| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 7pos | Structured version Visualization version GIF version | ||
| Description: The number 7 is positive. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 7pos | ⊢ 0 < 7 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6re 12335 | . . 3 ⊢ 6 ∈ ℝ | |
| 2 | 1re 11240 | . . 3 ⊢ 1 ∈ ℝ | |
| 3 | 6pos 12355 | . . 3 ⊢ 0 < 6 | |
| 4 | 0lt1 11764 | . . 3 ⊢ 0 < 1 | |
| 5 | 1, 2, 3, 4 | addgt0ii 11784 | . 2 ⊢ 0 < (6 + 1) |
| 6 | df-7 12313 | . 2 ⊢ 7 = (6 + 1) | |
| 7 | 5, 6 | breqtrri 5151 | 1 ⊢ 0 < 7 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5124 (class class class)co 7410 0cc0 11134 1c1 11135 + caddc 11137 < clt 11274 6c6 12304 7c7 12305 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 |
| This theorem is referenced by: 8pos 12357 163prm 17149 bposlem8 27259 lgsdir2lem1 27293 3lexlogpow5ineq1 42072 3lexlogpow5ineq2 42073 3lexlogpow5ineq4 42074 aks4d1p1p3 42087 aks4d1p1p4 42089 aks4d1p2 42095 aks4d1p3 42096 7rp 42318 mod42tp1mod8 47583 |
| Copyright terms: Public domain | W3C validator |