MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  7nn Structured version   Visualization version   GIF version

Theorem 7nn 12212
Description: 7 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
7nn 7 ∈ ℕ

Proof of Theorem 7nn
StepHypRef Expression
1 df-7 12188 . 2 7 = (6 + 1)
2 6nn 12209 . . 3 6 ∈ ℕ
3 peano2nn 12132 . . 3 (6 ∈ ℕ → (6 + 1) ∈ ℕ)
42, 3ax-mp 5 . 2 (6 + 1) ∈ ℕ
51, 4eqeltri 2827 1 7 ∈ ℕ
Colors of variables: wff setvar class
Syntax hints:  wcel 2111  (class class class)co 7341  1c1 11002   + caddc 11004  cn 12120  6c6 12179  7c7 12180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365  ax-un 7663  ax-1cn 11059
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188
This theorem is referenced by:  8nn  12215  7nn0  12398  7prm  17017  17prm  17023  prmlem2  17026  37prm  17027  43prm  17028  83prm  17029  139prm  17030  163prm  17031  317prm  17032  631prm  17033  1259prm  17042  mcubic  26779  cubic2  26780  cubic  26781  quartlem1  26789  quartlem2  26790  log2ublem1  26878  log2ublem2  26879  log2ub  26881  lgsdir2lem3  27260  lngndx  28411  lngid  28413  slotslnbpsd  28415  lngndxnitvndx  28416  eengstr  28953  ex-xp  30408  ex-mod  30421  ex-prmo  30431  hgt750lem2  34657  60gcd7e1  42038  60lcm7e420  42043  lcm7un  42052  lcmineqlem  42085  3lexlogpow5ineq2  42088  3lexlogpow2ineq1  42091  3lexlogpow2ineq2  42092  7ne0  42295  rmydioph  43047  expdiophlem2  43055  257prm  47592  fmtno5nprm  47614  139prmALT  47627  127prm  47630  8exp8mod9  47767  nnsum3primesle9  47825  bgoldbtbndlem1  47836  tgoldbach  47848
  Copyright terms: Public domain W3C validator