| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 7re | Structured version Visualization version GIF version | ||
| Description: The number 7 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 7re | ⊢ 7 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-7 12230 | . 2 ⊢ 7 = (6 + 1) | |
| 2 | 6re 12252 | . . 3 ⊢ 6 ∈ ℝ | |
| 3 | 1re 11150 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2, 3 | readdcli 11165 | . 2 ⊢ (6 + 1) ∈ ℝ |
| 5 | 1, 4 | eqeltri 2824 | 1 ⊢ 7 ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7369 ℝcr 11043 1c1 11045 + caddc 11047 6c6 12221 7c7 12222 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-i2m1 11112 ax-1ne0 11113 ax-rrecex 11116 ax-cnre 11117 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-ov 7372 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 |
| This theorem is referenced by: 8re 12258 8pos 12274 5lt7 12344 4lt7 12345 3lt7 12346 2lt7 12347 1lt7 12348 7lt8 12349 6lt8 12350 7lt9 12357 6lt9 12358 7lt10 12758 6lt10 12759 bposlem8 27235 lgsdir2lem1 27269 hgt750lem2 34636 hgt750leme 34642 problem4 35648 60gcd7e1 41986 lcmineqlem 42033 3lexlogpow5ineq1 42035 3lexlogpow5ineq2 42036 3lexlogpow5ineq4 42037 3lexlogpow5ineq3 42038 aks4d1p1p3 42050 aks4d1p1p2 42051 aks4d1p1p4 42052 aks4d1p1p7 42055 aks4d1p2 42058 aks4d1p3 42059 7rp 42283 mod42tp1mod8 47596 stgoldbwt 47770 sbgoldbwt 47771 nnsum3primesle9 47788 nnsum4primesoddALTV 47791 evengpoap3 47793 bgoldbtbndlem1 47799 bgoldbtbnd 47803 |
| Copyright terms: Public domain | W3C validator |