![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 7re | Structured version Visualization version GIF version |
Description: The number 7 is real. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
7re | ⊢ 7 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-7 12361 | . 2 ⊢ 7 = (6 + 1) | |
2 | 6re 12383 | . . 3 ⊢ 6 ∈ ℝ | |
3 | 1re 11290 | . . 3 ⊢ 1 ∈ ℝ | |
4 | 2, 3 | readdcli 11305 | . 2 ⊢ (6 + 1) ∈ ℝ |
5 | 1, 4 | eqeltri 2840 | 1 ⊢ 7 ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 (class class class)co 7448 ℝcr 11183 1c1 11185 + caddc 11187 6c6 12352 7c7 12353 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-i2m1 11252 ax-1ne0 11253 ax-rrecex 11256 ax-cnre 11257 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 |
This theorem is referenced by: 8re 12389 8pos 12405 5lt7 12480 4lt7 12481 3lt7 12482 2lt7 12483 1lt7 12484 7lt8 12485 6lt8 12486 7lt9 12493 6lt9 12494 7lt10 12891 6lt10 12892 bposlem8 27353 lgsdir2lem1 27387 hgt750lem2 34629 hgt750leme 34635 problem4 35636 60gcd7e1 41962 lcmineqlem 42009 3lexlogpow5ineq1 42011 3lexlogpow5ineq2 42012 3lexlogpow5ineq4 42013 3lexlogpow5ineq3 42014 aks4d1p1p3 42026 aks4d1p1p2 42027 aks4d1p1p4 42028 aks4d1p1p7 42031 aks4d1p2 42034 aks4d1p3 42035 7rp 42290 mod42tp1mod8 47476 stgoldbwt 47650 sbgoldbwt 47651 nnsum3primesle9 47668 nnsum4primesoddALTV 47671 evengpoap3 47673 bgoldbtbndlem1 47679 bgoldbtbnd 47683 |
Copyright terms: Public domain | W3C validator |