Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 7nn | Structured version Visualization version GIF version |
Description: 7 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
7nn | ⊢ 7 ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-7 12041 | . 2 ⊢ 7 = (6 + 1) | |
2 | 6nn 12062 | . . 3 ⊢ 6 ∈ ℕ | |
3 | peano2nn 11985 | . . 3 ⊢ (6 ∈ ℕ → (6 + 1) ∈ ℕ) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (6 + 1) ∈ ℕ |
5 | 1, 4 | eqeltri 2837 | 1 ⊢ 7 ∈ ℕ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2110 (class class class)co 7271 1c1 10873 + caddc 10875 ℕcn 11973 6c6 12032 7c7 12033 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 ax-un 7582 ax-1cn 10930 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-ov 7274 df-om 7707 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 |
This theorem is referenced by: 8nn 12068 7nn0 12255 7prm 16810 17prm 16816 prmlem2 16819 37prm 16820 43prm 16821 83prm 16822 139prm 16823 163prm 16824 317prm 16825 631prm 16826 1259prm 16835 mcubic 25995 cubic2 25996 cubic 25997 quartlem1 26005 quartlem2 26006 log2ublem1 26094 log2ublem2 26095 log2ub 26097 lgsdir2lem3 26473 lngndx 26797 lngid 26799 slotslnbpsd 26801 lngndxnitvndx 26802 ttgvalOLD 27235 ttglemOLD 27237 eengstr 27346 ex-xp 28796 ex-mod 28809 ex-prmo 28819 hgt750lem2 32628 60gcd7e1 40010 60lcm7e420 40015 lcm7un 40024 lcmineqlem 40057 3lexlogpow5ineq2 40060 3lexlogpow2ineq1 40063 3lexlogpow2ineq2 40064 rmydioph 40833 expdiophlem2 40841 257prm 44982 fmtno5nprm 45004 139prmALT 45017 127prm 45020 8exp8mod9 45157 nnsum3primesle9 45215 bgoldbtbndlem1 45226 tgoldbach 45238 |
Copyright terms: Public domain | W3C validator |