| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 7re | Structured version Visualization version GIF version | ||
| Description: The number 7 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 7re | ⊢ 7 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-7 12196 | . 2 ⊢ 7 = (6 + 1) | |
| 2 | 6re 12218 | . . 3 ⊢ 6 ∈ ℝ | |
| 3 | 1re 11115 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2, 3 | readdcli 11130 | . 2 ⊢ (6 + 1) ∈ ℝ |
| 5 | 1, 4 | eqeltri 2824 | 1 ⊢ 7 ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7349 ℝcr 11008 1c1 11010 + caddc 11012 6c6 12187 7c7 12188 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-i2m1 11077 ax-1ne0 11078 ax-rrecex 11081 ax-cnre 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-iota 6438 df-fv 6490 df-ov 7352 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 |
| This theorem is referenced by: 8re 12224 8pos 12240 5lt7 12310 4lt7 12311 3lt7 12312 2lt7 12313 1lt7 12314 7lt8 12315 6lt8 12316 7lt9 12323 6lt9 12324 7lt10 12724 6lt10 12725 bposlem8 27200 lgsdir2lem1 27234 hgt750lem2 34626 hgt750leme 34632 problem4 35651 60gcd7e1 41988 lcmineqlem 42035 3lexlogpow5ineq1 42037 3lexlogpow5ineq2 42038 3lexlogpow5ineq4 42039 3lexlogpow5ineq3 42040 aks4d1p1p3 42052 aks4d1p1p2 42053 aks4d1p1p4 42054 aks4d1p1p7 42057 aks4d1p2 42060 aks4d1p3 42061 7rp 42285 mod42tp1mod8 47596 stgoldbwt 47770 sbgoldbwt 47771 nnsum3primesle9 47788 nnsum4primesoddALTV 47791 evengpoap3 47793 bgoldbtbndlem1 47799 bgoldbtbnd 47803 |
| Copyright terms: Public domain | W3C validator |