Proof of Theorem 127prm
Step | Hyp | Ref
| Expression |
1 | | 1nn0 12179 |
. . . 4
⊢ 1 ∈
ℕ0 |
2 | | 2nn0 12180 |
. . . 4
⊢ 2 ∈
ℕ0 |
3 | 1, 2 | deccl 12381 |
. . 3
⊢ ;12 ∈
ℕ0 |
4 | | 7nn 11995 |
. . 3
⊢ 7 ∈
ℕ |
5 | 3, 4 | decnncl 12386 |
. 2
⊢ ;;127 ∈ ℕ |
6 | | 8nn0 12186 |
. . 3
⊢ 8 ∈
ℕ0 |
7 | | 4nn0 12182 |
. . 3
⊢ 4 ∈
ℕ0 |
8 | | 7nn0 12185 |
. . 3
⊢ 7 ∈
ℕ0 |
9 | | 1lt8 12101 |
. . 3
⊢ 1 <
8 |
10 | | 2lt10 12504 |
. . 3
⊢ 2 <
;10 |
11 | | 7lt10 12499 |
. . 3
⊢ 7 <
;10 |
12 | 1, 6, 2, 7, 8, 1, 9, 10, 11 | 3decltc 12399 |
. 2
⊢ ;;127 < ;;841 |
13 | | 2nn 11976 |
. . . 4
⊢ 2 ∈
ℕ |
14 | 1, 13 | decnncl 12386 |
. . 3
⊢ ;12 ∈ ℕ |
15 | | 1lt10 12505 |
. . 3
⊢ 1 <
;10 |
16 | 14, 8, 1, 15 | declti 12404 |
. 2
⊢ 1 <
;;127 |
17 | | 3nn0 12181 |
. . 3
⊢ 3 ∈
ℕ0 |
18 | | 3t2e6 12069 |
. . 3
⊢ (3
· 2) = 6 |
19 | | df-7 11971 |
. . 3
⊢ 7 = (6 +
1) |
20 | 3, 17, 18, 19 | dec2dvds 16692 |
. 2
⊢ ¬ 2
∥ ;;127 |
21 | | 3nn 11982 |
. . . 4
⊢ 3 ∈
ℕ |
22 | | 1nn 11914 |
. . . 4
⊢ 1 ∈
ℕ |
23 | | 3t3e9 12070 |
. . . . . 6
⊢ (3
· 3) = 9 |
24 | 23 | oveq1i 7265 |
. . . . 5
⊢ ((3
· 3) + 1) = (9 + 1) |
25 | | 9p1e10 12368 |
. . . . 5
⊢ (9 + 1) =
;10 |
26 | 24, 25 | eqtri 2766 |
. . . 4
⊢ ((3
· 3) + 1) = ;10 |
27 | | 1lt3 12076 |
. . . 4
⊢ 1 <
3 |
28 | 21, 17, 22, 26, 27 | ndvdsi 16049 |
. . 3
⊢ ¬ 3
∥ ;10 |
29 | 1, 2, 8 | 3dvds2dec 15970 |
. . . 4
⊢ (3
∥ ;;127 ↔ 3 ∥ ((1 + 2) + 7)) |
30 | | 1p2e3 12046 |
. . . . . . 7
⊢ (1 + 2) =
3 |
31 | 30 | oveq1i 7265 |
. . . . . 6
⊢ ((1 + 2)
+ 7) = (3 + 7) |
32 | | 7cn 11997 |
. . . . . . 7
⊢ 7 ∈
ℂ |
33 | | 3cn 11984 |
. . . . . . 7
⊢ 3 ∈
ℂ |
34 | | 7p3e10 12441 |
. . . . . . 7
⊢ (7 + 3) =
;10 |
35 | 32, 33, 34 | addcomli 11097 |
. . . . . 6
⊢ (3 + 7) =
;10 |
36 | 31, 35 | eqtri 2766 |
. . . . 5
⊢ ((1 + 2)
+ 7) = ;10 |
37 | 36 | breq2i 5078 |
. . . 4
⊢ (3
∥ ((1 + 2) + 7) ↔ 3 ∥ ;10) |
38 | 29, 37 | bitri 274 |
. . 3
⊢ (3
∥ ;;127 ↔ 3 ∥ ;10) |
39 | 28, 38 | mtbir 322 |
. 2
⊢ ¬ 3
∥ ;;127 |
40 | | 2lt5 12082 |
. . 3
⊢ 2 <
5 |
41 | | 5p2e7 12059 |
. . 3
⊢ (5 + 2) =
7 |
42 | 3, 13, 40, 41 | dec5dvds2 16694 |
. 2
⊢ ¬ 5
∥ ;;127 |
43 | 1, 6 | deccl 12381 |
. . 3
⊢ ;18 ∈
ℕ0 |
44 | | 0nn0 12178 |
. . . 4
⊢ 0 ∈
ℕ0 |
45 | | eqid 2738 |
. . . 4
⊢ ;18 = ;18 |
46 | 1 | dec0h 12388 |
. . . 4
⊢ 1 = ;01 |
47 | | 5nn0 12183 |
. . . 4
⊢ 5 ∈
ℕ0 |
48 | 32 | mulid1i 10910 |
. . . . . 6
⊢ (7
· 1) = 7 |
49 | | 5cn 11991 |
. . . . . . 7
⊢ 5 ∈
ℂ |
50 | 49 | addid2i 11093 |
. . . . . 6
⊢ (0 + 5) =
5 |
51 | 48, 50 | oveq12i 7267 |
. . . . 5
⊢ ((7
· 1) + (0 + 5)) = (7 + 5) |
52 | | 7p5e12 12443 |
. . . . 5
⊢ (7 + 5) =
;12 |
53 | 51, 52 | eqtri 2766 |
. . . 4
⊢ ((7
· 1) + (0 + 5)) = ;12 |
54 | | 6nn0 12184 |
. . . . 5
⊢ 6 ∈
ℕ0 |
55 | | 8cn 12000 |
. . . . . 6
⊢ 8 ∈
ℂ |
56 | | 8t7e56 12486 |
. . . . . 6
⊢ (8
· 7) = ;56 |
57 | 55, 32, 56 | mulcomli 10915 |
. . . . 5
⊢ (7
· 8) = ;56 |
58 | | 6p1e7 12051 |
. . . . 5
⊢ (6 + 1) =
7 |
59 | 47, 54, 1, 57, 58 | decaddi 12426 |
. . . 4
⊢ ((7
· 8) + 1) = ;57 |
60 | 1, 6, 44, 1, 45, 46, 8, 8, 47, 53, 59 | decma2c 12419 |
. . 3
⊢ ((7
· ;18) + 1) = ;;127 |
61 | | 1lt7 12094 |
. . 3
⊢ 1 <
7 |
62 | 4, 43, 22, 60, 61 | ndvdsi 16049 |
. 2
⊢ ¬ 7
∥ ;;127 |
63 | 1, 22 | decnncl 12386 |
. . 3
⊢ ;11 ∈ ℕ |
64 | 1, 1 | deccl 12381 |
. . 3
⊢ ;11 ∈
ℕ0 |
65 | | 6nn 11992 |
. . 3
⊢ 6 ∈
ℕ |
66 | | eqid 2738 |
. . . 4
⊢ ;11 = ;11 |
67 | 54 | dec0h 12388 |
. . . 4
⊢ 6 = ;06 |
68 | 64 | nn0cni 12175 |
. . . . . . 7
⊢ ;11 ∈ ℂ |
69 | 68 | mulid1i 10910 |
. . . . . 6
⊢ (;11 · 1) = ;11 |
70 | | ax-1cn 10860 |
. . . . . . 7
⊢ 1 ∈
ℂ |
71 | 70 | addid2i 11093 |
. . . . . 6
⊢ (0 + 1) =
1 |
72 | 69, 71 | oveq12i 7267 |
. . . . 5
⊢ ((;11 · 1) + (0 + 1)) = (;11 + 1) |
73 | | 1p1e2 12028 |
. . . . . 6
⊢ (1 + 1) =
2 |
74 | 1, 1, 1, 66, 73 | decaddi 12426 |
. . . . 5
⊢ (;11 + 1) = ;12 |
75 | 72, 74 | eqtri 2766 |
. . . 4
⊢ ((;11 · 1) + (0 + 1)) = ;12 |
76 | | 6cn 11994 |
. . . . . 6
⊢ 6 ∈
ℂ |
77 | 76, 70, 58 | addcomli 11097 |
. . . . 5
⊢ (1 + 6) =
7 |
78 | 1, 1, 54, 69, 77 | decaddi 12426 |
. . . 4
⊢ ((;11 · 1) + 6) = ;17 |
79 | 1, 1, 44, 54, 66, 67, 64, 8, 1, 75, 78 | decma2c 12419 |
. . 3
⊢ ((;11 · ;11) + 6) = ;;127 |
80 | | 6lt10 12500 |
. . . 4
⊢ 6 <
;10 |
81 | 22, 1, 54, 80 | declti 12404 |
. . 3
⊢ 6 <
;11 |
82 | 63, 64, 65, 79, 81 | ndvdsi 16049 |
. 2
⊢ ¬
;11 ∥ ;;127 |
83 | 1, 21 | decnncl 12386 |
. . 3
⊢ ;13 ∈ ℕ |
84 | | 9nn0 12187 |
. . 3
⊢ 9 ∈
ℕ0 |
85 | | 10nn 12382 |
. . 3
⊢ ;10 ∈ ℕ |
86 | | eqid 2738 |
. . . 4
⊢ ;13 = ;13 |
87 | | eqid 2738 |
. . . 4
⊢ ;10 = ;10 |
88 | | 9cn 12003 |
. . . . . . 7
⊢ 9 ∈
ℂ |
89 | 88 | mulid2i 10911 |
. . . . . 6
⊢ (1
· 9) = 9 |
90 | 89, 30 | oveq12i 7267 |
. . . . 5
⊢ ((1
· 9) + (1 + 2)) = (9 + 3) |
91 | | 9p3e12 12454 |
. . . . 5
⊢ (9 + 3) =
;12 |
92 | 90, 91 | eqtri 2766 |
. . . 4
⊢ ((1
· 9) + (1 + 2)) = ;12 |
93 | | 9t3e27 12489 |
. . . . . 6
⊢ (9
· 3) = ;27 |
94 | 88, 33, 93 | mulcomli 10915 |
. . . . 5
⊢ (3
· 9) = ;27 |
95 | 32 | addid1i 11092 |
. . . . 5
⊢ (7 + 0) =
7 |
96 | 2, 8, 44, 94, 95 | decaddi 12426 |
. . . 4
⊢ ((3
· 9) + 0) = ;27 |
97 | 1, 17, 1, 44, 86, 87, 84, 8, 2, 92, 96 | decmac 12418 |
. . 3
⊢ ((;13 · 9) + ;10) = ;;127 |
98 | | 3pos 12008 |
. . . 4
⊢ 0 <
3 |
99 | 1, 44, 21, 98 | declt 12394 |
. . 3
⊢ ;10 < ;13 |
100 | 83, 84, 85, 97, 99 | ndvdsi 16049 |
. 2
⊢ ¬
;13 ∥ ;;127 |
101 | 1, 4 | decnncl 12386 |
. . 3
⊢ ;17 ∈ ℕ |
102 | | 8nn 11998 |
. . 3
⊢ 8 ∈
ℕ |
103 | | eqid 2738 |
. . . 4
⊢ ;17 = ;17 |
104 | 32 | mulid2i 10911 |
. . . . . 6
⊢ (1
· 7) = 7 |
105 | 104 | oveq1i 7265 |
. . . . 5
⊢ ((1
· 7) + 5) = (7 + 5) |
106 | 105, 52 | eqtri 2766 |
. . . 4
⊢ ((1
· 7) + 5) = ;12 |
107 | | 7t7e49 12480 |
. . . . 5
⊢ (7
· 7) = ;49 |
108 | | 4p1e5 12049 |
. . . . 5
⊢ (4 + 1) =
5 |
109 | | 9p8e17 12459 |
. . . . 5
⊢ (9 + 8) =
;17 |
110 | 7, 84, 6, 107, 108, 8, 109 | decaddci 12427 |
. . . 4
⊢ ((7
· 7) + 8) = ;57 |
111 | 1, 8, 6, 103, 8, 8, 47, 106, 110 | decrmac 12424 |
. . 3
⊢ ((;17 · 7) + 8) = ;;127 |
112 | | 8lt10 12498 |
. . . 4
⊢ 8 <
;10 |
113 | 22, 8, 6, 112 | declti 12404 |
. . 3
⊢ 8 <
;17 |
114 | 101, 8, 102, 111, 113 | ndvdsi 16049 |
. 2
⊢ ¬
;17 ∥ ;;127 |
115 | | 9nn 12001 |
. . . 4
⊢ 9 ∈
ℕ |
116 | 1, 115 | decnncl 12386 |
. . 3
⊢ ;19 ∈ ℕ |
117 | | eqid 2738 |
. . . 4
⊢ ;19 = ;19 |
118 | 76 | mulid2i 10911 |
. . . . . 6
⊢ (1
· 6) = 6 |
119 | | 5p1e6 12050 |
. . . . . . 7
⊢ (5 + 1) =
6 |
120 | 49, 70, 119 | addcomli 11097 |
. . . . . 6
⊢ (1 + 5) =
6 |
121 | 118, 120 | oveq12i 7267 |
. . . . 5
⊢ ((1
· 6) + (1 + 5)) = (6 + 6) |
122 | | 6p6e12 12440 |
. . . . 5
⊢ (6 + 6) =
;12 |
123 | 121, 122 | eqtri 2766 |
. . . 4
⊢ ((1
· 6) + (1 + 5)) = ;12 |
124 | | 9t6e54 12492 |
. . . . 5
⊢ (9
· 6) = ;54 |
125 | | 4p3e7 12057 |
. . . . 5
⊢ (4 + 3) =
7 |
126 | 47, 7, 17, 124, 125 | decaddi 12426 |
. . . 4
⊢ ((9
· 6) + 3) = ;57 |
127 | 1, 84, 1, 17, 117, 86, 54, 8, 47, 123, 126 | decmac 12418 |
. . 3
⊢ ((;19 · 6) + ;13) = ;;127 |
128 | | 3lt9 12107 |
. . . 4
⊢ 3 <
9 |
129 | 1, 17, 115, 128 | declt 12394 |
. . 3
⊢ ;13 < ;19 |
130 | 116, 54, 83, 127, 129 | ndvdsi 16049 |
. 2
⊢ ¬
;19 ∥ ;;127 |
131 | 2, 21 | decnncl 12386 |
. . 3
⊢ ;23 ∈ ℕ |
132 | | eqid 2738 |
. . . 4
⊢ ;23 = ;23 |
133 | | eqid 2738 |
. . . 4
⊢ ;12 = ;12 |
134 | | 2cn 11978 |
. . . . . . 7
⊢ 2 ∈
ℂ |
135 | | 5t2e10 12466 |
. . . . . . 7
⊢ (5
· 2) = ;10 |
136 | 49, 134, 135 | mulcomli 10915 |
. . . . . 6
⊢ (2
· 5) = ;10 |
137 | 136, 73 | oveq12i 7267 |
. . . . 5
⊢ ((2
· 5) + (1 + 1)) = (;10 +
2) |
138 | | dec10p 12409 |
. . . . 5
⊢ (;10 + 2) = ;12 |
139 | 137, 138 | eqtri 2766 |
. . . 4
⊢ ((2
· 5) + (1 + 1)) = ;12 |
140 | | 5t3e15 12467 |
. . . . . 6
⊢ (5
· 3) = ;15 |
141 | 49, 33, 140 | mulcomli 10915 |
. . . . 5
⊢ (3
· 5) = ;15 |
142 | 1, 47, 2, 141, 41 | decaddi 12426 |
. . . 4
⊢ ((3
· 5) + 2) = ;17 |
143 | 2, 17, 1, 2, 132, 133, 47, 8, 1, 139, 142 | decmac 12418 |
. . 3
⊢ ((;23 · 5) + ;12) = ;;127 |
144 | | 1lt2 12074 |
. . . 4
⊢ 1 <
2 |
145 | 1, 2, 2, 17, 10, 144 | decltc 12395 |
. . 3
⊢ ;12 < ;23 |
146 | 131, 47, 14, 143, 145 | ndvdsi 16049 |
. 2
⊢ ¬
;23 ∥ ;;127 |
147 | 5, 12, 16, 20, 39, 42, 62, 82, 100, 114, 130, 146 | prmlem2 16749 |
1
⊢ ;;127 ∈ ℙ |