Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 7re | Structured version Visualization version GIF version |
Description: The number 7 is real. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
7re | ⊢ 7 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-7 11971 | . 2 ⊢ 7 = (6 + 1) | |
2 | 6re 11993 | . . 3 ⊢ 6 ∈ ℝ | |
3 | 1re 10906 | . . 3 ⊢ 1 ∈ ℝ | |
4 | 2, 3 | readdcli 10921 | . 2 ⊢ (6 + 1) ∈ ℝ |
5 | 1, 4 | eqeltri 2835 | 1 ⊢ 7 ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 (class class class)co 7255 ℝcr 10801 1c1 10803 + caddc 10805 6c6 11962 7c7 11963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-i2m1 10870 ax-1ne0 10871 ax-rrecex 10874 ax-cnre 10875 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 |
This theorem is referenced by: 8re 11999 8pos 12015 5lt7 12090 4lt7 12091 3lt7 12092 2lt7 12093 1lt7 12094 7lt8 12095 6lt8 12096 7lt9 12103 6lt9 12104 7lt10 12499 6lt10 12500 bposlem8 26344 lgsdir2lem1 26378 hgt750lem2 32532 hgt750leme 32538 problem4 33526 60gcd7e1 39941 lcmineqlem 39988 3lexlogpow5ineq1 39990 3lexlogpow5ineq2 39991 3lexlogpow5ineq4 39992 3lexlogpow5ineq3 39993 aks4d1p1p3 40005 aks4d1p1p2 40006 aks4d1p1p4 40007 aks4d1p1p7 40010 aks4d1p2 40013 aks4d1p3 40014 mod42tp1mod8 44942 stgoldbwt 45116 sbgoldbwt 45117 nnsum3primesle9 45134 nnsum4primesoddALTV 45137 evengpoap3 45139 bgoldbtbndlem1 45145 bgoldbtbnd 45149 |
Copyright terms: Public domain | W3C validator |