Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 7t7e49 | Structured version Visualization version GIF version |
Description: 7 times 7 equals 49. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
7t7e49 | ⊢ (7 · 7) = ;49 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 7nn0 12001 | . 2 ⊢ 7 ∈ ℕ0 | |
2 | 6nn0 12000 | . 2 ⊢ 6 ∈ ℕ0 | |
3 | df-7 11787 | . 2 ⊢ 7 = (6 + 1) | |
4 | 7t6e42 12295 | . 2 ⊢ (7 · 6) = ;42 | |
5 | 4nn0 11998 | . . 3 ⊢ 4 ∈ ℕ0 | |
6 | 2nn0 11996 | . . 3 ⊢ 2 ∈ ℕ0 | |
7 | eqid 2739 | . . 3 ⊢ ;42 = ;42 | |
8 | 7cn 11813 | . . . 4 ⊢ 7 ∈ ℂ | |
9 | 2cn 11794 | . . . 4 ⊢ 2 ∈ ℂ | |
10 | 7p2e9 11880 | . . . 4 ⊢ (7 + 2) = 9 | |
11 | 8, 9, 10 | addcomli 10913 | . . 3 ⊢ (2 + 7) = 9 |
12 | 5, 6, 1, 7, 11 | decaddi 12242 | . 2 ⊢ (;42 + 7) = ;49 |
13 | 1, 2, 3, 4, 12 | 4t3lem 12279 | 1 ⊢ (7 · 7) = ;49 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 (class class class)co 7173 · cmul 10623 2c2 11774 4c4 11776 6c6 11778 7c7 11779 9c9 11781 ;cdc 12182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-sep 5168 ax-nul 5175 ax-pow 5233 ax-pr 5297 ax-un 7482 ax-resscn 10675 ax-1cn 10676 ax-icn 10677 ax-addcl 10678 ax-addrcl 10679 ax-mulcl 10680 ax-mulrcl 10681 ax-mulcom 10682 ax-addass 10683 ax-mulass 10684 ax-distr 10685 ax-i2m1 10686 ax-1ne0 10687 ax-1rid 10688 ax-rnegex 10689 ax-rrecex 10690 ax-cnre 10691 ax-pre-lttri 10692 ax-pre-lttrn 10693 ax-pre-ltadd 10694 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-nel 3040 df-ral 3059 df-rex 3060 df-reu 3061 df-rab 3063 df-v 3401 df-sbc 3682 df-csb 3792 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-pss 3863 df-nul 4213 df-if 4416 df-pw 4491 df-sn 4518 df-pr 4520 df-tp 4522 df-op 4524 df-uni 4798 df-iun 4884 df-br 5032 df-opab 5094 df-mpt 5112 df-tr 5138 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5484 df-we 5486 df-xp 5532 df-rel 5533 df-cnv 5534 df-co 5535 df-dm 5536 df-rn 5537 df-res 5538 df-ima 5539 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7130 df-ov 7176 df-oprab 7177 df-mpo 7178 df-om 7603 df-wrecs 7979 df-recs 8040 df-rdg 8078 df-er 8323 df-en 8559 df-dom 8560 df-sdom 8561 df-pnf 10758 df-mnf 10759 df-ltxr 10761 df-sub 10953 df-nn 11720 df-2 11782 df-3 11783 df-4 11784 df-5 11785 df-6 11786 df-7 11787 df-8 11788 df-9 11789 df-n0 11980 df-dec 12183 |
This theorem is referenced by: 631prm 16566 1259lem3 16572 2503lem2 16577 4001lem1 16580 log2ub 25690 bposlem8 26030 hgt750lem2 32205 60gcd7e1 39656 3exp7 39704 3lexlogpow5ineq1 39705 resqrtvalex 40821 imsqrtvalex 40822 127prm 44615 |
Copyright terms: Public domain | W3C validator |