| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtno5 | Structured version Visualization version GIF version | ||
| Description: The 5 th Fermat number. (Contributed by AV, 30-Jul-2021.) |
| Ref | Expression |
|---|---|
| fmtno5 | ⊢ (FermatNo‘5) = ;;;;;;;;;4294967297 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-5 12306 | . . . 4 ⊢ 5 = (4 + 1) | |
| 2 | 1 | fveq2i 6879 | . . 3 ⊢ (FermatNo‘5) = (FermatNo‘(4 + 1)) |
| 3 | 4nn0 12520 | . . . 4 ⊢ 4 ∈ ℕ0 | |
| 4 | fmtnorec1 47551 | . . . 4 ⊢ (4 ∈ ℕ0 → (FermatNo‘(4 + 1)) = ((((FermatNo‘4) − 1)↑2) + 1)) | |
| 5 | 3, 4 | ax-mp 5 | . . 3 ⊢ (FermatNo‘(4 + 1)) = ((((FermatNo‘4) − 1)↑2) + 1) |
| 6 | 2, 5 | eqtri 2758 | . 2 ⊢ (FermatNo‘5) = ((((FermatNo‘4) − 1)↑2) + 1) |
| 7 | 2nn0 12518 | . . . . . . . . . . 11 ⊢ 2 ∈ ℕ0 | |
| 8 | 3, 7 | deccl 12723 | . . . . . . . . . 10 ⊢ ;42 ∈ ℕ0 |
| 9 | 9nn0 12525 | . . . . . . . . . 10 ⊢ 9 ∈ ℕ0 | |
| 10 | 8, 9 | deccl 12723 | . . . . . . . . 9 ⊢ ;;429 ∈ ℕ0 |
| 11 | 10, 3 | deccl 12723 | . . . . . . . 8 ⊢ ;;;4294 ∈ ℕ0 |
| 12 | 11, 9 | deccl 12723 | . . . . . . 7 ⊢ ;;;;42949 ∈ ℕ0 |
| 13 | 6nn0 12522 | . . . . . . 7 ⊢ 6 ∈ ℕ0 | |
| 14 | 12, 13 | deccl 12723 | . . . . . 6 ⊢ ;;;;;429496 ∈ ℕ0 |
| 15 | 7nn0 12523 | . . . . . 6 ⊢ 7 ∈ ℕ0 | |
| 16 | 14, 15 | deccl 12723 | . . . . 5 ⊢ ;;;;;;4294967 ∈ ℕ0 |
| 17 | 16, 7 | deccl 12723 | . . . 4 ⊢ ;;;;;;;42949672 ∈ ℕ0 |
| 18 | 17, 9 | deccl 12723 | . . 3 ⊢ ;;;;;;;;429496729 ∈ ℕ0 |
| 19 | 6p1e7 12388 | . . 3 ⊢ (6 + 1) = 7 | |
| 20 | 5nn0 12521 | . . . . . . . . 9 ⊢ 5 ∈ ℕ0 | |
| 21 | 13, 20 | deccl 12723 | . . . . . . . 8 ⊢ ;65 ∈ ℕ0 |
| 22 | 21, 20 | deccl 12723 | . . . . . . 7 ⊢ ;;655 ∈ ℕ0 |
| 23 | 3nn0 12519 | . . . . . . 7 ⊢ 3 ∈ ℕ0 | |
| 24 | 22, 23 | deccl 12723 | . . . . . 6 ⊢ ;;;6553 ∈ ℕ0 |
| 25 | 1nn0 12517 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
| 26 | fmtno4 47566 | . . . . . 6 ⊢ (FermatNo‘4) = ;;;;65537 | |
| 27 | 3p1e4 12385 | . . . . . . 7 ⊢ (3 + 1) = 4 | |
| 28 | eqid 2735 | . . . . . . 7 ⊢ ;;;6553 = ;;;6553 | |
| 29 | 22, 23, 27, 28 | decsuc 12739 | . . . . . 6 ⊢ (;;;6553 + 1) = ;;;6554 |
| 30 | 6cn 12331 | . . . . . . 7 ⊢ 6 ∈ ℂ | |
| 31 | ax-1cn 11187 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
| 32 | df-7 12308 | . . . . . . 7 ⊢ 7 = (6 + 1) | |
| 33 | 30, 31, 32 | mvrraddi 11499 | . . . . . 6 ⊢ (7 − 1) = 6 |
| 34 | 24, 15, 25, 26, 29, 33 | decsubi 12771 | . . . . 5 ⊢ ((FermatNo‘4) − 1) = ;;;;65536 |
| 35 | 34 | oveq1i 7415 | . . . 4 ⊢ (((FermatNo‘4) − 1)↑2) = (;;;;65536↑2) |
| 36 | fmtno5lem4 47570 | . . . 4 ⊢ (;;;;65536↑2) = ;;;;;;;;;4294967296 | |
| 37 | 35, 36 | eqtri 2758 | . . 3 ⊢ (((FermatNo‘4) − 1)↑2) = ;;;;;;;;;4294967296 |
| 38 | 18, 13, 19, 37 | decsuc 12739 | . 2 ⊢ ((((FermatNo‘4) − 1)↑2) + 1) = ;;;;;;;;;4294967297 |
| 39 | 6, 38 | eqtri 2758 | 1 ⊢ (FermatNo‘5) = ;;;;;;;;;4294967297 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 ‘cfv 6531 (class class class)co 7405 1c1 11130 + caddc 11132 − cmin 11466 2c2 12295 3c3 12296 4c4 12297 5c5 12298 6c6 12299 7c7 12300 9c9 12302 ℕ0cn0 12501 ;cdc 12708 ↑cexp 14079 FermatNocfmtno 47541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-seq 14020 df-exp 14080 df-fmtno 47542 |
| This theorem is referenced by: fmtno5fac 47596 |
| Copyright terms: Public domain | W3C validator |