![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 7prm | Structured version Visualization version GIF version |
Description: 7 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) |
Ref | Expression |
---|---|
7prm | ⊢ 7 ∈ ℙ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 7nn 12311 | . 2 ⊢ 7 ∈ ℕ | |
2 | 1lt7 12410 | . 2 ⊢ 1 < 7 | |
3 | 2nn 12292 | . . 3 ⊢ 2 ∈ ℕ | |
4 | 3nn0 12497 | . . 3 ⊢ 3 ∈ ℕ0 | |
5 | 1nn 12230 | . . 3 ⊢ 1 ∈ ℕ | |
6 | 3cn 12300 | . . . . . 6 ⊢ 3 ∈ ℂ | |
7 | 2cn 12294 | . . . . . 6 ⊢ 2 ∈ ℂ | |
8 | 3t2e6 12385 | . . . . . 6 ⊢ (3 · 2) = 6 | |
9 | 6, 7, 8 | mulcomli 11230 | . . . . 5 ⊢ (2 · 3) = 6 |
10 | 9 | oveq1i 7422 | . . . 4 ⊢ ((2 · 3) + 1) = (6 + 1) |
11 | df-7 12287 | . . . 4 ⊢ 7 = (6 + 1) | |
12 | 10, 11 | eqtr4i 2762 | . . 3 ⊢ ((2 · 3) + 1) = 7 |
13 | 1lt2 12390 | . . 3 ⊢ 1 < 2 | |
14 | 3, 4, 5, 12, 13 | ndvdsi 16362 | . 2 ⊢ ¬ 2 ∥ 7 |
15 | 3nn 12298 | . . 3 ⊢ 3 ∈ ℕ | |
16 | 2nn0 12496 | . . 3 ⊢ 2 ∈ ℕ0 | |
17 | 8 | oveq1i 7422 | . . . 4 ⊢ ((3 · 2) + 1) = (6 + 1) |
18 | 17, 11 | eqtr4i 2762 | . . 3 ⊢ ((3 · 2) + 1) = 7 |
19 | 1lt3 12392 | . . 3 ⊢ 1 < 3 | |
20 | 15, 16, 5, 18, 19 | ndvdsi 16362 | . 2 ⊢ ¬ 3 ∥ 7 |
21 | 5nn0 12499 | . . 3 ⊢ 5 ∈ ℕ0 | |
22 | 7nn0 12501 | . . 3 ⊢ 7 ∈ ℕ0 | |
23 | 7lt10 12817 | . . 3 ⊢ 7 < ;10 | |
24 | 3, 21, 22, 23 | declti 12722 | . 2 ⊢ 7 < ;25 |
25 | 1, 2, 14, 20, 24 | prmlem1 17048 | 1 ⊢ 7 ∈ ℙ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 (class class class)co 7412 1c1 11117 + caddc 11119 · cmul 11121 2c2 12274 3c3 12275 5c5 12277 6c6 12278 7c7 12279 ℙcprime 16615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-pre-sup 11194 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-2o 8473 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-sup 9443 df-inf 9444 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-div 11879 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-7 12287 df-8 12288 df-9 12289 df-n0 12480 df-z 12566 df-dec 12685 df-uz 12830 df-rp 12982 df-fz 13492 df-seq 13974 df-exp 14035 df-cj 15053 df-re 15054 df-im 15055 df-sqrt 15189 df-abs 15190 df-dvds 16205 df-prm 16616 |
This theorem is referenced by: bpos1 27129 ex-mod 30135 ex-prmo 30145 60gcd7e1 41337 m3prm 46719 nnsum3primesle9 46921 |
Copyright terms: Public domain | W3C validator |