| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 7re | Structured version Visualization version GIF version | ||
| Description: The number 7 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 7re | ⊢ 7 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-7 12193 | . 2 ⊢ 7 = (6 + 1) | |
| 2 | 6re 12215 | . . 3 ⊢ 6 ∈ ℝ | |
| 3 | 1re 11112 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2, 3 | readdcli 11127 | . 2 ⊢ (6 + 1) ∈ ℝ |
| 5 | 1, 4 | eqeltri 2827 | 1 ⊢ 7 ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 (class class class)co 7346 ℝcr 11005 1c1 11007 + caddc 11009 6c6 12184 7c7 12185 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-i2m1 11074 ax-1ne0 11075 ax-rrecex 11078 ax-cnre 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 df-ov 7349 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 |
| This theorem is referenced by: 8re 12221 8pos 12237 5lt7 12307 4lt7 12308 3lt7 12309 2lt7 12310 1lt7 12311 7lt8 12312 6lt8 12313 7lt9 12320 6lt9 12321 7lt10 12721 6lt10 12722 bposlem8 27229 lgsdir2lem1 27263 hgt750lem2 34665 hgt750leme 34671 problem4 35712 60gcd7e1 42108 lcmineqlem 42155 3lexlogpow5ineq1 42157 3lexlogpow5ineq2 42158 3lexlogpow5ineq4 42159 3lexlogpow5ineq3 42160 aks4d1p1p3 42172 aks4d1p1p2 42173 aks4d1p1p4 42174 aks4d1p1p7 42177 aks4d1p2 42180 aks4d1p3 42181 7rp 42405 mod42tp1mod8 47712 stgoldbwt 47886 sbgoldbwt 47887 nnsum3primesle9 47904 nnsum4primesoddALTV 47907 evengpoap3 47909 bgoldbtbndlem1 47915 bgoldbtbnd 47919 |
| Copyright terms: Public domain | W3C validator |