MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  317prm Structured version   Visualization version   GIF version

Theorem 317prm 16039
Description: 317 is a prime number. (Contributed by Mario Carneiro, 19-Feb-2014.) (Proof shortened by Mario Carneiro, 20-Apr-2015.)
Assertion
Ref Expression
317prm 317 ∈ ℙ

Proof of Theorem 317prm
StepHypRef Expression
1 3nn0 11516 . . . 4 3 ∈ ℕ0
2 1nn0 11514 . . . 4 1 ∈ ℕ0
31, 2deccl 11718 . . 3 31 ∈ ℕ0
4 7nn 11396 . . 3 7 ∈ ℕ
53, 4decnncl 11724 . 2 317 ∈ ℕ
6 8nn0 11521 . . 3 8 ∈ ℕ0
7 4nn0 11517 . . 3 4 ∈ ℕ0
8 7nn0 11520 . . 3 7 ∈ ℕ0
9 3lt8 11425 . . 3 3 < 8
10 1lt10 11886 . . 3 1 < 10
11 7lt10 11880 . . 3 7 < 10
121, 6, 2, 7, 8, 2, 9, 10, 113decltc 11744 . 2 317 < 841
13 1nn 11236 . . . 4 1 ∈ ℕ
141, 13decnncl 11724 . . 3 31 ∈ ℕ
1514, 8, 2, 10declti 11752 . 2 1 < 317
16 3t2e6 11385 . . 3 (3 · 2) = 6
17 df-7 11289 . . 3 7 = (6 + 1)
183, 1, 16, 17dec2dvds 15973 . 2 ¬ 2 ∥ 317
19 3nn 11392 . . 3 3 ∈ ℕ
20 10nn0 11722 . . . 4 10 ∈ ℕ0
21 5nn0 11518 . . . 4 5 ∈ ℕ0
2220, 21deccl 11718 . . 3 105 ∈ ℕ0
23 2nn 11391 . . 3 2 ∈ ℕ
24 0nn0 11513 . . . 4 0 ∈ ℕ0
25 2nn0 11515 . . . 4 2 ∈ ℕ0
26 eqid 2771 . . . 4 105 = 105
2725dec0h 11728 . . . 4 2 = 02
28 eqid 2771 . . . . 5 10 = 10
29 ax-1cn 10199 . . . . . . 7 1 ∈ ℂ
3029addid2i 10429 . . . . . 6 (0 + 1) = 1
312dec0h 11728 . . . . . 6 1 = 01
3230, 31eqtri 2793 . . . . 5 (0 + 1) = 01
33 3cn 11300 . . . . . . . 8 3 ∈ ℂ
3433mulid1i 10247 . . . . . . 7 (3 · 1) = 3
35 00id 10416 . . . . . . 7 (0 + 0) = 0
3634, 35oveq12i 6807 . . . . . 6 ((3 · 1) + (0 + 0)) = (3 + 0)
3733addid1i 10428 . . . . . 6 (3 + 0) = 3
3836, 37eqtri 2793 . . . . 5 ((3 · 1) + (0 + 0)) = 3
3933mul01i 10431 . . . . . . . 8 (3 · 0) = 0
4039oveq1i 6805 . . . . . . 7 ((3 · 0) + 1) = (0 + 1)
4140, 30eqtri 2793 . . . . . 6 ((3 · 0) + 1) = 1
4241, 31eqtri 2793 . . . . 5 ((3 · 0) + 1) = 01
432, 24, 24, 2, 28, 32, 1, 2, 24, 38, 42decma2c 11773 . . . 4 ((3 · 10) + (0 + 1)) = 31
44 5cn 11305 . . . . . 6 5 ∈ ℂ
45 5t3e15 11840 . . . . . 6 (5 · 3) = 15
4644, 33, 45mulcomli 10252 . . . . 5 (3 · 5) = 15
47 5p2e7 11371 . . . . 5 (5 + 2) = 7
482, 21, 25, 46, 47decaddi 11784 . . . 4 ((3 · 5) + 2) = 17
4920, 21, 24, 25, 26, 27, 1, 8, 2, 43, 48decma2c 11773 . . 3 ((3 · 105) + 2) = 317
50 2lt3 11401 . . 3 2 < 3
5119, 22, 23, 49, 50ndvdsi 15343 . 2 ¬ 3 ∥ 317
52 2lt5 11408 . . 3 2 < 5
533, 23, 52, 47dec5dvds2 15975 . 2 ¬ 5 ∥ 317
547, 21deccl 11718 . . 3 45 ∈ ℕ0
55 eqid 2771 . . . 4 45 = 45
5633addid2i 10429 . . . . . 6 (0 + 3) = 3
5756oveq2i 6806 . . . . 5 ((7 · 4) + (0 + 3)) = ((7 · 4) + 3)
58 7t4e28 11855 . . . . . 6 (7 · 4) = 28
59 2p1e3 11357 . . . . . 6 (2 + 1) = 3
60 8p3e11 11817 . . . . . 6 (8 + 3) = 11
6125, 6, 1, 58, 59, 2, 60decaddci 11785 . . . . 5 ((7 · 4) + 3) = 31
6257, 61eqtri 2793 . . . 4 ((7 · 4) + (0 + 3)) = 31
63 7t5e35 11856 . . . . 5 (7 · 5) = 35
641, 21, 25, 63, 47decaddi 11784 . . . 4 ((7 · 5) + 2) = 37
657, 21, 24, 25, 55, 27, 8, 8, 1, 62, 64decma2c 11773 . . 3 ((7 · 45) + 2) = 317
66 2lt7 11419 . . 3 2 < 7
674, 54, 23, 65, 66ndvdsi 15343 . 2 ¬ 7 ∥ 317
682, 13decnncl 11724 . . 3 11 ∈ ℕ
6925, 6deccl 11718 . . 3 28 ∈ ℕ0
70 9nn 11398 . . 3 9 ∈ ℕ
71 9nn0 11522 . . . 4 9 ∈ ℕ0
72 eqid 2771 . . . 4 28 = 28
7371dec0h 11728 . . . 4 9 = 09
742, 2deccl 11718 . . . 4 11 ∈ ℕ0
75 eqid 2771 . . . . 5 11 = 11
76 9cn 11313 . . . . . . 7 9 ∈ ℂ
7776addid2i 10429 . . . . . 6 (0 + 9) = 9
7877, 73eqtri 2793 . . . . 5 (0 + 9) = 09
79 2cn 11296 . . . . . . . 8 2 ∈ ℂ
8079mulid2i 10248 . . . . . . 7 (1 · 2) = 2
8180, 30oveq12i 6807 . . . . . 6 ((1 · 2) + (0 + 1)) = (2 + 1)
8281, 59eqtri 2793 . . . . 5 ((1 · 2) + (0 + 1)) = 3
8380oveq1i 6805 . . . . . 6 ((1 · 2) + 9) = (2 + 9)
84 9p2e11 11824 . . . . . . 7 (9 + 2) = 11
8576, 79, 84addcomli 10433 . . . . . 6 (2 + 9) = 11
8683, 85eqtri 2793 . . . . 5 ((1 · 2) + 9) = 11
872, 2, 24, 71, 75, 78, 25, 2, 2, 82, 86decmac 11771 . . . 4 ((11 · 2) + (0 + 9)) = 31
88 8cn 11311 . . . . . . . 8 8 ∈ ℂ
8988mulid2i 10248 . . . . . . 7 (1 · 8) = 8
9089, 30oveq12i 6807 . . . . . 6 ((1 · 8) + (0 + 1)) = (8 + 1)
91 8p1e9 11364 . . . . . 6 (8 + 1) = 9
9290, 91eqtri 2793 . . . . 5 ((1 · 8) + (0 + 1)) = 9
9389oveq1i 6805 . . . . . 6 ((1 · 8) + 9) = (8 + 9)
94 9p8e17 11831 . . . . . . 7 (9 + 8) = 17
9576, 88, 94addcomli 10433 . . . . . 6 (8 + 9) = 17
9693, 95eqtri 2793 . . . . 5 ((1 · 8) + 9) = 17
972, 2, 24, 71, 75, 73, 6, 8, 2, 92, 96decmac 11771 . . . 4 ((11 · 8) + 9) = 97
9825, 6, 24, 71, 72, 73, 74, 8, 71, 87, 97decma2c 11773 . . 3 ((11 · 28) + 9) = 317
99 9lt10 11878 . . . 4 9 < 10
10013, 2, 71, 99declti 11752 . . 3 9 < 11
10168, 69, 70, 98, 100ndvdsi 15343 . 2 ¬ 11 ∥ 317
1022, 19decnncl 11724 . . 3 13 ∈ ℕ
10325, 7deccl 11718 . . 3 24 ∈ ℕ0
104 5nn 11394 . . 3 5 ∈ ℕ
105 eqid 2771 . . . 4 24 = 24
10621dec0h 11728 . . . 4 5 = 05
1072, 1deccl 11718 . . . 4 13 ∈ ℕ0
108 eqid 2771 . . . . 5 13 = 13
10944addid2i 10429 . . . . . 6 (0 + 5) = 5
110109, 106eqtri 2793 . . . . 5 (0 + 5) = 05
11116oveq1i 6805 . . . . . 6 ((3 · 2) + 5) = (6 + 5)
112 6p5e11 11805 . . . . . 6 (6 + 5) = 11
113111, 112eqtri 2793 . . . . 5 ((3 · 2) + 5) = 11
1142, 1, 24, 21, 108, 110, 25, 2, 2, 82, 113decmac 11771 . . . 4 ((13 · 2) + (0 + 5)) = 31
115 4cn 11303 . . . . . . . 8 4 ∈ ℂ
116115mulid2i 10248 . . . . . . 7 (1 · 4) = 4
117116, 30oveq12i 6807 . . . . . 6 ((1 · 4) + (0 + 1)) = (4 + 1)
118 4p1e5 11360 . . . . . 6 (4 + 1) = 5
119117, 118eqtri 2793 . . . . 5 ((1 · 4) + (0 + 1)) = 5
120 4t3e12 11837 . . . . . . 7 (4 · 3) = 12
121115, 33, 120mulcomli 10252 . . . . . 6 (3 · 4) = 12
12244, 79, 47addcomli 10433 . . . . . 6 (2 + 5) = 7
1232, 25, 21, 121, 122decaddi 11784 . . . . 5 ((3 · 4) + 5) = 17
1242, 1, 24, 21, 108, 106, 7, 8, 2, 119, 123decmac 11771 . . . 4 ((13 · 4) + 5) = 57
12525, 7, 24, 21, 105, 106, 107, 8, 21, 114, 124decma2c 11773 . . 3 ((13 · 24) + 5) = 317
126 5lt10 11882 . . . 4 5 < 10
12713, 1, 21, 126declti 11752 . . 3 5 < 13
128102, 103, 104, 125, 127ndvdsi 15343 . 2 ¬ 13 ∥ 317
1292, 4decnncl 11724 . . 3 17 ∈ ℕ
1302, 6deccl 11718 . . 3 18 ∈ ℕ0
131 eqid 2771 . . . 4 18 = 18
1322, 8deccl 11718 . . . 4 17 ∈ ℕ0
133 eqid 2771 . . . . 5 17 = 17
134 3p1e4 11359 . . . . . . 7 (3 + 1) = 4
13533, 29, 134addcomli 10433 . . . . . 6 (1 + 3) = 4
13624, 2, 2, 1, 31, 108, 30, 135decadd 11775 . . . . 5 (1 + 13) = 14
13729mulid1i 10247 . . . . . . 7 (1 · 1) = 1
138 1p1e2 11340 . . . . . . 7 (1 + 1) = 2
139137, 138oveq12i 6807 . . . . . 6 ((1 · 1) + (1 + 1)) = (1 + 2)
140 1p2e3 11358 . . . . . 6 (1 + 2) = 3
141139, 140eqtri 2793 . . . . 5 ((1 · 1) + (1 + 1)) = 3
142 7cn 11309 . . . . . . . 8 7 ∈ ℂ
143142mulid1i 10247 . . . . . . 7 (7 · 1) = 7
144143oveq1i 6805 . . . . . 6 ((7 · 1) + 4) = (7 + 4)
145 7p4e11 11810 . . . . . 6 (7 + 4) = 11
146144, 145eqtri 2793 . . . . 5 ((7 · 1) + 4) = 11
1472, 8, 2, 7, 133, 136, 2, 2, 2, 141, 146decmac 11771 . . . 4 ((17 · 1) + (1 + 13)) = 31
14889, 109oveq12i 6807 . . . . . 6 ((1 · 8) + (0 + 5)) = (8 + 5)
149 8p5e13 11820 . . . . . 6 (8 + 5) = 13
150148, 149eqtri 2793 . . . . 5 ((1 · 8) + (0 + 5)) = 13
151 6nn0 11519 . . . . . 6 6 ∈ ℕ0
152 6p1e7 11362 . . . . . 6 (6 + 1) = 7
153 8t7e56 11866 . . . . . . 7 (8 · 7) = 56
15488, 142, 153mulcomli 10252 . . . . . 6 (7 · 8) = 56
15521, 151, 152, 154decsuc 11741 . . . . 5 ((7 · 8) + 1) = 57
1562, 8, 24, 2, 133, 31, 6, 8, 21, 150, 155decmac 11771 . . . 4 ((17 · 8) + 1) = 137
1572, 6, 2, 2, 131, 75, 132, 8, 107, 147, 156decma2c 11773 . . 3 ((17 · 18) + 11) = 317
158 1lt7 11420 . . . 4 1 < 7
1592, 2, 4, 158declt 11736 . . 3 11 < 17
160129, 130, 68, 157, 159ndvdsi 15343 . 2 ¬ 17 ∥ 317
1612, 70decnncl 11724 . . 3 19 ∈ ℕ
1622, 151deccl 11718 . . 3 16 ∈ ℕ0
163 eqid 2771 . . . 4 16 = 16
1642, 71deccl 11718 . . . 4 19 ∈ ℕ0
165 eqid 2771 . . . . 5 19 = 19
16624, 2, 2, 2, 31, 75, 30, 138decadd 11775 . . . . 5 (1 + 11) = 12
16776mulid1i 10247 . . . . . . 7 (9 · 1) = 9
168167oveq1i 6805 . . . . . 6 ((9 · 1) + 2) = (9 + 2)
169168, 84eqtri 2793 . . . . 5 ((9 · 1) + 2) = 11
1702, 71, 2, 25, 165, 166, 2, 2, 2, 141, 169decmac 11771 . . . 4 ((19 · 1) + (1 + 11)) = 31
1711dec0h 11728 . . . . 5 3 = 03
172 6cn 11307 . . . . . . . 8 6 ∈ ℂ
173172mulid2i 10248 . . . . . . 7 (1 · 6) = 6
174173, 109oveq12i 6807 . . . . . 6 ((1 · 6) + (0 + 5)) = (6 + 5)
175174, 112eqtri 2793 . . . . 5 ((1 · 6) + (0 + 5)) = 11
176 9t6e54 11872 . . . . . 6 (9 · 6) = 54
177 4p3e7 11369 . . . . . 6 (4 + 3) = 7
17821, 7, 1, 176, 177decaddi 11784 . . . . 5 ((9 · 6) + 3) = 57
1792, 71, 24, 1, 165, 171, 151, 8, 21, 175, 178decmac 11771 . . . 4 ((19 · 6) + 3) = 117
1802, 151, 2, 1, 163, 108, 164, 8, 74, 170, 179decma2c 11773 . . 3 ((19 · 16) + 13) = 317
181 3lt9 11433 . . . 4 3 < 9
1822, 1, 70, 181declt 11736 . . 3 13 < 19
183161, 162, 102, 180, 182ndvdsi 15343 . 2 ¬ 19 ∥ 317
18425, 19decnncl 11724 . . 3 23 ∈ ℕ
185102nnnn0i 11506 . . 3 13 ∈ ℕ0
186 8nn 11397 . . . 4 8 ∈ ℕ
1872, 186decnncl 11724 . . 3 18 ∈ ℕ
18825, 1deccl 11718 . . . 4 23 ∈ ℕ0
189 eqid 2771 . . . . 5 23 = 23
190 7p1e8 11363 . . . . . . 7 (7 + 1) = 8
191142, 29, 190addcomli 10433 . . . . . 6 (1 + 7) = 8
1926dec0h 11728 . . . . . 6 8 = 08
193191, 192eqtri 2793 . . . . 5 (1 + 7) = 08
19479mulid1i 10247 . . . . . . 7 (2 · 1) = 2
195194, 30oveq12i 6807 . . . . . 6 ((2 · 1) + (0 + 1)) = (2 + 1)
196195, 59eqtri 2793 . . . . 5 ((2 · 1) + (0 + 1)) = 3
19734oveq1i 6805 . . . . . 6 ((3 · 1) + 8) = (3 + 8)
19888, 33, 60addcomli 10433 . . . . . 6 (3 + 8) = 11
199197, 198eqtri 2793 . . . . 5 ((3 · 1) + 8) = 11
20025, 1, 24, 6, 189, 193, 2, 2, 2, 196, 199decmac 11771 . . . 4 ((23 · 1) + (1 + 7)) = 31
20133, 79, 16mulcomli 10252 . . . . . . 7 (2 · 3) = 6
202201, 30oveq12i 6807 . . . . . 6 ((2 · 3) + (0 + 1)) = (6 + 1)
203202, 152eqtri 2793 . . . . 5 ((2 · 3) + (0 + 1)) = 7
204 3t3e9 11386 . . . . . . 7 (3 · 3) = 9
205204oveq1i 6805 . . . . . 6 ((3 · 3) + 8) = (9 + 8)
206205, 94eqtri 2793 . . . . 5 ((3 · 3) + 8) = 17
20725, 1, 24, 6, 189, 192, 1, 8, 2, 203, 206decmac 11771 . . . 4 ((23 · 3) + 8) = 77
2082, 1, 2, 6, 108, 131, 188, 8, 8, 200, 207decma2c 11773 . . 3 ((23 · 13) + 18) = 317
209 8lt10 11879 . . . 4 8 < 10
210 1lt2 11400 . . . 4 1 < 2
2112, 25, 6, 1, 209, 210decltc 11738 . . 3 18 < 23
212184, 185, 187, 208, 211ndvdsi 15343 . 2 ¬ 23 ∥ 317
2135, 12, 15, 18, 51, 53, 67, 101, 128, 160, 183, 212prmlem2 16033 1 317 ∈ ℙ
Colors of variables: wff setvar class
Syntax hints:  wcel 2145  (class class class)co 6795  0cc0 10141  1c1 10142   + caddc 10144   · cmul 10146  2c2 11275  3c3 11276  4c4 11277  5c5 11278  6c6 11279  7c7 11280  8c8 11281  9c9 11282  cdc 11699  cprime 15591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7099  ax-cnex 10197  ax-resscn 10198  ax-1cn 10199  ax-icn 10200  ax-addcl 10201  ax-addrcl 10202  ax-mulcl 10203  ax-mulrcl 10204  ax-mulcom 10205  ax-addass 10206  ax-mulass 10207  ax-distr 10208  ax-i2m1 10209  ax-1ne0 10210  ax-1rid 10211  ax-rnegex 10212  ax-rrecex 10213  ax-cnre 10214  ax-pre-lttri 10215  ax-pre-lttrn 10216  ax-pre-ltadd 10217  ax-pre-mulgt0 10218  ax-pre-sup 10219
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6756  df-ov 6798  df-oprab 6799  df-mpt2 6800  df-om 7216  df-1st 7318  df-2nd 7319  df-wrecs 7562  df-recs 7624  df-rdg 7662  df-1o 7716  df-2o 7717  df-er 7899  df-en 8113  df-dom 8114  df-sdom 8115  df-fin 8116  df-sup 8507  df-inf 8508  df-pnf 10281  df-mnf 10282  df-xr 10283  df-ltxr 10284  df-le 10285  df-sub 10473  df-neg 10474  df-div 10890  df-nn 11226  df-2 11284  df-3 11285  df-4 11286  df-5 11287  df-6 11288  df-7 11289  df-8 11290  df-9 11291  df-n0 11499  df-z 11584  df-dec 11700  df-uz 11893  df-rp 12035  df-fz 12533  df-seq 13008  df-exp 13067  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-dvds 15189  df-prm 15592
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator