Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 7nn | Structured version Visualization version GIF version |
Description: 7 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
7nn | ⊢ 7 ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-7 12050 | . 2 ⊢ 7 = (6 + 1) | |
2 | 6nn 12071 | . . 3 ⊢ 6 ∈ ℕ | |
3 | peano2nn 11994 | . . 3 ⊢ (6 ∈ ℕ → (6 + 1) ∈ ℕ) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (6 + 1) ∈ ℕ |
5 | 1, 4 | eqeltri 2836 | 1 ⊢ 7 ∈ ℕ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 (class class class)co 7284 1c1 10881 + caddc 10883 ℕcn 11982 6c6 12041 7c7 12042 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pr 5353 ax-un 7597 ax-1cn 10938 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-iun 4927 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-ov 7287 df-om 7722 df-2nd 7841 df-frecs 8106 df-wrecs 8137 df-recs 8211 df-rdg 8250 df-nn 11983 df-2 12045 df-3 12046 df-4 12047 df-5 12048 df-6 12049 df-7 12050 |
This theorem is referenced by: 8nn 12077 7nn0 12264 7prm 16821 17prm 16827 prmlem2 16830 37prm 16831 43prm 16832 83prm 16833 139prm 16834 163prm 16835 317prm 16836 631prm 16837 1259prm 16846 mcubic 26006 cubic2 26007 cubic 26008 quartlem1 26016 quartlem2 26017 log2ublem1 26105 log2ublem2 26106 log2ub 26108 lgsdir2lem3 26484 lngndx 26808 lngid 26810 slotslnbpsd 26812 lngndxnitvndx 26813 ttgvalOLD 27246 ttglemOLD 27248 eengstr 27357 ex-xp 28809 ex-mod 28822 ex-prmo 28832 hgt750lem2 32641 60gcd7e1 40020 60lcm7e420 40025 lcm7un 40034 lcmineqlem 40067 3lexlogpow5ineq2 40070 3lexlogpow2ineq1 40073 3lexlogpow2ineq2 40074 rmydioph 40843 expdiophlem2 40851 257prm 45024 fmtno5nprm 45046 139prmALT 45059 127prm 45062 8exp8mod9 45199 nnsum3primesle9 45257 bgoldbtbndlem1 45268 tgoldbach 45280 |
Copyright terms: Public domain | W3C validator |