| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 7re | Structured version Visualization version GIF version | ||
| Description: The number 7 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 7re | ⊢ 7 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-7 12313 | . 2 ⊢ 7 = (6 + 1) | |
| 2 | 6re 12335 | . . 3 ⊢ 6 ∈ ℝ | |
| 3 | 1re 11240 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2, 3 | readdcli 11255 | . 2 ⊢ (6 + 1) ∈ ℝ |
| 5 | 1, 4 | eqeltri 2831 | 1 ⊢ 7 ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7410 ℝcr 11133 1c1 11135 + caddc 11137 6c6 12304 7c7 12305 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-i2m1 11202 ax-1ne0 11203 ax-rrecex 11206 ax-cnre 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-iota 6489 df-fv 6544 df-ov 7413 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 |
| This theorem is referenced by: 8re 12341 8pos 12357 5lt7 12432 4lt7 12433 3lt7 12434 2lt7 12435 1lt7 12436 7lt8 12437 6lt8 12438 7lt9 12445 6lt9 12446 7lt10 12846 6lt10 12847 bposlem8 27259 lgsdir2lem1 27293 hgt750lem2 34689 hgt750leme 34695 problem4 35695 60gcd7e1 42023 lcmineqlem 42070 3lexlogpow5ineq1 42072 3lexlogpow5ineq2 42073 3lexlogpow5ineq4 42074 3lexlogpow5ineq3 42075 aks4d1p1p3 42087 aks4d1p1p2 42088 aks4d1p1p4 42089 aks4d1p1p7 42092 aks4d1p2 42095 aks4d1p3 42096 7rp 42318 mod42tp1mod8 47583 stgoldbwt 47757 sbgoldbwt 47758 nnsum3primesle9 47775 nnsum4primesoddALTV 47778 evengpoap3 47780 bgoldbtbndlem1 47786 bgoldbtbnd 47790 |
| Copyright terms: Public domain | W3C validator |