266 |
. . . . . 6
⊢ ((5
· 7) · (9↑2)) = ((5 · 7) · (3 · (3
· 9))) |
128 | 7, 44 | mulcli 10913 |
. . . . . . . 8
⊢ (3
· 9) ∈ ℂ |
129 | 13, 7, 128 | mul12i 11100 |
. . . . . . 7
⊢ ((5
· 7) · (3 · (3 · 9))) = (3 · ((5 · 7)
· (3 · 9))) |
130 | 21, 68 | deccl 12381 |
. . . . . . . . 9
⊢ ;24 ∈
ℕ0 |
131 | | eqid 2738 |
. . . . . . . . . 10
⊢ ;24 = ;24 |
132 | 83, 41 | oveq12i 7267 |
. . . . . . . . . . 11
⊢ ((3
· 2) + (2 + 1)) = (6 + 3) |
133 | | 6p3e9 12063 |
. . . . . . . . . . 11
⊢ (6 + 3) =
9 |
134 | 132, 133 | eqtri 2766 |
. . . . . . . . . 10
⊢ ((3
· 2) + (2 + 1)) = 9 |
135 | 71 | addid2i 11093 |
. . . . . . . . . . 11
⊢ (0 + 4) =
4 |
136 | 25, 20, 68, 87, 135 | decaddi 12426 |
. . . . . . . . . 10
⊢ ((5
· 2) + 4) = ;14 |
137 | 31, 22, 21, 68, 61, 131, 21, 68, 25, 134, 136 | decmac 12418 |
. . . . . . . . 9
⊢ (((5
· 7) · 2) + ;24) =
;94 |
138 | 21, 25, 31, 70, 66 | decaddi 12426 |
. . . . . . . . . 10
⊢ ((3
· 7) + 3) = ;24 |
139 | 8, 31, 22, 61, 22, 31, 138, 61 | decmul1c 12431 |
. . . . . . . . 9
⊢ ((5
· 7) · 7) = ;;245 |
140 | 38, 21, 8, 92, 22, 130, 137, 139 | decmul2c 12432 |
. . . . . . . 8
⊢ ((5
· 7) · (3 · 9)) = ;;945 |
141 | 140 | oveq2i 7266 |
. . . . . . 7
⊢ (3
· ((5 · 7) · (3 · 9))) = (3 · ;;945) |
142 | 129, 141 | eqtri 2766 |
. . . . . 6
⊢ ((5
· 7) · (3 · (3 · 9))) = (3 · ;;945) |
143 | | df-3 11967 |
. . . . . . . 8
⊢ 3 = (2 +
1) |
144 | 17 | mulid1i 10910 |
. . . . . . . . 9
⊢ (2
· 1) = 2 |
145 | 144 | oveq1i 7265 |
. . . . . . . 8
⊢ ((2
· 1) + 1) = (2 + 1) |
146 | 143, 145 | eqtr4i 2769 |
. . . . . . 7
⊢ 3 = ((2
· 1) + 1) |
147 | 146 | oveq1i 7265 |
. . . . . 6
⊢ (3
· ;;945) = (((2 · 1) + 1) · ;;945) |
148 | 127, 142,
147 | 3eqtri 2770 |
. . . . 5
⊢ ((5
· 7) · (9↑2)) = (((2 · 1) + 1) · ;;945) |
149 | 100, 27, 102, 25, 103, 121, 21, 41, 148 | log2ublem2 26002 |
. . . 4
⊢
(((3↑7) · (5 · 7)) · Σ𝑛 ∈ (0...1)(2 / ((3 · ((2 ·
𝑛) + 1)) ·
(9↑𝑛)))) ≤ (2
· ;;;;26460) |
150 | 108, 106 | deccl 12381 |
. . . . 5
⊢ ;;;2646
∈ ℕ0 |
151 | 150, 20 | deccl 12381 |
. . . 4
⊢ ;;;;26460 ∈
ℕ0 |
152 | 106, 31 | deccl 12381 |
. . . 4
⊢ ;63 ∈
ℕ0 |
153 | | 2m1e1 12029 |
. . . 4
⊢ (2
− 1) = 1 |
154 | | eqid 2738 |
. . . . 5
⊢ ;;;;26460 = ;;;;26460 |
155 | | eqid 2738 |
. . . . 5
⊢ ;63 = ;63 |
156 | | eqid 2738 |
. . . . . 6
⊢ ;;;2646 =
;;;2646 |
157 | | eqid 2738 |
. . . . . . 7
⊢ ;;264 = ;;264 |
158 | 107, 68, 72, 157 | decsuc 12397 |
. . . . . 6
⊢ (;;264 + 1) = ;;265 |
159 | | 6p6e12 12440 |
. . . . . 6
⊢ (6 + 6) =
;12 |
160 | 108, 106,
106, 156, 158, 21, 159 | decaddci 12427 |
. . . . 5
⊢ (;;;2646 +
6) = ;;;2652 |
161 | 7 | addid2i 11093 |
. . . . 5
⊢ (0 + 3) =
3 |
162 | 150, 20, 106, 31, 154, 155, 160, 161 | decadd 12420 |
. . . 4
⊢ (;;;;26460 + ;63) = ;;;;26523 |
163 | | 1p2e3 12046 |
. . . 4
⊢ (1 + 2) =
3 |
164 | 46 | oveq2i 7266 |
. . . . 5
⊢ ((5
· 7) · (9↑1)) = ((5 · 7) · 9) |
165 | 11, 12, 44 | mulassi 10917 |
. . . . . 6
⊢ ((5
· 7) · 9) = (5 · (7 · 9)) |
166 | | 9t7e63 12493 |
. . . . . . . 8
⊢ (9
· 7) = ;63 |
167 | 44, 12, 166 | mulcomli 10915 |
. . . . . . 7
⊢ (7
· 9) = ;63 |
168 | 167 | oveq2i 7266 |
. . . . . 6
⊢ (5
· (7 · 9)) = (5 · ;63) |
169 | 165, 168 | eqtri 2766 |
. . . . 5
⊢ ((5
· 7) · 9) = (5 · ;63) |
170 | | df-5 11969 |
. . . . . . 7
⊢ 5 = (4 +
1) |
171 | | 2t2e4 12067 |
. . . . . . . 8
⊢ (2
· 2) = 4 |
172 | 171 | oveq1i 7265 |
. . . . . . 7
⊢ ((2
· 2) + 1) = (4 + 1) |
173 | 170, 172 | eqtr4i 2769 |
. . . . . 6
⊢ 5 = ((2
· 2) + 1) |
174 | 173 | oveq1i 7265 |
. . . . 5
⊢ (5
· ;63) = (((2 · 2) +
1) · ;63) |
175 | 164, 169,
174 | 3eqtri 2770 |
. . . 4
⊢ ((5
· 7) · (9↑1)) = (((2 · 2) + 1) · ;63) |
176 | 149, 151,
152, 21, 153, 162, 25, 163, 175 | log2ublem2 26002 |
. . 3
⊢
(((3↑7) · (5 · 7)) · Σ𝑛 ∈ (0...2)(2 / ((3 · ((2 ·
𝑛) + 1)) ·
(9↑𝑛)))) ≤ (2
· ;;;;26523) |
177 | 107, 22 | deccl 12381 |
. . . . 5
⊢ ;;265 ∈ ℕ0 |
178 | 177, 21 | deccl 12381 |
. . . 4
⊢ ;;;2652
∈ ℕ0 |
179 | 178, 31 | deccl 12381 |
. . 3
⊢ ;;;;26523 ∈
ℕ0 |
180 | | 3m1e2 12031 |
. . 3
⊢ (3
− 1) = 2 |
181 | | eqid 2738 |
. . . 4
⊢ ;;;;26523 = ;;;;26523 |
182 | | 5p3e8 12060 |
. . . . 5
⊢ (5 + 3) =
8 |
183 | 11, 7, 182 | addcomli 11097 |
. . . 4
⊢ (3 + 5) =
8 |
184 | 178, 31, 22, 181, 183 | decaddi 12426 |
. . 3
⊢ (;;;;26523 + 5) = ;;;;26528 |
185 | 12, 11 | mulcli 10913 |
. . . . 5
⊢ (7
· 5) ∈ ℂ |
186 | 185 | mulid1i 10910 |
. . . 4
⊢ ((7
· 5) · 1) = (7 · 5) |
187 | 11, 12 | mulcomi 10914 |
. . . . 5
⊢ (5
· 7) = (7 · 5) |
188 | | exp0 13714 |
. . . . . 6
⊢ (9 ∈
ℂ → (9↑0) = 1) |
189 | 44, 188 | ax-mp 5 |
. . . . 5
⊢
(9↑0) = 1 |
190 | 187, 189 | oveq12i 7267 |
. . . 4
⊢ ((5
· 7) · (9↑0)) = ((7 · 5) · 1) |
191 | 7, 17, 83 | mulcomli 10915 |
. . . . . . 7
⊢ (2
· 3) = 6 |
192 | 191 | oveq1i 7265 |
. . . . . 6
⊢ ((2
· 3) + 1) = (6 + 1) |
193 | | df-7 11971 |
. . . . . 6
⊢ 7 = (6 +
1) |
194 | 192, 193 | eqtr4i 2769 |
. . . . 5
⊢ ((2
· 3) + 1) = 7 |
195 | 194 | oveq1i 7265 |
. . . 4
⊢ (((2
· 3) + 1) · 5) = (7 · 5) |
196 | 186, 190,
195 | 3eqtr4i 2776 |
. . 3
⊢ ((5
· 7) · (9↑0)) = (((2 · 3) + 1) ·
5) |
197 | 176, 179,
22, 31, 180, 184, 20, 161, 196 | log2ublem2 26002 |
. 2
⊢
(((3↑7) · (5 · 7)) · Σ𝑛 ∈ (0...3)(2 / ((3 · ((2 ·
𝑛) + 1)) ·
(9↑𝑛)))) ≤ (2
· ;;;;26528) |
198 | | eqid 2738 |
. . 3
⊢ ;;;;26528 = ;;;;26528 |
199 | | eqid 2738 |
. . . 4
⊢ ;;;2652 =
;;;2652 |
200 | | eqid 2738 |
. . . . 5
⊢ ;;265 = ;;265 |
201 | | 00id 11080 |
. . . . . 6
⊢ (0 + 0) =
0 |
202 | 20 | dec0h 12388 |
. . . . . 6
⊢ 0 = ;00 |
203 | 201, 202 | eqtri 2766 |
. . . . 5
⊢ (0 + 0) =
;00 |
204 | | eqid 2738 |
. . . . . 6
⊢ ;26 = ;26 |
205 | 35, 82 | eqtri 2766 |
. . . . . 6
⊢ (0 + 1) =
;01 |
206 | 171, 35 | oveq12i 7267 |
. . . . . . 7
⊢ ((2
· 2) + (0 + 1)) = (4 + 1) |
207 | 206, 72 | eqtri 2766 |
. . . . . 6
⊢ ((2
· 2) + (0 + 1)) = 5 |
208 | | 6cn 11994 |
. . . . . . . 8
⊢ 6 ∈
ℂ |
209 | | 6t2e12 12470 |
. . . . . . . 8
⊢ (6
· 2) = ;12 |
210 | 208, 17, 209 | mulcomli 10915 |
. . . . . . 7
⊢ (2
· 6) = ;12 |
211 | 25, 21, 41, 210 | decsuc 12397 |
. . . . . 6
⊢ ((2
· 6) + 1) = ;13 |
212 | 21, 106, 20, 25, 204, 205, 21, 31, 25, 207, 211 | decma2c 12419 |
. . . . 5
⊢ ((2
· ;26) + (0 + 1)) = ;53 |
213 | 11, 17, 87 | mulcomli 10915 |
. . . . . . 7
⊢ (2
· 5) = ;10 |
214 | 213 | oveq1i 7265 |
. . . . . 6
⊢ ((2
· 5) + 0) = (;10 +
0) |
215 | | dec10p 12409 |
. . . . . 6
⊢ (;10 + 0) = ;10 |
216 | 214, 215 | eqtri 2766 |
. . . . 5
⊢ ((2
· 5) + 0) = ;10 |
217 | 107, 22, 20, 20, 200, 203, 21, 20, 25, 212, 216 | decma2c 12419 |
. . . 4
⊢ ((2
· ;;265) + (0 + 0)) = ;;530 |
218 | 22 | dec0h 12388 |
. . . . 5
⊢ 5 = ;05 |
219 | 172, 72, 218 | 3eqtri 2770 |
. . . 4
⊢ ((2
· 2) + 1) = ;05 |
220 | 177, 21, 20, 25, 199, 82, 21, 22, 20, 217, 219 | decma2c 12419 |
. . 3
⊢ ((2
· ;;;2652)
+ 1) = ;;;5305 |
221 | | 8t2e16 12481 |
. . . 4
⊢ (8
· 2) = ;16 |
222 | 51, 17, 221 | mulcomli 10915 |
. . 3
⊢ (2
· 8) = ;16 |
223 | 21, 178, 42, 198, 106, 25, 220, 222 | decmul2c 12432 |
. 2
⊢ (2
· ;;;;26528) = ;;;;53056 |
224 | 197, 223 | breqtri 5095 |
1
⊢
(((3↑7) · (5 · 7)) · Σ𝑛 ∈ (0...3)(2 / ((3 · ((2 ·
𝑛) + 1)) ·
(9↑𝑛)))) ≤ ;;;;53056 |