MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  7pos Structured version   Visualization version   GIF version

Theorem 7pos 12322
Description: The number 7 is positive. (Contributed by NM, 27-May-1999.)
Assertion
Ref Expression
7pos 0 < 7

Proof of Theorem 7pos
StepHypRef Expression
1 6re 12301 . . 3 6 ∈ ℝ
2 1re 11213 . . 3 1 ∈ ℝ
3 6pos 12321 . . 3 0 < 6
4 0lt1 11735 . . 3 0 < 1
51, 2, 3, 4addgt0ii 11755 . 2 0 < (6 + 1)
6 df-7 12279 . 2 7 = (6 + 1)
75, 6breqtrri 5175 1 0 < 7
Colors of variables: wff setvar class
Syntax hints:   class class class wbr 5148  (class class class)co 7408  0cc0 11109  1c1 11110   + caddc 11112   < clt 11247  6c6 12270  7c7 12271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-2 12274  df-3 12275  df-4 12276  df-5 12277  df-6 12278  df-7 12279
This theorem is referenced by:  8pos  12323  163prm  17057  bposlem8  26791  lgsdir2lem1  26825  3lexlogpow5ineq1  40914  3lexlogpow5ineq2  40915  3lexlogpow5ineq4  40916  aks4d1p1p3  40929  aks4d1p1p4  40931  aks4d1p2  40937  aks4d1p3  40938  mod42tp1mod8  46260
  Copyright terms: Public domain W3C validator