Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtno5 | Structured version Visualization version GIF version |
Description: The 5 th Fermat number. (Contributed by AV, 30-Jul-2021.) |
Ref | Expression |
---|---|
fmtno5 | ⊢ (FermatNo‘5) = ;;;;;;;;;4294967297 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-5 11969 | . . . 4 ⊢ 5 = (4 + 1) | |
2 | 1 | fveq2i 6759 | . . 3 ⊢ (FermatNo‘5) = (FermatNo‘(4 + 1)) |
3 | 4nn0 12182 | . . . 4 ⊢ 4 ∈ ℕ0 | |
4 | fmtnorec1 44877 | . . . 4 ⊢ (4 ∈ ℕ0 → (FermatNo‘(4 + 1)) = ((((FermatNo‘4) − 1)↑2) + 1)) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ (FermatNo‘(4 + 1)) = ((((FermatNo‘4) − 1)↑2) + 1) |
6 | 2, 5 | eqtri 2766 | . 2 ⊢ (FermatNo‘5) = ((((FermatNo‘4) − 1)↑2) + 1) |
7 | 2nn0 12180 | . . . . . . . . . . 11 ⊢ 2 ∈ ℕ0 | |
8 | 3, 7 | deccl 12381 | . . . . . . . . . 10 ⊢ ;42 ∈ ℕ0 |
9 | 9nn0 12187 | . . . . . . . . . 10 ⊢ 9 ∈ ℕ0 | |
10 | 8, 9 | deccl 12381 | . . . . . . . . 9 ⊢ ;;429 ∈ ℕ0 |
11 | 10, 3 | deccl 12381 | . . . . . . . 8 ⊢ ;;;4294 ∈ ℕ0 |
12 | 11, 9 | deccl 12381 | . . . . . . 7 ⊢ ;;;;42949 ∈ ℕ0 |
13 | 6nn0 12184 | . . . . . . 7 ⊢ 6 ∈ ℕ0 | |
14 | 12, 13 | deccl 12381 | . . . . . 6 ⊢ ;;;;;429496 ∈ ℕ0 |
15 | 7nn0 12185 | . . . . . 6 ⊢ 7 ∈ ℕ0 | |
16 | 14, 15 | deccl 12381 | . . . . 5 ⊢ ;;;;;;4294967 ∈ ℕ0 |
17 | 16, 7 | deccl 12381 | . . . 4 ⊢ ;;;;;;;42949672 ∈ ℕ0 |
18 | 17, 9 | deccl 12381 | . . 3 ⊢ ;;;;;;;;429496729 ∈ ℕ0 |
19 | 6p1e7 12051 | . . 3 ⊢ (6 + 1) = 7 | |
20 | 5nn0 12183 | . . . . . . . . 9 ⊢ 5 ∈ ℕ0 | |
21 | 13, 20 | deccl 12381 | . . . . . . . 8 ⊢ ;65 ∈ ℕ0 |
22 | 21, 20 | deccl 12381 | . . . . . . 7 ⊢ ;;655 ∈ ℕ0 |
23 | 3nn0 12181 | . . . . . . 7 ⊢ 3 ∈ ℕ0 | |
24 | 22, 23 | deccl 12381 | . . . . . 6 ⊢ ;;;6553 ∈ ℕ0 |
25 | 1nn0 12179 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
26 | fmtno4 44892 | . . . . . 6 ⊢ (FermatNo‘4) = ;;;;65537 | |
27 | 3p1e4 12048 | . . . . . . 7 ⊢ (3 + 1) = 4 | |
28 | eqid 2738 | . . . . . . 7 ⊢ ;;;6553 = ;;;6553 | |
29 | 22, 23, 27, 28 | decsuc 12397 | . . . . . 6 ⊢ (;;;6553 + 1) = ;;;6554 |
30 | 6cn 11994 | . . . . . . 7 ⊢ 6 ∈ ℂ | |
31 | ax-1cn 10860 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
32 | df-7 11971 | . . . . . . 7 ⊢ 7 = (6 + 1) | |
33 | 30, 31, 32 | mvrraddi 11168 | . . . . . 6 ⊢ (7 − 1) = 6 |
34 | 24, 15, 25, 26, 29, 33 | decsubi 12429 | . . . . 5 ⊢ ((FermatNo‘4) − 1) = ;;;;65536 |
35 | 34 | oveq1i 7265 | . . . 4 ⊢ (((FermatNo‘4) − 1)↑2) = (;;;;65536↑2) |
36 | fmtno5lem4 44896 | . . . 4 ⊢ (;;;;65536↑2) = ;;;;;;;;;4294967296 | |
37 | 35, 36 | eqtri 2766 | . . 3 ⊢ (((FermatNo‘4) − 1)↑2) = ;;;;;;;;;4294967296 |
38 | 18, 13, 19, 37 | decsuc 12397 | . 2 ⊢ ((((FermatNo‘4) − 1)↑2) + 1) = ;;;;;;;;;4294967297 |
39 | 6, 38 | eqtri 2766 | 1 ⊢ (FermatNo‘5) = ;;;;;;;;;4294967297 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 1c1 10803 + caddc 10805 − cmin 11135 2c2 11958 3c3 11959 4c4 11960 5c5 11961 6c6 11962 7c7 11963 9c9 11965 ℕ0cn0 12163 ;cdc 12366 ↑cexp 13710 FermatNocfmtno 44867 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-seq 13650 df-exp 13711 df-fmtno 44868 |
This theorem is referenced by: fmtno5fac 44922 |
Copyright terms: Public domain | W3C validator |