| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 7prm | Structured version Visualization version GIF version | ||
| Description: 7 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.) |
| Ref | Expression |
|---|---|
| 7prm | ⊢ 7 ∈ ℙ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 7nn 12217 | . 2 ⊢ 7 ∈ ℕ | |
| 2 | 1lt7 12311 | . 2 ⊢ 1 < 7 | |
| 3 | 2nn 12198 | . . 3 ⊢ 2 ∈ ℕ | |
| 4 | 3nn0 12399 | . . 3 ⊢ 3 ∈ ℕ0 | |
| 5 | 1nn 12136 | . . 3 ⊢ 1 ∈ ℕ | |
| 6 | 3cn 12206 | . . . . . 6 ⊢ 3 ∈ ℂ | |
| 7 | 2cn 12200 | . . . . . 6 ⊢ 2 ∈ ℂ | |
| 8 | 3t2e6 12286 | . . . . . 6 ⊢ (3 · 2) = 6 | |
| 9 | 6, 7, 8 | mulcomli 11121 | . . . . 5 ⊢ (2 · 3) = 6 |
| 10 | 9 | oveq1i 7356 | . . . 4 ⊢ ((2 · 3) + 1) = (6 + 1) |
| 11 | df-7 12193 | . . . 4 ⊢ 7 = (6 + 1) | |
| 12 | 10, 11 | eqtr4i 2757 | . . 3 ⊢ ((2 · 3) + 1) = 7 |
| 13 | 1lt2 12291 | . . 3 ⊢ 1 < 2 | |
| 14 | 3, 4, 5, 12, 13 | ndvdsi 16323 | . 2 ⊢ ¬ 2 ∥ 7 |
| 15 | 3nn 12204 | . . 3 ⊢ 3 ∈ ℕ | |
| 16 | 2nn0 12398 | . . 3 ⊢ 2 ∈ ℕ0 | |
| 17 | 8 | oveq1i 7356 | . . . 4 ⊢ ((3 · 2) + 1) = (6 + 1) |
| 18 | 17, 11 | eqtr4i 2757 | . . 3 ⊢ ((3 · 2) + 1) = 7 |
| 19 | 1lt3 12293 | . . 3 ⊢ 1 < 3 | |
| 20 | 15, 16, 5, 18, 19 | ndvdsi 16323 | . 2 ⊢ ¬ 3 ∥ 7 |
| 21 | 5nn0 12401 | . . 3 ⊢ 5 ∈ ℕ0 | |
| 22 | 7nn0 12403 | . . 3 ⊢ 7 ∈ ℕ0 | |
| 23 | 7lt10 12721 | . . 3 ⊢ 7 < ;10 | |
| 24 | 3, 21, 22, 23 | declti 12626 | . 2 ⊢ 7 < ;25 |
| 25 | 1, 2, 14, 20, 24 | prmlem1 17019 | 1 ⊢ 7 ∈ ℙ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 (class class class)co 7346 1c1 11007 + caddc 11009 · cmul 11011 2c2 12180 3c3 12181 5c5 12183 6c6 12184 7c7 12185 ℙcprime 16582 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-rp 12891 df-fz 13408 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-dvds 16164 df-prm 16583 |
| This theorem is referenced by: bpos1 27221 ex-mod 30429 ex-prmo 30439 60gcd7e1 42046 m3prm 47631 nnsum3primesle9 47833 |
| Copyright terms: Public domain | W3C validator |