Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtno5 Structured version   Visualization version   GIF version

Theorem fmtno5 47562
Description: The 5 th Fermat number. (Contributed by AV, 30-Jul-2021.)
Assertion
Ref Expression
fmtno5 (FermatNo‘5) = 4294967297

Proof of Theorem fmtno5
StepHypRef Expression
1 df-5 12259 . . . 4 5 = (4 + 1)
21fveq2i 6864 . . 3 (FermatNo‘5) = (FermatNo‘(4 + 1))
3 4nn0 12468 . . . 4 4 ∈ ℕ0
4 fmtnorec1 47542 . . . 4 (4 ∈ ℕ0 → (FermatNo‘(4 + 1)) = ((((FermatNo‘4) − 1)↑2) + 1))
53, 4ax-mp 5 . . 3 (FermatNo‘(4 + 1)) = ((((FermatNo‘4) − 1)↑2) + 1)
62, 5eqtri 2753 . 2 (FermatNo‘5) = ((((FermatNo‘4) − 1)↑2) + 1)
7 2nn0 12466 . . . . . . . . . . 11 2 ∈ ℕ0
83, 7deccl 12671 . . . . . . . . . 10 42 ∈ ℕ0
9 9nn0 12473 . . . . . . . . . 10 9 ∈ ℕ0
108, 9deccl 12671 . . . . . . . . 9 429 ∈ ℕ0
1110, 3deccl 12671 . . . . . . . 8 4294 ∈ ℕ0
1211, 9deccl 12671 . . . . . . 7 42949 ∈ ℕ0
13 6nn0 12470 . . . . . . 7 6 ∈ ℕ0
1412, 13deccl 12671 . . . . . 6 429496 ∈ ℕ0
15 7nn0 12471 . . . . . 6 7 ∈ ℕ0
1614, 15deccl 12671 . . . . 5 4294967 ∈ ℕ0
1716, 7deccl 12671 . . . 4 42949672 ∈ ℕ0
1817, 9deccl 12671 . . 3 429496729 ∈ ℕ0
19 6p1e7 12336 . . 3 (6 + 1) = 7
20 5nn0 12469 . . . . . . . . 9 5 ∈ ℕ0
2113, 20deccl 12671 . . . . . . . 8 65 ∈ ℕ0
2221, 20deccl 12671 . . . . . . 7 655 ∈ ℕ0
23 3nn0 12467 . . . . . . 7 3 ∈ ℕ0
2422, 23deccl 12671 . . . . . 6 6553 ∈ ℕ0
25 1nn0 12465 . . . . . 6 1 ∈ ℕ0
26 fmtno4 47557 . . . . . 6 (FermatNo‘4) = 65537
27 3p1e4 12333 . . . . . . 7 (3 + 1) = 4
28 eqid 2730 . . . . . . 7 6553 = 6553
2922, 23, 27, 28decsuc 12687 . . . . . 6 (6553 + 1) = 6554
30 6cn 12284 . . . . . . 7 6 ∈ ℂ
31 ax-1cn 11133 . . . . . . 7 1 ∈ ℂ
32 df-7 12261 . . . . . . 7 7 = (6 + 1)
3330, 31, 32mvrraddi 11445 . . . . . 6 (7 − 1) = 6
3424, 15, 25, 26, 29, 33decsubi 12719 . . . . 5 ((FermatNo‘4) − 1) = 65536
3534oveq1i 7400 . . . 4 (((FermatNo‘4) − 1)↑2) = (65536↑2)
36 fmtno5lem4 47561 . . . 4 (65536↑2) = 4294967296
3735, 36eqtri 2753 . . 3 (((FermatNo‘4) − 1)↑2) = 4294967296
3818, 13, 19, 37decsuc 12687 . 2 ((((FermatNo‘4) − 1)↑2) + 1) = 4294967297
396, 38eqtri 2753 1 (FermatNo‘5) = 4294967297
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  cfv 6514  (class class class)co 7390  1c1 11076   + caddc 11078  cmin 11412  2c2 12248  3c3 12249  4c4 12250  5c5 12251  6c6 12252  7c7 12253  9c9 12255  0cn0 12449  cdc 12656  cexp 14033  FermatNocfmtno 47532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-seq 13974  df-exp 14034  df-fmtno 47533
This theorem is referenced by:  fmtno5fac  47587
  Copyright terms: Public domain W3C validator