Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  127prm Structured version   Visualization version   GIF version

Theorem 127prm 47723
Description: 127 is a prime number. (Contributed by AV, 16-Aug-2021.) (Proof shortened by AV, 16-Sep-2021.)
Assertion
Ref Expression
127prm 127 ∈ ℙ

Proof of Theorem 127prm
StepHypRef Expression
1 1nn0 12404 . . . 4 1 ∈ ℕ0
2 2nn0 12405 . . . 4 2 ∈ ℕ0
31, 2deccl 12609 . . 3 12 ∈ ℕ0
4 7nn 12224 . . 3 7 ∈ ℕ
53, 4decnncl 12614 . 2 127 ∈ ℕ
6 8nn0 12411 . . 3 8 ∈ ℕ0
7 4nn0 12407 . . 3 4 ∈ ℕ0
8 7nn0 12410 . . 3 7 ∈ ℕ0
9 1lt8 12325 . . 3 1 < 8
10 2lt10 12732 . . 3 2 < 10
11 7lt10 12727 . . 3 7 < 10
121, 6, 2, 7, 8, 1, 9, 10, 113decltc 12627 . 2 127 < 841
13 2nn 12205 . . . 4 2 ∈ ℕ
141, 13decnncl 12614 . . 3 12 ∈ ℕ
15 1lt10 12733 . . 3 1 < 10
1614, 8, 1, 15declti 12632 . 2 1 < 127
17 3nn0 12406 . . 3 3 ∈ ℕ0
18 3t2e6 12293 . . 3 (3 · 2) = 6
19 df-7 12200 . . 3 7 = (6 + 1)
203, 17, 18, 19dec2dvds 16977 . 2 ¬ 2 ∥ 127
21 3nn 12211 . . . 4 3 ∈ ℕ
22 1nn 12143 . . . 4 1 ∈ ℕ
23 3t3e9 12294 . . . . . 6 (3 · 3) = 9
2423oveq1i 7362 . . . . 5 ((3 · 3) + 1) = (9 + 1)
25 9p1e10 12596 . . . . 5 (9 + 1) = 10
2624, 25eqtri 2756 . . . 4 ((3 · 3) + 1) = 10
27 1lt3 12300 . . . 4 1 < 3
2821, 17, 22, 26, 27ndvdsi 16325 . . 3 ¬ 3 ∥ 10
291, 2, 83dvds2dec 16246 . . . 4 (3 ∥ 127 ↔ 3 ∥ ((1 + 2) + 7))
30 1p2e3 12270 . . . . . . 7 (1 + 2) = 3
3130oveq1i 7362 . . . . . 6 ((1 + 2) + 7) = (3 + 7)
32 7cn 12226 . . . . . . 7 7 ∈ ℂ
33 3cn 12213 . . . . . . 7 3 ∈ ℂ
34 7p3e10 12669 . . . . . . 7 (7 + 3) = 10
3532, 33, 34addcomli 11312 . . . . . 6 (3 + 7) = 10
3631, 35eqtri 2756 . . . . 5 ((1 + 2) + 7) = 10
3736breq2i 5101 . . . 4 (3 ∥ ((1 + 2) + 7) ↔ 3 ∥ 10)
3829, 37bitri 275 . . 3 (3 ∥ 127 ↔ 3 ∥ 10)
3928, 38mtbir 323 . 2 ¬ 3 ∥ 127
40 2lt5 12306 . . 3 2 < 5
41 5p2e7 12283 . . 3 (5 + 2) = 7
423, 13, 40, 41dec5dvds2 16979 . 2 ¬ 5 ∥ 127
431, 6deccl 12609 . . 3 18 ∈ ℕ0
44 0nn0 12403 . . . 4 0 ∈ ℕ0
45 eqid 2733 . . . 4 18 = 18
461dec0h 12616 . . . 4 1 = 01
47 5nn0 12408 . . . 4 5 ∈ ℕ0
4832mulridi 11123 . . . . . 6 (7 · 1) = 7
49 5cn 12220 . . . . . . 7 5 ∈ ℂ
5049addlidi 11308 . . . . . 6 (0 + 5) = 5
5148, 50oveq12i 7364 . . . . 5 ((7 · 1) + (0 + 5)) = (7 + 5)
52 7p5e12 12671 . . . . 5 (7 + 5) = 12
5351, 52eqtri 2756 . . . 4 ((7 · 1) + (0 + 5)) = 12
54 6nn0 12409 . . . . 5 6 ∈ ℕ0
55 8cn 12229 . . . . . 6 8 ∈ ℂ
56 8t7e56 12714 . . . . . 6 (8 · 7) = 56
5755, 32, 56mulcomli 11128 . . . . 5 (7 · 8) = 56
58 6p1e7 12275 . . . . 5 (6 + 1) = 7
5947, 54, 1, 57, 58decaddi 12654 . . . 4 ((7 · 8) + 1) = 57
601, 6, 44, 1, 45, 46, 8, 8, 47, 53, 59decma2c 12647 . . 3 ((7 · 18) + 1) = 127
61 1lt7 12318 . . 3 1 < 7
624, 43, 22, 60, 61ndvdsi 16325 . 2 ¬ 7 ∥ 127
631, 22decnncl 12614 . . 3 11 ∈ ℕ
641, 1deccl 12609 . . 3 11 ∈ ℕ0
65 6nn 12221 . . 3 6 ∈ ℕ
66 eqid 2733 . . . 4 11 = 11
6754dec0h 12616 . . . 4 6 = 06
6864nn0cni 12400 . . . . . . 7 11 ∈ ℂ
6968mulridi 11123 . . . . . 6 (11 · 1) = 11
70 ax-1cn 11071 . . . . . . 7 1 ∈ ℂ
7170addlidi 11308 . . . . . 6 (0 + 1) = 1
7269, 71oveq12i 7364 . . . . 5 ((11 · 1) + (0 + 1)) = (11 + 1)
73 1p1e2 12252 . . . . . 6 (1 + 1) = 2
741, 1, 1, 66, 73decaddi 12654 . . . . 5 (11 + 1) = 12
7572, 74eqtri 2756 . . . 4 ((11 · 1) + (0 + 1)) = 12
76 6cn 12223 . . . . . 6 6 ∈ ℂ
7776, 70, 58addcomli 11312 . . . . 5 (1 + 6) = 7
781, 1, 54, 69, 77decaddi 12654 . . . 4 ((11 · 1) + 6) = 17
791, 1, 44, 54, 66, 67, 64, 8, 1, 75, 78decma2c 12647 . . 3 ((11 · 11) + 6) = 127
80 6lt10 12728 . . . 4 6 < 10
8122, 1, 54, 80declti 12632 . . 3 6 < 11
8263, 64, 65, 79, 81ndvdsi 16325 . 2 ¬ 11 ∥ 127
831, 21decnncl 12614 . . 3 13 ∈ ℕ
84 9nn0 12412 . . 3 9 ∈ ℕ0
85 10nn 12610 . . 3 10 ∈ ℕ
86 eqid 2733 . . . 4 13 = 13
87 eqid 2733 . . . 4 10 = 10
88 9cn 12232 . . . . . . 7 9 ∈ ℂ
8988mullidi 11124 . . . . . 6 (1 · 9) = 9
9089, 30oveq12i 7364 . . . . 5 ((1 · 9) + (1 + 2)) = (9 + 3)
91 9p3e12 12682 . . . . 5 (9 + 3) = 12
9290, 91eqtri 2756 . . . 4 ((1 · 9) + (1 + 2)) = 12
93 9t3e27 12717 . . . . . 6 (9 · 3) = 27
9488, 33, 93mulcomli 11128 . . . . 5 (3 · 9) = 27
9532addridi 11307 . . . . 5 (7 + 0) = 7
962, 8, 44, 94, 95decaddi 12654 . . . 4 ((3 · 9) + 0) = 27
971, 17, 1, 44, 86, 87, 84, 8, 2, 92, 96decmac 12646 . . 3 ((13 · 9) + 10) = 127
98 3pos 12237 . . . 4 0 < 3
991, 44, 21, 98declt 12622 . . 3 10 < 13
10083, 84, 85, 97, 99ndvdsi 16325 . 2 ¬ 13 ∥ 127
1011, 4decnncl 12614 . . 3 17 ∈ ℕ
102 8nn 12227 . . 3 8 ∈ ℕ
103 eqid 2733 . . . 4 17 = 17
10432mullidi 11124 . . . . . 6 (1 · 7) = 7
105104oveq1i 7362 . . . . 5 ((1 · 7) + 5) = (7 + 5)
106105, 52eqtri 2756 . . . 4 ((1 · 7) + 5) = 12
107 7t7e49 12708 . . . . 5 (7 · 7) = 49
108 4p1e5 12273 . . . . 5 (4 + 1) = 5
109 9p8e17 12687 . . . . 5 (9 + 8) = 17
1107, 84, 6, 107, 108, 8, 109decaddci 12655 . . . 4 ((7 · 7) + 8) = 57
1111, 8, 6, 103, 8, 8, 47, 106, 110decrmac 12652 . . 3 ((17 · 7) + 8) = 127
112 8lt10 12726 . . . 4 8 < 10
11322, 8, 6, 112declti 12632 . . 3 8 < 17
114101, 8, 102, 111, 113ndvdsi 16325 . 2 ¬ 17 ∥ 127
115 9nn 12230 . . . 4 9 ∈ ℕ
1161, 115decnncl 12614 . . 3 19 ∈ ℕ
117 eqid 2733 . . . 4 19 = 19
11876mullidi 11124 . . . . . 6 (1 · 6) = 6
119 5p1e6 12274 . . . . . . 7 (5 + 1) = 6
12049, 70, 119addcomli 11312 . . . . . 6 (1 + 5) = 6
121118, 120oveq12i 7364 . . . . 5 ((1 · 6) + (1 + 5)) = (6 + 6)
122 6p6e12 12668 . . . . 5 (6 + 6) = 12
123121, 122eqtri 2756 . . . 4 ((1 · 6) + (1 + 5)) = 12
124 9t6e54 12720 . . . . 5 (9 · 6) = 54
125 4p3e7 12281 . . . . 5 (4 + 3) = 7
12647, 7, 17, 124, 125decaddi 12654 . . . 4 ((9 · 6) + 3) = 57
1271, 84, 1, 17, 117, 86, 54, 8, 47, 123, 126decmac 12646 . . 3 ((19 · 6) + 13) = 127
128 3lt9 12331 . . . 4 3 < 9
1291, 17, 115, 128declt 12622 . . 3 13 < 19
130116, 54, 83, 127, 129ndvdsi 16325 . 2 ¬ 19 ∥ 127
1312, 21decnncl 12614 . . 3 23 ∈ ℕ
132 eqid 2733 . . . 4 23 = 23
133 eqid 2733 . . . 4 12 = 12
134 2cn 12207 . . . . . . 7 2 ∈ ℂ
135 5t2e10 12694 . . . . . . 7 (5 · 2) = 10
13649, 134, 135mulcomli 11128 . . . . . 6 (2 · 5) = 10
137136, 73oveq12i 7364 . . . . 5 ((2 · 5) + (1 + 1)) = (10 + 2)
138 dec10p 12637 . . . . 5 (10 + 2) = 12
139137, 138eqtri 2756 . . . 4 ((2 · 5) + (1 + 1)) = 12
140 5t3e15 12695 . . . . . 6 (5 · 3) = 15
14149, 33, 140mulcomli 11128 . . . . 5 (3 · 5) = 15
1421, 47, 2, 141, 41decaddi 12654 . . . 4 ((3 · 5) + 2) = 17
1432, 17, 1, 2, 132, 133, 47, 8, 1, 139, 142decmac 12646 . . 3 ((23 · 5) + 12) = 127
144 1lt2 12298 . . . 4 1 < 2
1451, 2, 2, 17, 10, 144decltc 12623 . . 3 12 < 23
146131, 47, 14, 143, 145ndvdsi 16325 . 2 ¬ 23 ∥ 127
1475, 12, 16, 20, 39, 42, 62, 82, 100, 114, 130, 146prmlem2 17033 1 127 ∈ ℙ
Colors of variables: wff setvar class
Syntax hints:  wcel 2113   class class class wbr 5093  (class class class)co 7352  0cc0 11013  1c1 11014   + caddc 11016   · cmul 11018  2c2 12187  3c3 12188  4c4 12189  5c5 12190  6c6 12191  7c7 12192  8c8 12193  9c9 12194  cdc 12594  cdvds 16165  cprime 16584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9333  df-inf 9334  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-rp 12893  df-fz 13410  df-seq 13911  df-exp 13971  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-dvds 16166  df-prm 16585
This theorem is referenced by:  m7prm  47724
  Copyright terms: Public domain W3C validator