![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 7re | Structured version Visualization version GIF version |
Description: The number 7 is real. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
7re | ⊢ 7 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-7 12332 | . 2 ⊢ 7 = (6 + 1) | |
2 | 6re 12354 | . . 3 ⊢ 6 ∈ ℝ | |
3 | 1re 11259 | . . 3 ⊢ 1 ∈ ℝ | |
4 | 2, 3 | readdcli 11274 | . 2 ⊢ (6 + 1) ∈ ℝ |
5 | 1, 4 | eqeltri 2835 | 1 ⊢ 7 ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 (class class class)co 7431 ℝcr 11152 1c1 11154 + caddc 11156 6c6 12323 7c7 12324 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-i2m1 11221 ax-1ne0 11222 ax-rrecex 11225 ax-cnre 11226 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-ov 7434 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 |
This theorem is referenced by: 8re 12360 8pos 12376 5lt7 12451 4lt7 12452 3lt7 12453 2lt7 12454 1lt7 12455 7lt8 12456 6lt8 12457 7lt9 12464 6lt9 12465 7lt10 12864 6lt10 12865 bposlem8 27350 lgsdir2lem1 27384 hgt750lem2 34646 hgt750leme 34652 problem4 35653 60gcd7e1 41987 lcmineqlem 42034 3lexlogpow5ineq1 42036 3lexlogpow5ineq2 42037 3lexlogpow5ineq4 42038 3lexlogpow5ineq3 42039 aks4d1p1p3 42051 aks4d1p1p2 42052 aks4d1p1p4 42053 aks4d1p1p7 42056 aks4d1p2 42059 aks4d1p3 42060 7rp 42315 mod42tp1mod8 47527 stgoldbwt 47701 sbgoldbwt 47702 nnsum3primesle9 47719 nnsum4primesoddALTV 47722 evengpoap3 47724 bgoldbtbndlem1 47730 bgoldbtbnd 47734 |
Copyright terms: Public domain | W3C validator |