| Step | Hyp | Ref
| Expression |
| 1 | | nfv 1914 |
. . . 4
⊢
Ⅎ𝑘𝜑 |
| 2 | | meadjiunlem.g |
. . . . . 6
⊢ (𝜑 → 𝐺:𝑋⟶𝑆) |
| 3 | | meadjiunlem.x |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| 4 | 2, 3 | jca 511 |
. . . . 5
⊢ (𝜑 → (𝐺:𝑋⟶𝑆 ∧ 𝑋 ∈ 𝑉)) |
| 5 | | fex 7246 |
. . . . 5
⊢ ((𝐺:𝑋⟶𝑆 ∧ 𝑋 ∈ 𝑉) → 𝐺 ∈ V) |
| 6 | | rnexg 7924 |
. . . . 5
⊢ (𝐺 ∈ V → ran 𝐺 ∈ V) |
| 7 | 4, 5, 6 | 3syl 18 |
. . . 4
⊢ (𝜑 → ran 𝐺 ∈ V) |
| 8 | | difssd 4137 |
. . . 4
⊢ (𝜑 → (ran 𝐺 ∖ {∅}) ⊆ ran 𝐺) |
| 9 | | meadjiunlem.f |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ Meas) |
| 10 | | meadjiunlem.3 |
. . . . . . 7
⊢ 𝑆 = dom 𝑀 |
| 11 | 9, 10 | meaf 46468 |
. . . . . 6
⊢ (𝜑 → 𝑀:𝑆⟶(0[,]+∞)) |
| 12 | 11 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (ran 𝐺 ∖ {∅})) → 𝑀:𝑆⟶(0[,]+∞)) |
| 13 | 2 | frnd 6744 |
. . . . . . 7
⊢ (𝜑 → ran 𝐺 ⊆ 𝑆) |
| 14 | 13 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ran 𝐺 ∖ {∅})) → ran 𝐺 ⊆ 𝑆) |
| 15 | 8 | sselda 3983 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ran 𝐺 ∖ {∅})) → 𝑘 ∈ ran 𝐺) |
| 16 | 14, 15 | sseldd 3984 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (ran 𝐺 ∖ {∅})) → 𝑘 ∈ 𝑆) |
| 17 | 12, 16 | ffvelcdmd 7105 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (ran 𝐺 ∖ {∅})) → (𝑀‘𝑘) ∈ (0[,]+∞)) |
| 18 | | simpl 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (ran 𝐺 ∖ (ran 𝐺 ∖ {∅}))) → 𝜑) |
| 19 | | id 22 |
. . . . . . . 8
⊢ (𝑘 ∈ (ran 𝐺 ∖ (ran 𝐺 ∖ {∅})) → 𝑘 ∈ (ran 𝐺 ∖ (ran 𝐺 ∖ {∅}))) |
| 20 | | dfin4 4278 |
. . . . . . . . 9
⊢ (ran
𝐺 ∩ {∅}) = (ran
𝐺 ∖ (ran 𝐺 ∖
{∅})) |
| 21 | 20 | eqcomi 2746 |
. . . . . . . 8
⊢ (ran
𝐺 ∖ (ran 𝐺 ∖ {∅})) = (ran
𝐺 ∩
{∅}) |
| 22 | 19, 21 | eleqtrdi 2851 |
. . . . . . 7
⊢ (𝑘 ∈ (ran 𝐺 ∖ (ran 𝐺 ∖ {∅})) → 𝑘 ∈ (ran 𝐺 ∩ {∅})) |
| 23 | | elinel2 4202 |
. . . . . . . 8
⊢ (𝑘 ∈ (ran 𝐺 ∩ {∅}) → 𝑘 ∈ {∅}) |
| 24 | | elsni 4643 |
. . . . . . . 8
⊢ (𝑘 ∈ {∅} → 𝑘 = ∅) |
| 25 | 23, 24 | syl 17 |
. . . . . . 7
⊢ (𝑘 ∈ (ran 𝐺 ∩ {∅}) → 𝑘 = ∅) |
| 26 | 22, 25 | syl 17 |
. . . . . 6
⊢ (𝑘 ∈ (ran 𝐺 ∖ (ran 𝐺 ∖ {∅})) → 𝑘 = ∅) |
| 27 | 26 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (ran 𝐺 ∖ (ran 𝐺 ∖ {∅}))) → 𝑘 = ∅) |
| 28 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 = ∅) → 𝑘 = ∅) |
| 29 | 28 | fveq2d 6910 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 = ∅) → (𝑀‘𝑘) = (𝑀‘∅)) |
| 30 | 9 | mea0 46469 |
. . . . . . 7
⊢ (𝜑 → (𝑀‘∅) = 0) |
| 31 | 30 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 = ∅) → (𝑀‘∅) = 0) |
| 32 | 29, 31 | eqtrd 2777 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 = ∅) → (𝑀‘𝑘) = 0) |
| 33 | 18, 27, 32 | syl2anc 584 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (ran 𝐺 ∖ (ran 𝐺 ∖ {∅}))) → (𝑀‘𝑘) = 0) |
| 34 | 1, 7, 8, 17, 33 | sge0ss 46427 |
. . 3
⊢ (𝜑 →
(Σ^‘(𝑘 ∈ (ran 𝐺 ∖ {∅}) ↦ (𝑀‘𝑘))) =
(Σ^‘(𝑘 ∈ ran 𝐺 ↦ (𝑀‘𝑘)))) |
| 35 | 34 | eqcomd 2743 |
. 2
⊢ (𝜑 →
(Σ^‘(𝑘 ∈ ran 𝐺 ↦ (𝑀‘𝑘))) =
(Σ^‘(𝑘 ∈ (ran 𝐺 ∖ {∅}) ↦ (𝑀‘𝑘)))) |
| 36 | 11, 13 | feqresmpt 6978 |
. . 3
⊢ (𝜑 → (𝑀 ↾ ran 𝐺) = (𝑘 ∈ ran 𝐺 ↦ (𝑀‘𝑘))) |
| 37 | 36 | fveq2d 6910 |
. 2
⊢ (𝜑 →
(Σ^‘(𝑀 ↾ ran 𝐺)) =
(Σ^‘(𝑘 ∈ ran 𝐺 ↦ (𝑀‘𝑘)))) |
| 38 | 2 | ffvelcdmda 7104 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → (𝐺‘𝑗) ∈ 𝑆) |
| 39 | 2 | feqmptd 6977 |
. . . . 5
⊢ (𝜑 → 𝐺 = (𝑗 ∈ 𝑋 ↦ (𝐺‘𝑗))) |
| 40 | 11 | feqmptd 6977 |
. . . . 5
⊢ (𝜑 → 𝑀 = (𝑘 ∈ 𝑆 ↦ (𝑀‘𝑘))) |
| 41 | | fveq2 6906 |
. . . . 5
⊢ (𝑘 = (𝐺‘𝑗) → (𝑀‘𝑘) = (𝑀‘(𝐺‘𝑗))) |
| 42 | 38, 39, 40, 41 | fmptco 7149 |
. . . 4
⊢ (𝜑 → (𝑀 ∘ 𝐺) = (𝑗 ∈ 𝑋 ↦ (𝑀‘(𝐺‘𝑗)))) |
| 43 | 42 | fveq2d 6910 |
. . 3
⊢ (𝜑 →
(Σ^‘(𝑀 ∘ 𝐺)) =
(Σ^‘(𝑗 ∈ 𝑋 ↦ (𝑀‘(𝐺‘𝑗))))) |
| 44 | | nfv 1914 |
. . . . 5
⊢
Ⅎ𝑗𝜑 |
| 45 | | meadjiunlem.y |
. . . . . 6
⊢ 𝑌 = {𝑖 ∈ 𝑋 ∣ (𝐺‘𝑖) ≠ ∅} |
| 46 | | ssrab2 4080 |
. . . . . . 7
⊢ {𝑖 ∈ 𝑋 ∣ (𝐺‘𝑖) ≠ ∅} ⊆ 𝑋 |
| 47 | 46 | a1i 11 |
. . . . . 6
⊢ (𝜑 → {𝑖 ∈ 𝑋 ∣ (𝐺‘𝑖) ≠ ∅} ⊆ 𝑋) |
| 48 | 45, 47 | eqsstrid 4022 |
. . . . 5
⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
| 49 | 11 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑌) → 𝑀:𝑆⟶(0[,]+∞)) |
| 50 | 2 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑌) → 𝐺:𝑋⟶𝑆) |
| 51 | 48 | sselda 3983 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑌) → 𝑗 ∈ 𝑋) |
| 52 | 50, 51 | ffvelcdmd 7105 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑌) → (𝐺‘𝑗) ∈ 𝑆) |
| 53 | 49, 52 | ffvelcdmd 7105 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑌) → (𝑀‘(𝐺‘𝑗)) ∈ (0[,]+∞)) |
| 54 | | eldifi 4131 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (𝑋 ∖ 𝑌) → 𝑗 ∈ 𝑋) |
| 55 | 54 | ad2antlr 727 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑋 ∖ 𝑌)) ∧ (𝑀‘(𝐺‘𝑗)) ≠ 0) → 𝑗 ∈ 𝑋) |
| 56 | | fveq2 6906 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺‘𝑗) = ∅ → (𝑀‘(𝐺‘𝑗)) = (𝑀‘∅)) |
| 57 | 56 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝐺‘𝑗) = ∅) → (𝑀‘(𝐺‘𝑗)) = (𝑀‘∅)) |
| 58 | 9 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝐺‘𝑗) = ∅) → 𝑀 ∈ Meas) |
| 59 | 58 | mea0 46469 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝐺‘𝑗) = ∅) → (𝑀‘∅) = 0) |
| 60 | 57, 59 | eqtrd 2777 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝐺‘𝑗) = ∅) → (𝑀‘(𝐺‘𝑗)) = 0) |
| 61 | 60 | ad4ant14 752 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑗 ∈ (𝑋 ∖ 𝑌)) ∧ (𝑀‘(𝐺‘𝑗)) ≠ 0) ∧ (𝐺‘𝑗) = ∅) → (𝑀‘(𝐺‘𝑗)) = 0) |
| 62 | | neneq 2946 |
. . . . . . . . . . . . 13
⊢ ((𝑀‘(𝐺‘𝑗)) ≠ 0 → ¬ (𝑀‘(𝐺‘𝑗)) = 0) |
| 63 | 62 | ad2antlr 727 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑗 ∈ (𝑋 ∖ 𝑌)) ∧ (𝑀‘(𝐺‘𝑗)) ≠ 0) ∧ (𝐺‘𝑗) = ∅) → ¬ (𝑀‘(𝐺‘𝑗)) = 0) |
| 64 | 61, 63 | pm2.65da 817 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑋 ∖ 𝑌)) ∧ (𝑀‘(𝐺‘𝑗)) ≠ 0) → ¬ (𝐺‘𝑗) = ∅) |
| 65 | 64 | neqned 2947 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑋 ∖ 𝑌)) ∧ (𝑀‘(𝐺‘𝑗)) ≠ 0) → (𝐺‘𝑗) ≠ ∅) |
| 66 | 55, 65 | jca 511 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑋 ∖ 𝑌)) ∧ (𝑀‘(𝐺‘𝑗)) ≠ 0) → (𝑗 ∈ 𝑋 ∧ (𝐺‘𝑗) ≠ ∅)) |
| 67 | | fveq2 6906 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑗 → (𝐺‘𝑖) = (𝐺‘𝑗)) |
| 68 | 67 | neeq1d 3000 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑗 → ((𝐺‘𝑖) ≠ ∅ ↔ (𝐺‘𝑗) ≠ ∅)) |
| 69 | 68 | elrab 3692 |
. . . . . . . . 9
⊢ (𝑗 ∈ {𝑖 ∈ 𝑋 ∣ (𝐺‘𝑖) ≠ ∅} ↔ (𝑗 ∈ 𝑋 ∧ (𝐺‘𝑗) ≠ ∅)) |
| 70 | 66, 69 | sylibr 234 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑋 ∖ 𝑌)) ∧ (𝑀‘(𝐺‘𝑗)) ≠ 0) → 𝑗 ∈ {𝑖 ∈ 𝑋 ∣ (𝐺‘𝑖) ≠ ∅}) |
| 71 | 70, 45 | eleqtrrdi 2852 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑋 ∖ 𝑌)) ∧ (𝑀‘(𝐺‘𝑗)) ≠ 0) → 𝑗 ∈ 𝑌) |
| 72 | | eldifn 4132 |
. . . . . . . 8
⊢ (𝑗 ∈ (𝑋 ∖ 𝑌) → ¬ 𝑗 ∈ 𝑌) |
| 73 | 72 | ad2antlr 727 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑋 ∖ 𝑌)) ∧ (𝑀‘(𝐺‘𝑗)) ≠ 0) → ¬ 𝑗 ∈ 𝑌) |
| 74 | 71, 73 | pm2.65da 817 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑋 ∖ 𝑌)) → ¬ (𝑀‘(𝐺‘𝑗)) ≠ 0) |
| 75 | | nne 2944 |
. . . . . 6
⊢ (¬
(𝑀‘(𝐺‘𝑗)) ≠ 0 ↔ (𝑀‘(𝐺‘𝑗)) = 0) |
| 76 | 74, 75 | sylib 218 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑋 ∖ 𝑌)) → (𝑀‘(𝐺‘𝑗)) = 0) |
| 77 | 44, 3, 48, 53, 76 | sge0ss 46427 |
. . . 4
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ 𝑌 ↦ (𝑀‘(𝐺‘𝑗)))) =
(Σ^‘(𝑗 ∈ 𝑋 ↦ (𝑀‘(𝐺‘𝑗))))) |
| 78 | 77 | eqcomd 2743 |
. . 3
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ 𝑋 ↦ (𝑀‘(𝐺‘𝑗)))) =
(Σ^‘(𝑗 ∈ 𝑌 ↦ (𝑀‘(𝐺‘𝑗))))) |
| 79 | 3, 48 | ssexd 5324 |
. . . . 5
⊢ (𝜑 → 𝑌 ∈ V) |
| 80 | | nfv 1914 |
. . . . . . . . 9
⊢
Ⅎ𝑖𝜑 |
| 81 | | eqid 2737 |
. . . . . . . . 9
⊢ (𝑖 ∈ 𝑌 ↦ (𝐺‘𝑖)) = (𝑖 ∈ 𝑌 ↦ (𝐺‘𝑖)) |
| 82 | 2 | ffnd 6737 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐺 Fn 𝑋) |
| 83 | | dffn3 6748 |
. . . . . . . . . . . . 13
⊢ (𝐺 Fn 𝑋 ↔ 𝐺:𝑋⟶ran 𝐺) |
| 84 | 82, 83 | sylib 218 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐺:𝑋⟶ran 𝐺) |
| 85 | 84 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑌) → 𝐺:𝑋⟶ran 𝐺) |
| 86 | 48 | sselda 3983 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑌) → 𝑖 ∈ 𝑋) |
| 87 | 85, 86 | ffvelcdmd 7105 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑌) → (𝐺‘𝑖) ∈ ran 𝐺) |
| 88 | 45 | eleq2i 2833 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ 𝑌 ↔ 𝑖 ∈ {𝑖 ∈ 𝑋 ∣ (𝐺‘𝑖) ≠ ∅}) |
| 89 | | rabid 3458 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ {𝑖 ∈ 𝑋 ∣ (𝐺‘𝑖) ≠ ∅} ↔ (𝑖 ∈ 𝑋 ∧ (𝐺‘𝑖) ≠ ∅)) |
| 90 | 88, 89 | bitri 275 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ 𝑌 ↔ (𝑖 ∈ 𝑋 ∧ (𝐺‘𝑖) ≠ ∅)) |
| 91 | 90 | biimpi 216 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ 𝑌 → (𝑖 ∈ 𝑋 ∧ (𝐺‘𝑖) ≠ ∅)) |
| 92 | 91 | simprd 495 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ 𝑌 → (𝐺‘𝑖) ≠ ∅) |
| 93 | 92 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑌) → (𝐺‘𝑖) ≠ ∅) |
| 94 | | nelsn 4666 |
. . . . . . . . . . 11
⊢ ((𝐺‘𝑖) ≠ ∅ → ¬ (𝐺‘𝑖) ∈ {∅}) |
| 95 | 93, 94 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑌) → ¬ (𝐺‘𝑖) ∈ {∅}) |
| 96 | 87, 95 | eldifd 3962 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑌) → (𝐺‘𝑖) ∈ (ran 𝐺 ∖ {∅})) |
| 97 | | meadjiunlem.dj |
. . . . . . . . . 10
⊢ (𝜑 → Disj 𝑖 ∈ 𝑋 (𝐺‘𝑖)) |
| 98 | | disjss1 5116 |
. . . . . . . . . 10
⊢ (𝑌 ⊆ 𝑋 → (Disj 𝑖 ∈ 𝑋 (𝐺‘𝑖) → Disj 𝑖 ∈ 𝑌 (𝐺‘𝑖))) |
| 99 | 48, 97, 98 | sylc 65 |
. . . . . . . . 9
⊢ (𝜑 → Disj 𝑖 ∈ 𝑌 (𝐺‘𝑖)) |
| 100 | 80, 81, 96, 93, 99 | disjf1 45188 |
. . . . . . . 8
⊢ (𝜑 → (𝑖 ∈ 𝑌 ↦ (𝐺‘𝑖)):𝑌–1-1→(ran 𝐺 ∖ {∅})) |
| 101 | 2, 48 | feqresmpt 6978 |
. . . . . . . . 9
⊢ (𝜑 → (𝐺 ↾ 𝑌) = (𝑖 ∈ 𝑌 ↦ (𝐺‘𝑖))) |
| 102 | | f1eq1 6799 |
. . . . . . . . 9
⊢ ((𝐺 ↾ 𝑌) = (𝑖 ∈ 𝑌 ↦ (𝐺‘𝑖)) → ((𝐺 ↾ 𝑌):𝑌–1-1→(ran 𝐺 ∖ {∅}) ↔ (𝑖 ∈ 𝑌 ↦ (𝐺‘𝑖)):𝑌–1-1→(ran 𝐺 ∖ {∅}))) |
| 103 | 101, 102 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ((𝐺 ↾ 𝑌):𝑌–1-1→(ran 𝐺 ∖ {∅}) ↔ (𝑖 ∈ 𝑌 ↦ (𝐺‘𝑖)):𝑌–1-1→(ran 𝐺 ∖ {∅}))) |
| 104 | 100, 103 | mpbird 257 |
. . . . . . 7
⊢ (𝜑 → (𝐺 ↾ 𝑌):𝑌–1-1→(ran 𝐺 ∖ {∅})) |
| 105 | 101 | rneqd 5949 |
. . . . . . . . 9
⊢ (𝜑 → ran (𝐺 ↾ 𝑌) = ran (𝑖 ∈ 𝑌 ↦ (𝐺‘𝑖))) |
| 106 | 96 | ralrimiva 3146 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑖 ∈ 𝑌 (𝐺‘𝑖) ∈ (ran 𝐺 ∖ {∅})) |
| 107 | 81 | rnmptss 7143 |
. . . . . . . . . 10
⊢
(∀𝑖 ∈
𝑌 (𝐺‘𝑖) ∈ (ran 𝐺 ∖ {∅}) → ran (𝑖 ∈ 𝑌 ↦ (𝐺‘𝑖)) ⊆ (ran 𝐺 ∖ {∅})) |
| 108 | 106, 107 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ran (𝑖 ∈ 𝑌 ↦ (𝐺‘𝑖)) ⊆ (ran 𝐺 ∖ {∅})) |
| 109 | 105, 108 | eqsstrd 4018 |
. . . . . . . 8
⊢ (𝜑 → ran (𝐺 ↾ 𝑌) ⊆ (ran 𝐺 ∖ {∅})) |
| 110 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (ran 𝐺 ∖ {∅})) → 𝜑) |
| 111 | | eldifi 4131 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (ran 𝐺 ∖ {∅}) → 𝑥 ∈ ran 𝐺) |
| 112 | 111 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (ran 𝐺 ∖ {∅})) → 𝑥 ∈ ran 𝐺) |
| 113 | | eldifsni 4790 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (ran 𝐺 ∖ {∅}) → 𝑥 ≠ ∅) |
| 114 | 113 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (ran 𝐺 ∖ {∅})) → 𝑥 ≠ ∅) |
| 115 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐺) → 𝑥 ∈ ran 𝐺) |
| 116 | | fvelrnb 6969 |
. . . . . . . . . . . . . 14
⊢ (𝐺 Fn 𝑋 → (𝑥 ∈ ran 𝐺 ↔ ∃𝑖 ∈ 𝑋 (𝐺‘𝑖) = 𝑥)) |
| 117 | 82, 116 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑥 ∈ ran 𝐺 ↔ ∃𝑖 ∈ 𝑋 (𝐺‘𝑖) = 𝑥)) |
| 118 | 117 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐺) → (𝑥 ∈ ran 𝐺 ↔ ∃𝑖 ∈ 𝑋 (𝐺‘𝑖) = 𝑥)) |
| 119 | 115, 118 | mpbid 232 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐺) → ∃𝑖 ∈ 𝑋 (𝐺‘𝑖) = 𝑥) |
| 120 | 119 | 3adant3 1133 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐺 ∧ 𝑥 ≠ ∅) → ∃𝑖 ∈ 𝑋 (𝐺‘𝑖) = 𝑥) |
| 121 | | id 22 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺‘𝑖) = 𝑥 → (𝐺‘𝑖) = 𝑥) |
| 122 | 121 | eqcomd 2743 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺‘𝑖) = 𝑥 → 𝑥 = (𝐺‘𝑖)) |
| 123 | 122 | 3ad2ant3 1136 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ≠ ∅) ∧ 𝑖 ∈ 𝑋 ∧ (𝐺‘𝑖) = 𝑥) → 𝑥 = (𝐺‘𝑖)) |
| 124 | | simp1l 1198 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ≠ ∅) ∧ 𝑖 ∈ 𝑋 ∧ (𝐺‘𝑖) = 𝑥) → 𝜑) |
| 125 | | simp2 1138 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ≠ ∅) ∧ 𝑖 ∈ 𝑋 ∧ (𝐺‘𝑖) = 𝑥) → 𝑖 ∈ 𝑋) |
| 126 | | simpr 484 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ≠ ∅ ∧ (𝐺‘𝑖) = 𝑥) → (𝐺‘𝑖) = 𝑥) |
| 127 | | simpl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ≠ ∅ ∧ (𝐺‘𝑖) = 𝑥) → 𝑥 ≠ ∅) |
| 128 | 126, 127 | eqnetrd 3008 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ≠ ∅ ∧ (𝐺‘𝑖) = 𝑥) → (𝐺‘𝑖) ≠ ∅) |
| 129 | 128 | adantll 714 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ≠ ∅) ∧ (𝐺‘𝑖) = 𝑥) → (𝐺‘𝑖) ≠ ∅) |
| 130 | 129 | 3adant2 1132 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ≠ ∅) ∧ 𝑖 ∈ 𝑋 ∧ (𝐺‘𝑖) = 𝑥) → (𝐺‘𝑖) ≠ ∅) |
| 131 | 90 | biimpri 228 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 ∈ 𝑋 ∧ (𝐺‘𝑖) ≠ ∅) → 𝑖 ∈ 𝑌) |
| 132 | | fvexd 6921 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 ∈ 𝑋 ∧ (𝐺‘𝑖) ≠ ∅) → (𝐺‘𝑖) ∈ V) |
| 133 | 81 | elrnmpt1 5971 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 ∈ 𝑌 ∧ (𝐺‘𝑖) ∈ V) → (𝐺‘𝑖) ∈ ran (𝑖 ∈ 𝑌 ↦ (𝐺‘𝑖))) |
| 134 | 131, 132,
133 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑖 ∈ 𝑋 ∧ (𝐺‘𝑖) ≠ ∅) → (𝐺‘𝑖) ∈ ran (𝑖 ∈ 𝑌 ↦ (𝐺‘𝑖))) |
| 135 | 134 | 3adant1 1131 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋 ∧ (𝐺‘𝑖) ≠ ∅) → (𝐺‘𝑖) ∈ ran (𝑖 ∈ 𝑌 ↦ (𝐺‘𝑖))) |
| 136 | 105 | eqcomd 2743 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ran (𝑖 ∈ 𝑌 ↦ (𝐺‘𝑖)) = ran (𝐺 ↾ 𝑌)) |
| 137 | 136 | 3ad2ant1 1134 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋 ∧ (𝐺‘𝑖) ≠ ∅) → ran (𝑖 ∈ 𝑌 ↦ (𝐺‘𝑖)) = ran (𝐺 ↾ 𝑌)) |
| 138 | 135, 137 | eleqtrd 2843 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋 ∧ (𝐺‘𝑖) ≠ ∅) → (𝐺‘𝑖) ∈ ran (𝐺 ↾ 𝑌)) |
| 139 | 124, 125,
130, 138 | syl3anc 1373 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ≠ ∅) ∧ 𝑖 ∈ 𝑋 ∧ (𝐺‘𝑖) = 𝑥) → (𝐺‘𝑖) ∈ ran (𝐺 ↾ 𝑌)) |
| 140 | 123, 139 | eqeltrd 2841 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ≠ ∅) ∧ 𝑖 ∈ 𝑋 ∧ (𝐺‘𝑖) = 𝑥) → 𝑥 ∈ ran (𝐺 ↾ 𝑌)) |
| 141 | 140 | 3exp 1120 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ≠ ∅) → (𝑖 ∈ 𝑋 → ((𝐺‘𝑖) = 𝑥 → 𝑥 ∈ ran (𝐺 ↾ 𝑌)))) |
| 142 | 141 | rexlimdv 3153 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ≠ ∅) → (∃𝑖 ∈ 𝑋 (𝐺‘𝑖) = 𝑥 → 𝑥 ∈ ran (𝐺 ↾ 𝑌))) |
| 143 | 142 | 3adant2 1132 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐺 ∧ 𝑥 ≠ ∅) → (∃𝑖 ∈ 𝑋 (𝐺‘𝑖) = 𝑥 → 𝑥 ∈ ran (𝐺 ↾ 𝑌))) |
| 144 | 120, 143 | mpd 15 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐺 ∧ 𝑥 ≠ ∅) → 𝑥 ∈ ran (𝐺 ↾ 𝑌)) |
| 145 | 110, 112,
114, 144 | syl3anc 1373 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (ran 𝐺 ∖ {∅})) → 𝑥 ∈ ran (𝐺 ↾ 𝑌)) |
| 146 | 109, 145 | eqelssd 4005 |
. . . . . . 7
⊢ (𝜑 → ran (𝐺 ↾ 𝑌) = (ran 𝐺 ∖ {∅})) |
| 147 | 104, 146 | jca 511 |
. . . . . 6
⊢ (𝜑 → ((𝐺 ↾ 𝑌):𝑌–1-1→(ran 𝐺 ∖ {∅}) ∧ ran (𝐺 ↾ 𝑌) = (ran 𝐺 ∖ {∅}))) |
| 148 | | dff1o5 6857 |
. . . . . 6
⊢ ((𝐺 ↾ 𝑌):𝑌–1-1-onto→(ran
𝐺 ∖ {∅}) ↔
((𝐺 ↾ 𝑌):𝑌–1-1→(ran 𝐺 ∖ {∅}) ∧ ran (𝐺 ↾ 𝑌) = (ran 𝐺 ∖ {∅}))) |
| 149 | 147, 148 | sylibr 234 |
. . . . 5
⊢ (𝜑 → (𝐺 ↾ 𝑌):𝑌–1-1-onto→(ran
𝐺 ∖
{∅})) |
| 150 | | fvres 6925 |
. . . . . 6
⊢ (𝑗 ∈ 𝑌 → ((𝐺 ↾ 𝑌)‘𝑗) = (𝐺‘𝑗)) |
| 151 | 150 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑌) → ((𝐺 ↾ 𝑌)‘𝑗) = (𝐺‘𝑗)) |
| 152 | 1, 44, 41, 79, 149, 151, 17 | sge0f1o 46397 |
. . . 4
⊢ (𝜑 →
(Σ^‘(𝑘 ∈ (ran 𝐺 ∖ {∅}) ↦ (𝑀‘𝑘))) =
(Σ^‘(𝑗 ∈ 𝑌 ↦ (𝑀‘(𝐺‘𝑗))))) |
| 153 | 152 | eqcomd 2743 |
. . 3
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ 𝑌 ↦ (𝑀‘(𝐺‘𝑗)))) =
(Σ^‘(𝑘 ∈ (ran 𝐺 ∖ {∅}) ↦ (𝑀‘𝑘)))) |
| 154 | 43, 78, 153 | 3eqtrd 2781 |
. 2
⊢ (𝜑 →
(Σ^‘(𝑀 ∘ 𝐺)) =
(Σ^‘(𝑘 ∈ (ran 𝐺 ∖ {∅}) ↦ (𝑀‘𝑘)))) |
| 155 | 35, 37, 154 | 3eqtr4d 2787 |
1
⊢ (𝜑 →
(Σ^‘(𝑀 ↾ ran 𝐺)) =
(Σ^‘(𝑀 ∘ 𝐺))) |