MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  7nn Structured version   Visualization version   GIF version

Theorem 7nn 12358
Description: 7 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
7nn 7 ∈ ℕ

Proof of Theorem 7nn
StepHypRef Expression
1 df-7 12334 . 2 7 = (6 + 1)
2 6nn 12355 . . 3 6 ∈ ℕ
3 peano2nn 12278 . . 3 (6 ∈ ℕ → (6 + 1) ∈ ℕ)
42, 3ax-mp 5 . 2 (6 + 1) ∈ ℕ
51, 4eqeltri 2837 1 7 ∈ ℕ
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  (class class class)co 7431  1c1 11156   + caddc 11158  cn 12266  6c6 12325  7c7 12326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755  ax-1cn 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334
This theorem is referenced by:  8nn  12361  7nn0  12548  7prm  17148  17prm  17154  prmlem2  17157  37prm  17158  43prm  17159  83prm  17160  139prm  17161  163prm  17162  317prm  17163  631prm  17164  1259prm  17173  mcubic  26890  cubic2  26891  cubic  26892  quartlem1  26900  quartlem2  26901  log2ublem1  26989  log2ublem2  26990  log2ub  26992  lgsdir2lem3  27371  lngndx  28446  lngid  28448  slotslnbpsd  28450  lngndxnitvndx  28451  ttgvalOLD  28884  ttglemOLD  28886  eengstr  28995  ex-xp  30455  ex-mod  30468  ex-prmo  30478  hgt750lem2  34667  60gcd7e1  42006  60lcm7e420  42011  lcm7un  42020  lcmineqlem  42053  3lexlogpow5ineq2  42056  3lexlogpow2ineq1  42059  3lexlogpow2ineq2  42060  rmydioph  43026  expdiophlem2  43034  257prm  47548  fmtno5nprm  47570  139prmALT  47583  127prm  47586  8exp8mod9  47723  nnsum3primesle9  47781  bgoldbtbndlem1  47792  tgoldbach  47804
  Copyright terms: Public domain W3C validator