| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 7nn | Structured version Visualization version GIF version | ||
| Description: 7 is a positive integer. (Contributed by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| 7nn | ⊢ 7 ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-7 12214 | . 2 ⊢ 7 = (6 + 1) | |
| 2 | 6nn 12235 | . . 3 ⊢ 6 ∈ ℕ | |
| 3 | peano2nn 12158 | . . 3 ⊢ (6 ∈ ℕ → (6 + 1) ∈ ℕ) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (6 + 1) ∈ ℕ |
| 5 | 1, 4 | eqeltri 2824 | 1 ⊢ 7 ∈ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7353 1c1 11029 + caddc 11031 ℕcn 12146 6c6 12205 7c7 12206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 ax-1cn 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 |
| This theorem is referenced by: 8nn 12241 7nn0 12424 7prm 17040 17prm 17046 prmlem2 17049 37prm 17050 43prm 17051 83prm 17052 139prm 17053 163prm 17054 317prm 17055 631prm 17056 1259prm 17065 mcubic 26773 cubic2 26774 cubic 26775 quartlem1 26783 quartlem2 26784 log2ublem1 26872 log2ublem2 26873 log2ub 26875 lgsdir2lem3 27254 lngndx 28401 lngid 28403 slotslnbpsd 28405 lngndxnitvndx 28406 eengstr 28943 ex-xp 30398 ex-mod 30411 ex-prmo 30421 hgt750lem2 34622 60gcd7e1 41981 60lcm7e420 41986 lcm7un 41995 lcmineqlem 42028 3lexlogpow5ineq2 42031 3lexlogpow2ineq1 42034 3lexlogpow2ineq2 42035 7ne0 42238 rmydioph 42990 expdiophlem2 42998 257prm 47549 fmtno5nprm 47571 139prmALT 47584 127prm 47587 8exp8mod9 47724 nnsum3primesle9 47782 bgoldbtbndlem1 47793 tgoldbach 47805 |
| Copyright terms: Public domain | W3C validator |