![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 17prm | Structured version Visualization version GIF version |
Description: 17 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) |
Ref | Expression |
---|---|
17prm | ⊢ ;17 ∈ ℙ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn0 12510 | . . 3 ⊢ 1 ∈ ℕ0 | |
2 | 7nn 12326 | . . 3 ⊢ 7 ∈ ℕ | |
3 | 1, 2 | decnncl 12719 | . 2 ⊢ ;17 ∈ ℕ |
4 | 1nn 12245 | . . 3 ⊢ 1 ∈ ℕ | |
5 | 7nn0 12516 | . . 3 ⊢ 7 ∈ ℕ0 | |
6 | 1lt10 12838 | . . 3 ⊢ 1 < ;10 | |
7 | 4, 5, 1, 6 | declti 12737 | . 2 ⊢ 1 < ;17 |
8 | 3nn0 12512 | . . 3 ⊢ 3 ∈ ℕ0 | |
9 | 3t2e6 12400 | . . 3 ⊢ (3 · 2) = 6 | |
10 | df-7 12302 | . . 3 ⊢ 7 = (6 + 1) | |
11 | 1, 8, 9, 10 | dec2dvds 17023 | . 2 ⊢ ¬ 2 ∥ ;17 |
12 | 3nn 12313 | . . 3 ⊢ 3 ∈ ℕ | |
13 | 5nn0 12514 | . . 3 ⊢ 5 ∈ ℕ0 | |
14 | 2nn 12307 | . . 3 ⊢ 2 ∈ ℕ | |
15 | 2nn0 12511 | . . . 4 ⊢ 2 ∈ ℕ0 | |
16 | 5cn 12322 | . . . . 5 ⊢ 5 ∈ ℂ | |
17 | 3cn 12315 | . . . . 5 ⊢ 3 ∈ ℂ | |
18 | 5t3e15 12800 | . . . . 5 ⊢ (5 · 3) = ;15 | |
19 | 16, 17, 18 | mulcomli 11245 | . . . 4 ⊢ (3 · 5) = ;15 |
20 | 5p2e7 12390 | . . . 4 ⊢ (5 + 2) = 7 | |
21 | 1, 13, 15, 19, 20 | decaddi 12759 | . . 3 ⊢ ((3 · 5) + 2) = ;17 |
22 | 2lt3 12406 | . . 3 ⊢ 2 < 3 | |
23 | 12, 13, 14, 21, 22 | ndvdsi 16380 | . 2 ⊢ ¬ 3 ∥ ;17 |
24 | 7lt10 12832 | . . 3 ⊢ 7 < ;10 | |
25 | 1lt2 12405 | . . 3 ⊢ 1 < 2 | |
26 | 1, 15, 5, 13, 24, 25 | decltc 12728 | . 2 ⊢ ;17 < ;25 |
27 | 3, 7, 11, 23, 26 | prmlem1 17068 | 1 ⊢ ;17 ∈ ℙ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2099 (class class class)co 7414 1c1 11131 · cmul 11135 2c2 12289 3c3 12290 5c5 12292 6c6 12293 7c7 12294 ;cdc 12699 ℙcprime 16633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 ax-pre-sup 11208 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8718 df-en 8956 df-dom 8957 df-sdom 8958 df-fin 8959 df-sup 9457 df-inf 9458 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-div 11894 df-nn 12235 df-2 12297 df-3 12298 df-4 12299 df-5 12300 df-6 12301 df-7 12302 df-8 12303 df-9 12304 df-n0 12495 df-z 12581 df-dec 12700 df-uz 12845 df-rp 12999 df-fz 13509 df-seq 13991 df-exp 14051 df-cj 15070 df-re 15071 df-im 15072 df-sqrt 15206 df-abs 15207 df-dvds 16223 df-prm 16634 |
This theorem is referenced by: fmtno2prm 46823 |
Copyright terms: Public domain | W3C validator |