| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtno5 | Structured version Visualization version GIF version | ||
| Description: The 5 th Fermat number. (Contributed by AV, 30-Jul-2021.) |
| Ref | Expression |
|---|---|
| fmtno5 | ⊢ (FermatNo‘5) = ;;;;;;;;;4294967297 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-5 12212 | . . . 4 ⊢ 5 = (4 + 1) | |
| 2 | 1 | fveq2i 6829 | . . 3 ⊢ (FermatNo‘5) = (FermatNo‘(4 + 1)) |
| 3 | 4nn0 12421 | . . . 4 ⊢ 4 ∈ ℕ0 | |
| 4 | fmtnorec1 47525 | . . . 4 ⊢ (4 ∈ ℕ0 → (FermatNo‘(4 + 1)) = ((((FermatNo‘4) − 1)↑2) + 1)) | |
| 5 | 3, 4 | ax-mp 5 | . . 3 ⊢ (FermatNo‘(4 + 1)) = ((((FermatNo‘4) − 1)↑2) + 1) |
| 6 | 2, 5 | eqtri 2752 | . 2 ⊢ (FermatNo‘5) = ((((FermatNo‘4) − 1)↑2) + 1) |
| 7 | 2nn0 12419 | . . . . . . . . . . 11 ⊢ 2 ∈ ℕ0 | |
| 8 | 3, 7 | deccl 12624 | . . . . . . . . . 10 ⊢ ;42 ∈ ℕ0 |
| 9 | 9nn0 12426 | . . . . . . . . . 10 ⊢ 9 ∈ ℕ0 | |
| 10 | 8, 9 | deccl 12624 | . . . . . . . . 9 ⊢ ;;429 ∈ ℕ0 |
| 11 | 10, 3 | deccl 12624 | . . . . . . . 8 ⊢ ;;;4294 ∈ ℕ0 |
| 12 | 11, 9 | deccl 12624 | . . . . . . 7 ⊢ ;;;;42949 ∈ ℕ0 |
| 13 | 6nn0 12423 | . . . . . . 7 ⊢ 6 ∈ ℕ0 | |
| 14 | 12, 13 | deccl 12624 | . . . . . 6 ⊢ ;;;;;429496 ∈ ℕ0 |
| 15 | 7nn0 12424 | . . . . . 6 ⊢ 7 ∈ ℕ0 | |
| 16 | 14, 15 | deccl 12624 | . . . . 5 ⊢ ;;;;;;4294967 ∈ ℕ0 |
| 17 | 16, 7 | deccl 12624 | . . . 4 ⊢ ;;;;;;;42949672 ∈ ℕ0 |
| 18 | 17, 9 | deccl 12624 | . . 3 ⊢ ;;;;;;;;429496729 ∈ ℕ0 |
| 19 | 6p1e7 12289 | . . 3 ⊢ (6 + 1) = 7 | |
| 20 | 5nn0 12422 | . . . . . . . . 9 ⊢ 5 ∈ ℕ0 | |
| 21 | 13, 20 | deccl 12624 | . . . . . . . 8 ⊢ ;65 ∈ ℕ0 |
| 22 | 21, 20 | deccl 12624 | . . . . . . 7 ⊢ ;;655 ∈ ℕ0 |
| 23 | 3nn0 12420 | . . . . . . 7 ⊢ 3 ∈ ℕ0 | |
| 24 | 22, 23 | deccl 12624 | . . . . . 6 ⊢ ;;;6553 ∈ ℕ0 |
| 25 | 1nn0 12418 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
| 26 | fmtno4 47540 | . . . . . 6 ⊢ (FermatNo‘4) = ;;;;65537 | |
| 27 | 3p1e4 12286 | . . . . . . 7 ⊢ (3 + 1) = 4 | |
| 28 | eqid 2729 | . . . . . . 7 ⊢ ;;;6553 = ;;;6553 | |
| 29 | 22, 23, 27, 28 | decsuc 12640 | . . . . . 6 ⊢ (;;;6553 + 1) = ;;;6554 |
| 30 | 6cn 12237 | . . . . . . 7 ⊢ 6 ∈ ℂ | |
| 31 | ax-1cn 11086 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
| 32 | df-7 12214 | . . . . . . 7 ⊢ 7 = (6 + 1) | |
| 33 | 30, 31, 32 | mvrraddi 11398 | . . . . . 6 ⊢ (7 − 1) = 6 |
| 34 | 24, 15, 25, 26, 29, 33 | decsubi 12672 | . . . . 5 ⊢ ((FermatNo‘4) − 1) = ;;;;65536 |
| 35 | 34 | oveq1i 7363 | . . . 4 ⊢ (((FermatNo‘4) − 1)↑2) = (;;;;65536↑2) |
| 36 | fmtno5lem4 47544 | . . . 4 ⊢ (;;;;65536↑2) = ;;;;;;;;;4294967296 | |
| 37 | 35, 36 | eqtri 2752 | . . 3 ⊢ (((FermatNo‘4) − 1)↑2) = ;;;;;;;;;4294967296 |
| 38 | 18, 13, 19, 37 | decsuc 12640 | . 2 ⊢ ((((FermatNo‘4) − 1)↑2) + 1) = ;;;;;;;;;4294967297 |
| 39 | 6, 38 | eqtri 2752 | 1 ⊢ (FermatNo‘5) = ;;;;;;;;;4294967297 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ‘cfv 6486 (class class class)co 7353 1c1 11029 + caddc 11031 − cmin 11365 2c2 12201 3c3 12202 4c4 12203 5c5 12204 6c6 12205 7c7 12206 9c9 12208 ℕ0cn0 12402 ;cdc 12609 ↑cexp 13986 FermatNocfmtno 47515 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-seq 13927 df-exp 13987 df-fmtno 47516 |
| This theorem is referenced by: fmtno5fac 47570 |
| Copyright terms: Public domain | W3C validator |