Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 7re | Structured version Visualization version GIF version |
Description: The number 7 is real. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
7re | ⊢ 7 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-7 12041 | . 2 ⊢ 7 = (6 + 1) | |
2 | 6re 12063 | . . 3 ⊢ 6 ∈ ℝ | |
3 | 1re 10975 | . . 3 ⊢ 1 ∈ ℝ | |
4 | 2, 3 | readdcli 10990 | . 2 ⊢ (6 + 1) ∈ ℝ |
5 | 1, 4 | eqeltri 2835 | 1 ⊢ 7 ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 (class class class)co 7275 ℝcr 10870 1c1 10872 + caddc 10874 6c6 12032 7c7 12033 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-i2m1 10939 ax-1ne0 10940 ax-rrecex 10943 ax-cnre 10944 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 |
This theorem is referenced by: 8re 12069 8pos 12085 5lt7 12160 4lt7 12161 3lt7 12162 2lt7 12163 1lt7 12164 7lt8 12165 6lt8 12166 7lt9 12173 6lt9 12174 7lt10 12570 6lt10 12571 bposlem8 26439 lgsdir2lem1 26473 hgt750lem2 32632 hgt750leme 32638 problem4 33626 60gcd7e1 40013 lcmineqlem 40060 3lexlogpow5ineq1 40062 3lexlogpow5ineq2 40063 3lexlogpow5ineq4 40064 3lexlogpow5ineq3 40065 aks4d1p1p3 40077 aks4d1p1p2 40078 aks4d1p1p4 40079 aks4d1p1p7 40082 aks4d1p2 40085 aks4d1p3 40086 mod42tp1mod8 45054 stgoldbwt 45228 sbgoldbwt 45229 nnsum3primesle9 45246 nnsum4primesoddALTV 45249 evengpoap3 45251 bgoldbtbndlem1 45257 bgoldbtbnd 45261 |
Copyright terms: Public domain | W3C validator |