Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtno5 | Structured version Visualization version GIF version |
Description: The 5 th Fermat number. (Contributed by AV, 30-Jul-2021.) |
Ref | Expression |
---|---|
fmtno5 | ⊢ (FermatNo‘5) = ;;;;;;;;;4294967297 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-5 12039 | . . . 4 ⊢ 5 = (4 + 1) | |
2 | 1 | fveq2i 6777 | . . 3 ⊢ (FermatNo‘5) = (FermatNo‘(4 + 1)) |
3 | 4nn0 12252 | . . . 4 ⊢ 4 ∈ ℕ0 | |
4 | fmtnorec1 44989 | . . . 4 ⊢ (4 ∈ ℕ0 → (FermatNo‘(4 + 1)) = ((((FermatNo‘4) − 1)↑2) + 1)) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ (FermatNo‘(4 + 1)) = ((((FermatNo‘4) − 1)↑2) + 1) |
6 | 2, 5 | eqtri 2766 | . 2 ⊢ (FermatNo‘5) = ((((FermatNo‘4) − 1)↑2) + 1) |
7 | 2nn0 12250 | . . . . . . . . . . 11 ⊢ 2 ∈ ℕ0 | |
8 | 3, 7 | deccl 12452 | . . . . . . . . . 10 ⊢ ;42 ∈ ℕ0 |
9 | 9nn0 12257 | . . . . . . . . . 10 ⊢ 9 ∈ ℕ0 | |
10 | 8, 9 | deccl 12452 | . . . . . . . . 9 ⊢ ;;429 ∈ ℕ0 |
11 | 10, 3 | deccl 12452 | . . . . . . . 8 ⊢ ;;;4294 ∈ ℕ0 |
12 | 11, 9 | deccl 12452 | . . . . . . 7 ⊢ ;;;;42949 ∈ ℕ0 |
13 | 6nn0 12254 | . . . . . . 7 ⊢ 6 ∈ ℕ0 | |
14 | 12, 13 | deccl 12452 | . . . . . 6 ⊢ ;;;;;429496 ∈ ℕ0 |
15 | 7nn0 12255 | . . . . . 6 ⊢ 7 ∈ ℕ0 | |
16 | 14, 15 | deccl 12452 | . . . . 5 ⊢ ;;;;;;4294967 ∈ ℕ0 |
17 | 16, 7 | deccl 12452 | . . . 4 ⊢ ;;;;;;;42949672 ∈ ℕ0 |
18 | 17, 9 | deccl 12452 | . . 3 ⊢ ;;;;;;;;429496729 ∈ ℕ0 |
19 | 6p1e7 12121 | . . 3 ⊢ (6 + 1) = 7 | |
20 | 5nn0 12253 | . . . . . . . . 9 ⊢ 5 ∈ ℕ0 | |
21 | 13, 20 | deccl 12452 | . . . . . . . 8 ⊢ ;65 ∈ ℕ0 |
22 | 21, 20 | deccl 12452 | . . . . . . 7 ⊢ ;;655 ∈ ℕ0 |
23 | 3nn0 12251 | . . . . . . 7 ⊢ 3 ∈ ℕ0 | |
24 | 22, 23 | deccl 12452 | . . . . . 6 ⊢ ;;;6553 ∈ ℕ0 |
25 | 1nn0 12249 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
26 | fmtno4 45004 | . . . . . 6 ⊢ (FermatNo‘4) = ;;;;65537 | |
27 | 3p1e4 12118 | . . . . . . 7 ⊢ (3 + 1) = 4 | |
28 | eqid 2738 | . . . . . . 7 ⊢ ;;;6553 = ;;;6553 | |
29 | 22, 23, 27, 28 | decsuc 12468 | . . . . . 6 ⊢ (;;;6553 + 1) = ;;;6554 |
30 | 6cn 12064 | . . . . . . 7 ⊢ 6 ∈ ℂ | |
31 | ax-1cn 10929 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
32 | df-7 12041 | . . . . . . 7 ⊢ 7 = (6 + 1) | |
33 | 30, 31, 32 | mvrraddi 11238 | . . . . . 6 ⊢ (7 − 1) = 6 |
34 | 24, 15, 25, 26, 29, 33 | decsubi 12500 | . . . . 5 ⊢ ((FermatNo‘4) − 1) = ;;;;65536 |
35 | 34 | oveq1i 7285 | . . . 4 ⊢ (((FermatNo‘4) − 1)↑2) = (;;;;65536↑2) |
36 | fmtno5lem4 45008 | . . . 4 ⊢ (;;;;65536↑2) = ;;;;;;;;;4294967296 | |
37 | 35, 36 | eqtri 2766 | . . 3 ⊢ (((FermatNo‘4) − 1)↑2) = ;;;;;;;;;4294967296 |
38 | 18, 13, 19, 37 | decsuc 12468 | . 2 ⊢ ((((FermatNo‘4) − 1)↑2) + 1) = ;;;;;;;;;4294967297 |
39 | 6, 38 | eqtri 2766 | 1 ⊢ (FermatNo‘5) = ;;;;;;;;;4294967297 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 ‘cfv 6433 (class class class)co 7275 1c1 10872 + caddc 10874 − cmin 11205 2c2 12028 3c3 12029 4c4 12030 5c5 12031 6c6 12032 7c7 12033 9c9 12035 ℕ0cn0 12233 ;cdc 12437 ↑cexp 13782 FermatNocfmtno 44979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-seq 13722 df-exp 13783 df-fmtno 44980 |
This theorem is referenced by: fmtno5fac 45034 |
Copyright terms: Public domain | W3C validator |