Proof of Theorem 257prm
Step | Hyp | Ref
| Expression |
1 | | 2nn0 12233 |
. . . 4
⊢ 2 ∈
ℕ0 |
2 | | 5nn0 12236 |
. . . 4
⊢ 5 ∈
ℕ0 |
3 | 1, 2 | deccl 12434 |
. . 3
⊢ ;25 ∈
ℕ0 |
4 | | 7nn 12048 |
. . 3
⊢ 7 ∈
ℕ |
5 | 3, 4 | decnncl 12439 |
. 2
⊢ ;;257 ∈ ℕ |
6 | | 8nn0 12239 |
. . 3
⊢ 8 ∈
ℕ0 |
7 | | 4nn0 12235 |
. . 3
⊢ 4 ∈
ℕ0 |
8 | | 7nn0 12238 |
. . 3
⊢ 7 ∈
ℕ0 |
9 | | 1nn0 12232 |
. . 3
⊢ 1 ∈
ℕ0 |
10 | | 2lt8 12153 |
. . 3
⊢ 2 <
8 |
11 | | 5lt10 12554 |
. . 3
⊢ 5 <
;10 |
12 | | 7lt10 12552 |
. . 3
⊢ 7 <
;10 |
13 | 1, 6, 2, 7, 8, 9, 10, 11, 12 | 3decltc 12452 |
. 2
⊢ ;;257 < ;;841 |
14 | | 5nn 12042 |
. . . 4
⊢ 5 ∈
ℕ |
15 | 1, 14 | decnncl 12439 |
. . 3
⊢ ;25 ∈ ℕ |
16 | | 1lt10 12558 |
. . 3
⊢ 1 <
;10 |
17 | 15, 8, 9, 16 | declti 12457 |
. 2
⊢ 1 <
;;257 |
18 | | 3nn0 12234 |
. . 3
⊢ 3 ∈
ℕ0 |
19 | | 3t2e6 12122 |
. . 3
⊢ (3
· 2) = 6 |
20 | | df-7 12024 |
. . 3
⊢ 7 = (6 +
1) |
21 | 3, 18, 19, 20 | dec2dvds 16745 |
. 2
⊢ ¬ 2
∥ ;;257 |
22 | | 3nn 12035 |
. . . 4
⊢ 3 ∈
ℕ |
23 | | 2nn 12029 |
. . . 4
⊢ 2 ∈
ℕ |
24 | | 3cn 12037 |
. . . . . . 7
⊢ 3 ∈
ℂ |
25 | 24 | mulid1i 10963 |
. . . . . 6
⊢ (3
· 1) = 3 |
26 | 25 | oveq1i 7278 |
. . . . 5
⊢ ((3
· 1) + 2) = (3 + 2) |
27 | | 3p2e5 12107 |
. . . . 5
⊢ (3 + 2) =
5 |
28 | 26, 27 | eqtri 2767 |
. . . 4
⊢ ((3
· 1) + 2) = 5 |
29 | | 2lt3 12128 |
. . . 4
⊢ 2 <
3 |
30 | 22, 9, 23, 28, 29 | ndvdsi 16102 |
. . 3
⊢ ¬ 3
∥ 5 |
31 | 1, 2, 8 | 3dvds2dec 16023 |
. . . 4
⊢ (3
∥ ;;257 ↔ 3 ∥ ((2 + 5) + 7)) |
32 | | 5cn 12044 |
. . . . . . . 8
⊢ 5 ∈
ℂ |
33 | | 2cn 12031 |
. . . . . . . 8
⊢ 2 ∈
ℂ |
34 | | 5p2e7 12112 |
. . . . . . . 8
⊢ (5 + 2) =
7 |
35 | 32, 33, 34 | addcomli 11150 |
. . . . . . 7
⊢ (2 + 5) =
7 |
36 | 35 | oveq1i 7278 |
. . . . . 6
⊢ ((2 + 5)
+ 7) = (7 + 7) |
37 | | 7p7e14 12498 |
. . . . . 6
⊢ (7 + 7) =
;14 |
38 | 36, 37 | eqtri 2767 |
. . . . 5
⊢ ((2 + 5)
+ 7) = ;14 |
39 | 38 | breq2i 5086 |
. . . 4
⊢ (3
∥ ((2 + 5) + 7) ↔ 3 ∥ ;14) |
40 | 9, 7 | 3dvdsdec 16022 |
. . . . 5
⊢ (3
∥ ;14 ↔ 3 ∥ (1 +
4)) |
41 | | 4cn 12041 |
. . . . . . 7
⊢ 4 ∈
ℂ |
42 | | ax-1cn 10913 |
. . . . . . 7
⊢ 1 ∈
ℂ |
43 | | 4p1e5 12102 |
. . . . . . 7
⊢ (4 + 1) =
5 |
44 | 41, 42, 43 | addcomli 11150 |
. . . . . 6
⊢ (1 + 4) =
5 |
45 | 44 | breq2i 5086 |
. . . . 5
⊢ (3
∥ (1 + 4) ↔ 3 ∥ 5) |
46 | 40, 45 | bitri 274 |
. . . 4
⊢ (3
∥ ;14 ↔ 3 ∥
5) |
47 | 31, 39, 46 | 3bitri 296 |
. . 3
⊢ (3
∥ ;;257 ↔ 3 ∥ 5) |
48 | 30, 47 | mtbir 322 |
. 2
⊢ ¬ 3
∥ ;;257 |
49 | | 2lt5 12135 |
. . 3
⊢ 2 <
5 |
50 | 3, 23, 49, 34 | dec5dvds2 16747 |
. 2
⊢ ¬ 5
∥ ;;257 |
51 | | 6nn0 12237 |
. . . 4
⊢ 6 ∈
ℕ0 |
52 | 18, 51 | deccl 12434 |
. . 3
⊢ ;36 ∈
ℕ0 |
53 | | eqid 2739 |
. . . . 5
⊢ ;36 = ;36 |
54 | | 7t3e21 12529 |
. . . . . 6
⊢ (7
· 3) = ;21 |
55 | 1, 9, 7, 54, 44 | decaddi 12479 |
. . . . 5
⊢ ((7
· 3) + 4) = ;25 |
56 | | 7t6e42 12532 |
. . . . 5
⊢ (7
· 6) = ;42 |
57 | 8, 18, 51, 53, 1, 7, 55, 56 | decmul2c 12485 |
. . . 4
⊢ (7
· ;36) = ;;252 |
58 | 3, 1, 2, 57, 35 | decaddi 12479 |
. . 3
⊢ ((7
· ;36) + 5) = ;;257 |
59 | | 5lt7 12143 |
. . 3
⊢ 5 <
7 |
60 | 4, 52, 14, 58, 59 | ndvdsi 16102 |
. 2
⊢ ¬ 7
∥ ;;257 |
61 | | 1nn 11967 |
. . . 4
⊢ 1 ∈
ℕ |
62 | 9, 61 | decnncl 12439 |
. . 3
⊢ ;11 ∈ ℕ |
63 | 1, 18 | deccl 12434 |
. . 3
⊢ ;23 ∈
ℕ0 |
64 | | 4nn 12039 |
. . 3
⊢ 4 ∈
ℕ |
65 | 9, 9 | deccl 12434 |
. . . . 5
⊢ ;11 ∈
ℕ0 |
66 | | eqid 2739 |
. . . . 5
⊢ ;23 = ;23 |
67 | 65 | nn0cni 12228 |
. . . . . . . 8
⊢ ;11 ∈ ℂ |
68 | 67, 33 | mulcomi 10967 |
. . . . . . 7
⊢ (;11 · 2) = (2 · ;11) |
69 | 68 | oveq1i 7278 |
. . . . . 6
⊢ ((;11 · 2) + 3) = ((2 ·
;11) + 3) |
70 | 1 | 11multnc 12487 |
. . . . . . 7
⊢ (2
· ;11) = ;22 |
71 | 24, 33, 27 | addcomli 11150 |
. . . . . . 7
⊢ (2 + 3) =
5 |
72 | 1, 1, 18, 70, 71 | decaddi 12479 |
. . . . . 6
⊢ ((2
· ;11) + 3) = ;25 |
73 | 69, 72 | eqtri 2767 |
. . . . 5
⊢ ((;11 · 2) + 3) = ;25 |
74 | 18 | 11multnc 12487 |
. . . . . 6
⊢ (3
· ;11) = ;33 |
75 | 24, 67, 74 | mulcomli 10968 |
. . . . 5
⊢ (;11 · 3) = ;33 |
76 | 65, 1, 18, 66, 18, 18, 73, 75 | decmul2c 12485 |
. . . 4
⊢ (;11 · ;23) = ;;253 |
77 | | 4p3e7 12110 |
. . . . 5
⊢ (4 + 3) =
7 |
78 | 41, 24, 77 | addcomli 11150 |
. . . 4
⊢ (3 + 4) =
7 |
79 | 3, 18, 7, 76, 78 | decaddi 12479 |
. . 3
⊢ ((;11 · ;23) + 4) = ;;257 |
80 | | 4lt10 12555 |
. . . 4
⊢ 4 <
;10 |
81 | 61, 9, 7, 80 | declti 12457 |
. . 3
⊢ 4 <
;11 |
82 | 62, 63, 64, 79, 81 | ndvdsi 16102 |
. 2
⊢ ¬
;11 ∥ ;;257 |
83 | 9, 22 | decnncl 12439 |
. . 3
⊢ ;13 ∈ ℕ |
84 | | 9nn0 12240 |
. . . 4
⊢ 9 ∈
ℕ0 |
85 | 9, 84 | deccl 12434 |
. . 3
⊢ ;19 ∈
ℕ0 |
86 | | 10nn 12435 |
. . 3
⊢ ;10 ∈ ℕ |
87 | 9, 18 | deccl 12434 |
. . . . . . 7
⊢ ;13 ∈
ℕ0 |
88 | 87 | nn0cni 12228 |
. . . . . 6
⊢ ;13 ∈ ℂ |
89 | 85 | nn0cni 12228 |
. . . . . 6
⊢ ;19 ∈ ℂ |
90 | 88, 89 | mulcomi 10967 |
. . . . 5
⊢ (;13 · ;19) = (;19 · ;13) |
91 | 90 | oveq1i 7278 |
. . . 4
⊢ ((;13 · ;19) + ;10) = ((;19 · ;13) + ;10) |
92 | | 0nn0 12231 |
. . . . 5
⊢ 0 ∈
ℕ0 |
93 | | eqid 2739 |
. . . . 5
⊢ ;19 = ;19 |
94 | | eqid 2739 |
. . . . 5
⊢ ;10 = ;10 |
95 | 88 | mulid2i 10964 |
. . . . . 6
⊢ (1
· ;13) = ;13 |
96 | | 1p1e2 12081 |
. . . . . . . 8
⊢ (1 + 1) =
2 |
97 | | eqid 2739 |
. . . . . . . 8
⊢ ;11 = ;11 |
98 | 9, 9, 96, 97 | decsuc 12450 |
. . . . . . 7
⊢ (;11 + 1) = ;12 |
99 | 67, 42, 98 | addcomli 11150 |
. . . . . 6
⊢ (1 +
;11) = ;12 |
100 | 9, 18, 9, 1, 95, 99, 96, 27 | decadd 12473 |
. . . . 5
⊢ ((1
· ;13) + (1 + ;11)) = ;25 |
101 | | eqid 2739 |
. . . . . . . 8
⊢ ;13 = ;13 |
102 | | 9cn 12056 |
. . . . . . . . . . 11
⊢ 9 ∈
ℂ |
103 | 102 | mulid1i 10963 |
. . . . . . . . . 10
⊢ (9
· 1) = 9 |
104 | 103 | oveq1i 7278 |
. . . . . . . . 9
⊢ ((9
· 1) + 2) = (9 + 2) |
105 | | 9p2e11 12506 |
. . . . . . . . 9
⊢ (9 + 2) =
;11 |
106 | 104, 105 | eqtri 2767 |
. . . . . . . 8
⊢ ((9
· 1) + 2) = ;11 |
107 | | 9t3e27 12542 |
. . . . . . . 8
⊢ (9
· 3) = ;27 |
108 | 84, 9, 18, 101, 8, 1, 106, 107 | decmul2c 12485 |
. . . . . . 7
⊢ (9
· ;13) = ;;117 |
109 | 108 | oveq1i 7278 |
. . . . . 6
⊢ ((9
· ;13) + 0) = (;;117 + 0) |
110 | 65, 8 | deccl 12434 |
. . . . . . . 8
⊢ ;;117 ∈ ℕ0 |
111 | 110 | nn0cni 12228 |
. . . . . . 7
⊢ ;;117 ∈ ℂ |
112 | 111 | addid1i 11145 |
. . . . . 6
⊢ (;;117 + 0) = ;;117 |
113 | 109, 112 | eqtri 2767 |
. . . . 5
⊢ ((9
· ;13) + 0) = ;;117 |
114 | 9, 84, 9, 92, 93, 94, 87, 8, 65, 100, 113 | decmac 12471 |
. . . 4
⊢ ((;19 · ;13) + ;10) = ;;257 |
115 | 91, 114 | eqtri 2767 |
. . 3
⊢ ((;13 · ;19) + ;10) = ;;257 |
116 | | 3pos 12061 |
. . . 4
⊢ 0 <
3 |
117 | 9, 92, 22, 116 | declt 12447 |
. . 3
⊢ ;10 < ;13 |
118 | 83, 85, 86, 115, 117 | ndvdsi 16102 |
. 2
⊢ ¬
;13 ∥ ;;257 |
119 | 9, 4 | decnncl 12439 |
. . 3
⊢ ;17 ∈ ℕ |
120 | 9, 2 | deccl 12434 |
. . 3
⊢ ;15 ∈
ℕ0 |
121 | 9, 8 | deccl 12434 |
. . . . 5
⊢ ;17 ∈
ℕ0 |
122 | | eqid 2739 |
. . . . 5
⊢ ;15 = ;15 |
123 | 121 | nn0cni 12228 |
. . . . . . 7
⊢ ;17 ∈ ℂ |
124 | 123 | mulid1i 10963 |
. . . . . 6
⊢ (;17 · 1) = ;17 |
125 | | 8cn 12053 |
. . . . . . 7
⊢ 8 ∈
ℂ |
126 | | 7cn 12050 |
. . . . . . 7
⊢ 7 ∈
ℂ |
127 | | 8p7e15 12504 |
. . . . . . 7
⊢ (8 + 7) =
;15 |
128 | 125, 126,
127 | addcomli 11150 |
. . . . . 6
⊢ (7 + 8) =
;15 |
129 | 9, 8, 6, 124, 96, 2, 128 | decaddci 12480 |
. . . . 5
⊢ ((;17 · 1) + 8) = ;25 |
130 | | eqid 2739 |
. . . . . 6
⊢ ;17 = ;17 |
131 | 32 | mulid2i 10964 |
. . . . . . . 8
⊢ (1
· 5) = 5 |
132 | 131 | oveq1i 7278 |
. . . . . . 7
⊢ ((1
· 5) + 3) = (5 + 3) |
133 | | 5p3e8 12113 |
. . . . . . 7
⊢ (5 + 3) =
8 |
134 | 132, 133 | eqtri 2767 |
. . . . . 6
⊢ ((1
· 5) + 3) = 8 |
135 | | 7t5e35 12531 |
. . . . . 6
⊢ (7
· 5) = ;35 |
136 | 2, 9, 8, 130, 2, 18, 134, 135 | decmul1c 12484 |
. . . . 5
⊢ (;17 · 5) = ;85 |
137 | 121, 9, 2, 122, 2, 6, 129, 136 | decmul2c 12485 |
. . . 4
⊢ (;17 · ;15) = ;;255 |
138 | 3, 2, 1, 137, 34 | decaddi 12479 |
. . 3
⊢ ((;17 · ;15) + 2) = ;;257 |
139 | | 2lt10 12557 |
. . . 4
⊢ 2 <
;10 |
140 | 61, 8, 1, 139 | declti 12457 |
. . 3
⊢ 2 <
;17 |
141 | 119, 120,
23, 138, 140 | ndvdsi 16102 |
. 2
⊢ ¬
;17 ∥ ;;257 |
142 | | 9nn 12054 |
. . . 4
⊢ 9 ∈
ℕ |
143 | 9, 142 | decnncl 12439 |
. . 3
⊢ ;19 ∈ ℕ |
144 | | 9pos 12069 |
. . . 4
⊢ 0 <
9 |
145 | 9, 92, 142, 144 | declt 12447 |
. . 3
⊢ ;10 < ;19 |
146 | 143, 87, 86, 114, 145 | ndvdsi 16102 |
. 2
⊢ ¬
;19 ∥ ;;257 |
147 | 1, 22 | decnncl 12439 |
. . 3
⊢ ;23 ∈ ℕ |
148 | 65, 1, 18, 66, 18, 18, 72, 74 | decmul1c 12484 |
. . . 4
⊢ (;23 · ;11) = ;;253 |
149 | 3, 18, 7, 148, 78 | decaddi 12479 |
. . 3
⊢ ((;23 · ;11) + 4) = ;;257 |
150 | 23, 18, 7, 80 | declti 12457 |
. . 3
⊢ 4 <
;23 |
151 | 147, 65, 64, 149, 150 | ndvdsi 16102 |
. 2
⊢ ¬
;23 ∥ ;;257 |
152 | 5, 13, 17, 21, 48, 50, 60, 82, 118, 141, 146, 151 | prmlem2 16802 |
1
⊢ ;;257 ∈ ℙ |