MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  7nn Structured version   Visualization version   GIF version

Theorem 7nn 12355
Description: 7 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
7nn 7 ∈ ℕ

Proof of Theorem 7nn
StepHypRef Expression
1 df-7 12331 . 2 7 = (6 + 1)
2 6nn 12352 . . 3 6 ∈ ℕ
3 peano2nn 12275 . . 3 (6 ∈ ℕ → (6 + 1) ∈ ℕ)
42, 3ax-mp 5 . 2 (6 + 1) ∈ ℕ
51, 4eqeltri 2834 1 7 ∈ ℕ
Colors of variables: wff setvar class
Syntax hints:  wcel 2105  (class class class)co 7430  1c1 11153   + caddc 11155  cn 12263  6c6 12322  7c7 12323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437  ax-un 7753  ax-1cn 11210
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-ov 7433  df-om 7887  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331
This theorem is referenced by:  8nn  12358  7nn0  12545  7prm  17144  17prm  17150  prmlem2  17153  37prm  17154  43prm  17155  83prm  17156  139prm  17157  163prm  17158  317prm  17159  631prm  17160  1259prm  17169  mcubic  26904  cubic2  26905  cubic  26906  quartlem1  26914  quartlem2  26915  log2ublem1  27003  log2ublem2  27004  log2ub  27006  lgsdir2lem3  27385  lngndx  28460  lngid  28462  slotslnbpsd  28464  lngndxnitvndx  28465  ttgvalOLD  28898  ttglemOLD  28900  eengstr  29009  ex-xp  30464  ex-mod  30477  ex-prmo  30487  hgt750lem2  34645  60gcd7e1  41986  60lcm7e420  41991  lcm7un  42000  lcmineqlem  42033  3lexlogpow5ineq2  42036  3lexlogpow2ineq1  42039  3lexlogpow2ineq2  42040  rmydioph  43002  expdiophlem2  43010  257prm  47485  fmtno5nprm  47507  139prmALT  47520  127prm  47523  8exp8mod9  47660  nnsum3primesle9  47718  bgoldbtbndlem1  47729  tgoldbach  47741
  Copyright terms: Public domain W3C validator