Proof of Theorem 127prm
| Step | Hyp | Ref
| Expression |
| 1 | | 1nn0 12542 |
. . . 4
⊢ 1 ∈
ℕ0 |
| 2 | | 2nn0 12543 |
. . . 4
⊢ 2 ∈
ℕ0 |
| 3 | 1, 2 | deccl 12748 |
. . 3
⊢ ;12 ∈
ℕ0 |
| 4 | | 7nn 12358 |
. . 3
⊢ 7 ∈
ℕ |
| 5 | 3, 4 | decnncl 12753 |
. 2
⊢ ;;127 ∈ ℕ |
| 6 | | 8nn0 12549 |
. . 3
⊢ 8 ∈
ℕ0 |
| 7 | | 4nn0 12545 |
. . 3
⊢ 4 ∈
ℕ0 |
| 8 | | 7nn0 12548 |
. . 3
⊢ 7 ∈
ℕ0 |
| 9 | | 1lt8 12464 |
. . 3
⊢ 1 <
8 |
| 10 | | 2lt10 12871 |
. . 3
⊢ 2 <
;10 |
| 11 | | 7lt10 12866 |
. . 3
⊢ 7 <
;10 |
| 12 | 1, 6, 2, 7, 8, 1, 9, 10, 11 | 3decltc 12766 |
. 2
⊢ ;;127 < ;;841 |
| 13 | | 2nn 12339 |
. . . 4
⊢ 2 ∈
ℕ |
| 14 | 1, 13 | decnncl 12753 |
. . 3
⊢ ;12 ∈ ℕ |
| 15 | | 1lt10 12872 |
. . 3
⊢ 1 <
;10 |
| 16 | 14, 8, 1, 15 | declti 12771 |
. 2
⊢ 1 <
;;127 |
| 17 | | 3nn0 12544 |
. . 3
⊢ 3 ∈
ℕ0 |
| 18 | | 3t2e6 12432 |
. . 3
⊢ (3
· 2) = 6 |
| 19 | | df-7 12334 |
. . 3
⊢ 7 = (6 +
1) |
| 20 | 3, 17, 18, 19 | dec2dvds 17101 |
. 2
⊢ ¬ 2
∥ ;;127 |
| 21 | | 3nn 12345 |
. . . 4
⊢ 3 ∈
ℕ |
| 22 | | 1nn 12277 |
. . . 4
⊢ 1 ∈
ℕ |
| 23 | | 3t3e9 12433 |
. . . . . 6
⊢ (3
· 3) = 9 |
| 24 | 23 | oveq1i 7441 |
. . . . 5
⊢ ((3
· 3) + 1) = (9 + 1) |
| 25 | | 9p1e10 12735 |
. . . . 5
⊢ (9 + 1) =
;10 |
| 26 | 24, 25 | eqtri 2765 |
. . . 4
⊢ ((3
· 3) + 1) = ;10 |
| 27 | | 1lt3 12439 |
. . . 4
⊢ 1 <
3 |
| 28 | 21, 17, 22, 26, 27 | ndvdsi 16449 |
. . 3
⊢ ¬ 3
∥ ;10 |
| 29 | 1, 2, 8 | 3dvds2dec 16370 |
. . . 4
⊢ (3
∥ ;;127 ↔ 3 ∥ ((1 + 2) + 7)) |
| 30 | | 1p2e3 12409 |
. . . . . . 7
⊢ (1 + 2) =
3 |
| 31 | 30 | oveq1i 7441 |
. . . . . 6
⊢ ((1 + 2)
+ 7) = (3 + 7) |
| 32 | | 7cn 12360 |
. . . . . . 7
⊢ 7 ∈
ℂ |
| 33 | | 3cn 12347 |
. . . . . . 7
⊢ 3 ∈
ℂ |
| 34 | | 7p3e10 12808 |
. . . . . . 7
⊢ (7 + 3) =
;10 |
| 35 | 32, 33, 34 | addcomli 11453 |
. . . . . 6
⊢ (3 + 7) =
;10 |
| 36 | 31, 35 | eqtri 2765 |
. . . . 5
⊢ ((1 + 2)
+ 7) = ;10 |
| 37 | 36 | breq2i 5151 |
. . . 4
⊢ (3
∥ ((1 + 2) + 7) ↔ 3 ∥ ;10) |
| 38 | 29, 37 | bitri 275 |
. . 3
⊢ (3
∥ ;;127 ↔ 3 ∥ ;10) |
| 39 | 28, 38 | mtbir 323 |
. 2
⊢ ¬ 3
∥ ;;127 |
| 40 | | 2lt5 12445 |
. . 3
⊢ 2 <
5 |
| 41 | | 5p2e7 12422 |
. . 3
⊢ (5 + 2) =
7 |
| 42 | 3, 13, 40, 41 | dec5dvds2 17103 |
. 2
⊢ ¬ 5
∥ ;;127 |
| 43 | 1, 6 | deccl 12748 |
. . 3
⊢ ;18 ∈
ℕ0 |
| 44 | | 0nn0 12541 |
. . . 4
⊢ 0 ∈
ℕ0 |
| 45 | | eqid 2737 |
. . . 4
⊢ ;18 = ;18 |
| 46 | 1 | dec0h 12755 |
. . . 4
⊢ 1 = ;01 |
| 47 | | 5nn0 12546 |
. . . 4
⊢ 5 ∈
ℕ0 |
| 48 | 32 | mulridi 11265 |
. . . . . 6
⊢ (7
· 1) = 7 |
| 49 | | 5cn 12354 |
. . . . . . 7
⊢ 5 ∈
ℂ |
| 50 | 49 | addlidi 11449 |
. . . . . 6
⊢ (0 + 5) =
5 |
| 51 | 48, 50 | oveq12i 7443 |
. . . . 5
⊢ ((7
· 1) + (0 + 5)) = (7 + 5) |
| 52 | | 7p5e12 12810 |
. . . . 5
⊢ (7 + 5) =
;12 |
| 53 | 51, 52 | eqtri 2765 |
. . . 4
⊢ ((7
· 1) + (0 + 5)) = ;12 |
| 54 | | 6nn0 12547 |
. . . . 5
⊢ 6 ∈
ℕ0 |
| 55 | | 8cn 12363 |
. . . . . 6
⊢ 8 ∈
ℂ |
| 56 | | 8t7e56 12853 |
. . . . . 6
⊢ (8
· 7) = ;56 |
| 57 | 55, 32, 56 | mulcomli 11270 |
. . . . 5
⊢ (7
· 8) = ;56 |
| 58 | | 6p1e7 12414 |
. . . . 5
⊢ (6 + 1) =
7 |
| 59 | 47, 54, 1, 57, 58 | decaddi 12793 |
. . . 4
⊢ ((7
· 8) + 1) = ;57 |
| 60 | 1, 6, 44, 1, 45, 46, 8, 8, 47, 53, 59 | decma2c 12786 |
. . 3
⊢ ((7
· ;18) + 1) = ;;127 |
| 61 | | 1lt7 12457 |
. . 3
⊢ 1 <
7 |
| 62 | 4, 43, 22, 60, 61 | ndvdsi 16449 |
. 2
⊢ ¬ 7
∥ ;;127 |
| 63 | 1, 22 | decnncl 12753 |
. . 3
⊢ ;11 ∈ ℕ |
| 64 | 1, 1 | deccl 12748 |
. . 3
⊢ ;11 ∈
ℕ0 |
| 65 | | 6nn 12355 |
. . 3
⊢ 6 ∈
ℕ |
| 66 | | eqid 2737 |
. . . 4
⊢ ;11 = ;11 |
| 67 | 54 | dec0h 12755 |
. . . 4
⊢ 6 = ;06 |
| 68 | 64 | nn0cni 12538 |
. . . . . . 7
⊢ ;11 ∈ ℂ |
| 69 | 68 | mulridi 11265 |
. . . . . 6
⊢ (;11 · 1) = ;11 |
| 70 | | ax-1cn 11213 |
. . . . . . 7
⊢ 1 ∈
ℂ |
| 71 | 70 | addlidi 11449 |
. . . . . 6
⊢ (0 + 1) =
1 |
| 72 | 69, 71 | oveq12i 7443 |
. . . . 5
⊢ ((;11 · 1) + (0 + 1)) = (;11 + 1) |
| 73 | | 1p1e2 12391 |
. . . . . 6
⊢ (1 + 1) =
2 |
| 74 | 1, 1, 1, 66, 73 | decaddi 12793 |
. . . . 5
⊢ (;11 + 1) = ;12 |
| 75 | 72, 74 | eqtri 2765 |
. . . 4
⊢ ((;11 · 1) + (0 + 1)) = ;12 |
| 76 | | 6cn 12357 |
. . . . . 6
⊢ 6 ∈
ℂ |
| 77 | 76, 70, 58 | addcomli 11453 |
. . . . 5
⊢ (1 + 6) =
7 |
| 78 | 1, 1, 54, 69, 77 | decaddi 12793 |
. . . 4
⊢ ((;11 · 1) + 6) = ;17 |
| 79 | 1, 1, 44, 54, 66, 67, 64, 8, 1, 75, 78 | decma2c 12786 |
. . 3
⊢ ((;11 · ;11) + 6) = ;;127 |
| 80 | | 6lt10 12867 |
. . . 4
⊢ 6 <
;10 |
| 81 | 22, 1, 54, 80 | declti 12771 |
. . 3
⊢ 6 <
;11 |
| 82 | 63, 64, 65, 79, 81 | ndvdsi 16449 |
. 2
⊢ ¬
;11 ∥ ;;127 |
| 83 | 1, 21 | decnncl 12753 |
. . 3
⊢ ;13 ∈ ℕ |
| 84 | | 9nn0 12550 |
. . 3
⊢ 9 ∈
ℕ0 |
| 85 | | 10nn 12749 |
. . 3
⊢ ;10 ∈ ℕ |
| 86 | | eqid 2737 |
. . . 4
⊢ ;13 = ;13 |
| 87 | | eqid 2737 |
. . . 4
⊢ ;10 = ;10 |
| 88 | | 9cn 12366 |
. . . . . . 7
⊢ 9 ∈
ℂ |
| 89 | 88 | mullidi 11266 |
. . . . . 6
⊢ (1
· 9) = 9 |
| 90 | 89, 30 | oveq12i 7443 |
. . . . 5
⊢ ((1
· 9) + (1 + 2)) = (9 + 3) |
| 91 | | 9p3e12 12821 |
. . . . 5
⊢ (9 + 3) =
;12 |
| 92 | 90, 91 | eqtri 2765 |
. . . 4
⊢ ((1
· 9) + (1 + 2)) = ;12 |
| 93 | | 9t3e27 12856 |
. . . . . 6
⊢ (9
· 3) = ;27 |
| 94 | 88, 33, 93 | mulcomli 11270 |
. . . . 5
⊢ (3
· 9) = ;27 |
| 95 | 32 | addridi 11448 |
. . . . 5
⊢ (7 + 0) =
7 |
| 96 | 2, 8, 44, 94, 95 | decaddi 12793 |
. . . 4
⊢ ((3
· 9) + 0) = ;27 |
| 97 | 1, 17, 1, 44, 86, 87, 84, 8, 2, 92, 96 | decmac 12785 |
. . 3
⊢ ((;13 · 9) + ;10) = ;;127 |
| 98 | | 3pos 12371 |
. . . 4
⊢ 0 <
3 |
| 99 | 1, 44, 21, 98 | declt 12761 |
. . 3
⊢ ;10 < ;13 |
| 100 | 83, 84, 85, 97, 99 | ndvdsi 16449 |
. 2
⊢ ¬
;13 ∥ ;;127 |
| 101 | 1, 4 | decnncl 12753 |
. . 3
⊢ ;17 ∈ ℕ |
| 102 | | 8nn 12361 |
. . 3
⊢ 8 ∈
ℕ |
| 103 | | eqid 2737 |
. . . 4
⊢ ;17 = ;17 |
| 104 | 32 | mullidi 11266 |
. . . . . 6
⊢ (1
· 7) = 7 |
| 105 | 104 | oveq1i 7441 |
. . . . 5
⊢ ((1
· 7) + 5) = (7 + 5) |
| 106 | 105, 52 | eqtri 2765 |
. . . 4
⊢ ((1
· 7) + 5) = ;12 |
| 107 | | 7t7e49 12847 |
. . . . 5
⊢ (7
· 7) = ;49 |
| 108 | | 4p1e5 12412 |
. . . . 5
⊢ (4 + 1) =
5 |
| 109 | | 9p8e17 12826 |
. . . . 5
⊢ (9 + 8) =
;17 |
| 110 | 7, 84, 6, 107, 108, 8, 109 | decaddci 12794 |
. . . 4
⊢ ((7
· 7) + 8) = ;57 |
| 111 | 1, 8, 6, 103, 8, 8, 47, 106, 110 | decrmac 12791 |
. . 3
⊢ ((;17 · 7) + 8) = ;;127 |
| 112 | | 8lt10 12865 |
. . . 4
⊢ 8 <
;10 |
| 113 | 22, 8, 6, 112 | declti 12771 |
. . 3
⊢ 8 <
;17 |
| 114 | 101, 8, 102, 111, 113 | ndvdsi 16449 |
. 2
⊢ ¬
;17 ∥ ;;127 |
| 115 | | 9nn 12364 |
. . . 4
⊢ 9 ∈
ℕ |
| 116 | 1, 115 | decnncl 12753 |
. . 3
⊢ ;19 ∈ ℕ |
| 117 | | eqid 2737 |
. . . 4
⊢ ;19 = ;19 |
| 118 | 76 | mullidi 11266 |
. . . . . 6
⊢ (1
· 6) = 6 |
| 119 | | 5p1e6 12413 |
. . . . . . 7
⊢ (5 + 1) =
6 |
| 120 | 49, 70, 119 | addcomli 11453 |
. . . . . 6
⊢ (1 + 5) =
6 |
| 121 | 118, 120 | oveq12i 7443 |
. . . . 5
⊢ ((1
· 6) + (1 + 5)) = (6 + 6) |
| 122 | | 6p6e12 12807 |
. . . . 5
⊢ (6 + 6) =
;12 |
| 123 | 121, 122 | eqtri 2765 |
. . . 4
⊢ ((1
· 6) + (1 + 5)) = ;12 |
| 124 | | 9t6e54 12859 |
. . . . 5
⊢ (9
· 6) = ;54 |
| 125 | | 4p3e7 12420 |
. . . . 5
⊢ (4 + 3) =
7 |
| 126 | 47, 7, 17, 124, 125 | decaddi 12793 |
. . . 4
⊢ ((9
· 6) + 3) = ;57 |
| 127 | 1, 84, 1, 17, 117, 86, 54, 8, 47, 123, 126 | decmac 12785 |
. . 3
⊢ ((;19 · 6) + ;13) = ;;127 |
| 128 | | 3lt9 12470 |
. . . 4
⊢ 3 <
9 |
| 129 | 1, 17, 115, 128 | declt 12761 |
. . 3
⊢ ;13 < ;19 |
| 130 | 116, 54, 83, 127, 129 | ndvdsi 16449 |
. 2
⊢ ¬
;19 ∥ ;;127 |
| 131 | 2, 21 | decnncl 12753 |
. . 3
⊢ ;23 ∈ ℕ |
| 132 | | eqid 2737 |
. . . 4
⊢ ;23 = ;23 |
| 133 | | eqid 2737 |
. . . 4
⊢ ;12 = ;12 |
| 134 | | 2cn 12341 |
. . . . . . 7
⊢ 2 ∈
ℂ |
| 135 | | 5t2e10 12833 |
. . . . . . 7
⊢ (5
· 2) = ;10 |
| 136 | 49, 134, 135 | mulcomli 11270 |
. . . . . 6
⊢ (2
· 5) = ;10 |
| 137 | 136, 73 | oveq12i 7443 |
. . . . 5
⊢ ((2
· 5) + (1 + 1)) = (;10 +
2) |
| 138 | | dec10p 12776 |
. . . . 5
⊢ (;10 + 2) = ;12 |
| 139 | 137, 138 | eqtri 2765 |
. . . 4
⊢ ((2
· 5) + (1 + 1)) = ;12 |
| 140 | | 5t3e15 12834 |
. . . . . 6
⊢ (5
· 3) = ;15 |
| 141 | 49, 33, 140 | mulcomli 11270 |
. . . . 5
⊢ (3
· 5) = ;15 |
| 142 | 1, 47, 2, 141, 41 | decaddi 12793 |
. . . 4
⊢ ((3
· 5) + 2) = ;17 |
| 143 | 2, 17, 1, 2, 132, 133, 47, 8, 1, 139, 142 | decmac 12785 |
. . 3
⊢ ((;23 · 5) + ;12) = ;;127 |
| 144 | | 1lt2 12437 |
. . . 4
⊢ 1 <
2 |
| 145 | 1, 2, 2, 17, 10, 144 | decltc 12762 |
. . 3
⊢ ;12 < ;23 |
| 146 | 131, 47, 14, 143, 145 | ndvdsi 16449 |
. 2
⊢ ¬
;23 ∥ ;;127 |
| 147 | 5, 12, 16, 20, 39, 42, 62, 82, 100, 114, 130, 146 | prmlem2 17157 |
1
⊢ ;;127 ∈ ℙ |