![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 7nn | Structured version Visualization version GIF version |
Description: 7 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
7nn | ⊢ 7 ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-7 12327 | . 2 ⊢ 7 = (6 + 1) | |
2 | 6nn 12348 | . . 3 ⊢ 6 ∈ ℕ | |
3 | peano2nn 12271 | . . 3 ⊢ (6 ∈ ℕ → (6 + 1) ∈ ℕ) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (6 + 1) ∈ ℕ |
5 | 1, 4 | eqeltri 2821 | 1 ⊢ 7 ∈ ℕ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2098 (class class class)co 7423 1c1 11155 + caddc 11157 ℕcn 12259 6c6 12318 7c7 12319 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5303 ax-nul 5310 ax-pr 5432 ax-un 7745 ax-1cn 11212 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4325 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5579 df-eprel 5585 df-po 5593 df-so 5594 df-fr 5636 df-we 5638 df-xp 5687 df-rel 5688 df-cnv 5689 df-co 5690 df-dm 5691 df-rn 5692 df-res 5693 df-ima 5694 df-pred 6311 df-ord 6378 df-on 6379 df-lim 6380 df-suc 6381 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-ov 7426 df-om 7876 df-2nd 8003 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-nn 12260 df-2 12322 df-3 12323 df-4 12324 df-5 12325 df-6 12326 df-7 12327 |
This theorem is referenced by: 8nn 12354 7nn0 12541 7prm 17108 17prm 17114 prmlem2 17117 37prm 17118 43prm 17119 83prm 17120 139prm 17121 163prm 17122 317prm 17123 631prm 17124 1259prm 17133 mcubic 26867 cubic2 26868 cubic 26869 quartlem1 26877 quartlem2 26878 log2ublem1 26966 log2ublem2 26967 log2ub 26969 lgsdir2lem3 27348 lngndx 28357 lngid 28359 slotslnbpsd 28361 lngndxnitvndx 28362 ttgvalOLD 28795 ttglemOLD 28797 eengstr 28906 ex-xp 30361 ex-mod 30374 ex-prmo 30384 hgt750lem2 34454 60gcd7e1 41652 60lcm7e420 41657 lcm7un 41666 lcmineqlem 41699 3lexlogpow5ineq2 41702 3lexlogpow2ineq1 41705 3lexlogpow2ineq2 41706 rmydioph 42609 expdiophlem2 42617 257prm 47070 fmtno5nprm 47092 139prmALT 47105 127prm 47108 8exp8mod9 47245 nnsum3primesle9 47303 bgoldbtbndlem1 47314 tgoldbach 47326 |
Copyright terms: Public domain | W3C validator |