| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 7re | Structured version Visualization version GIF version | ||
| Description: The number 7 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 7re | ⊢ 7 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-7 12261 | . 2 ⊢ 7 = (6 + 1) | |
| 2 | 6re 12283 | . . 3 ⊢ 6 ∈ ℝ | |
| 3 | 1re 11181 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2, 3 | readdcli 11196 | . 2 ⊢ (6 + 1) ∈ ℝ |
| 5 | 1, 4 | eqeltri 2825 | 1 ⊢ 7 ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7390 ℝcr 11074 1c1 11076 + caddc 11078 6c6 12252 7c7 12253 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-i2m1 11143 ax-1ne0 11144 ax-rrecex 11147 ax-cnre 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 |
| This theorem is referenced by: 8re 12289 8pos 12305 5lt7 12375 4lt7 12376 3lt7 12377 2lt7 12378 1lt7 12379 7lt8 12380 6lt8 12381 7lt9 12388 6lt9 12389 7lt10 12789 6lt10 12790 bposlem8 27209 lgsdir2lem1 27243 hgt750lem2 34650 hgt750leme 34656 problem4 35662 60gcd7e1 42000 lcmineqlem 42047 3lexlogpow5ineq1 42049 3lexlogpow5ineq2 42050 3lexlogpow5ineq4 42051 3lexlogpow5ineq3 42052 aks4d1p1p3 42064 aks4d1p1p2 42065 aks4d1p1p4 42066 aks4d1p1p7 42069 aks4d1p2 42072 aks4d1p3 42073 7rp 42297 mod42tp1mod8 47607 stgoldbwt 47781 sbgoldbwt 47782 nnsum3primesle9 47799 nnsum4primesoddALTV 47802 evengpoap3 47804 bgoldbtbndlem1 47810 bgoldbtbnd 47814 |
| Copyright terms: Public domain | W3C validator |