Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 7re | Structured version Visualization version GIF version |
Description: The number 7 is real. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
7re | ⊢ 7 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-7 12024 | . 2 ⊢ 7 = (6 + 1) | |
2 | 6re 12046 | . . 3 ⊢ 6 ∈ ℝ | |
3 | 1re 10959 | . . 3 ⊢ 1 ∈ ℝ | |
4 | 2, 3 | readdcli 10974 | . 2 ⊢ (6 + 1) ∈ ℝ |
5 | 1, 4 | eqeltri 2836 | 1 ⊢ 7 ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2109 (class class class)co 7268 ℝcr 10854 1c1 10856 + caddc 10858 6c6 12015 7c7 12016 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-i2m1 10923 ax-1ne0 10924 ax-rrecex 10927 ax-cnre 10928 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-iota 6388 df-fv 6438 df-ov 7271 df-2 12019 df-3 12020 df-4 12021 df-5 12022 df-6 12023 df-7 12024 |
This theorem is referenced by: 8re 12052 8pos 12068 5lt7 12143 4lt7 12144 3lt7 12145 2lt7 12146 1lt7 12147 7lt8 12148 6lt8 12149 7lt9 12156 6lt9 12157 7lt10 12552 6lt10 12553 bposlem8 26420 lgsdir2lem1 26454 hgt750lem2 32611 hgt750leme 32617 problem4 33605 60gcd7e1 39993 lcmineqlem 40040 3lexlogpow5ineq1 40042 3lexlogpow5ineq2 40043 3lexlogpow5ineq4 40044 3lexlogpow5ineq3 40045 aks4d1p1p3 40057 aks4d1p1p2 40058 aks4d1p1p4 40059 aks4d1p1p7 40062 aks4d1p2 40065 aks4d1p3 40066 mod42tp1mod8 45006 stgoldbwt 45180 sbgoldbwt 45181 nnsum3primesle9 45198 nnsum4primesoddALTV 45201 evengpoap3 45203 bgoldbtbndlem1 45209 bgoldbtbnd 45213 |
Copyright terms: Public domain | W3C validator |