| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 7re | Structured version Visualization version GIF version | ||
| Description: The number 7 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 7re | ⊢ 7 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-7 12254 | . 2 ⊢ 7 = (6 + 1) | |
| 2 | 6re 12276 | . . 3 ⊢ 6 ∈ ℝ | |
| 3 | 1re 11174 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2, 3 | readdcli 11189 | . 2 ⊢ (6 + 1) ∈ ℝ |
| 5 | 1, 4 | eqeltri 2824 | 1 ⊢ 7 ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7387 ℝcr 11067 1c1 11069 + caddc 11071 6c6 12245 7c7 12246 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-i2m1 11136 ax-1ne0 11137 ax-rrecex 11140 ax-cnre 11141 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 |
| This theorem is referenced by: 8re 12282 8pos 12298 5lt7 12368 4lt7 12369 3lt7 12370 2lt7 12371 1lt7 12372 7lt8 12373 6lt8 12374 7lt9 12381 6lt9 12382 7lt10 12782 6lt10 12783 bposlem8 27202 lgsdir2lem1 27236 hgt750lem2 34643 hgt750leme 34649 problem4 35655 60gcd7e1 41993 lcmineqlem 42040 3lexlogpow5ineq1 42042 3lexlogpow5ineq2 42043 3lexlogpow5ineq4 42044 3lexlogpow5ineq3 42045 aks4d1p1p3 42057 aks4d1p1p2 42058 aks4d1p1p4 42059 aks4d1p1p7 42062 aks4d1p2 42065 aks4d1p3 42066 7rp 42290 mod42tp1mod8 47603 stgoldbwt 47777 sbgoldbwt 47778 nnsum3primesle9 47795 nnsum4primesoddALTV 47798 evengpoap3 47800 bgoldbtbndlem1 47806 bgoldbtbnd 47810 |
| Copyright terms: Public domain | W3C validator |