Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  meadjiunlem Structured version   Visualization version   GIF version

Theorem meadjiunlem 46456
Description: The sum of nonnegative extended reals, restricted to the range of another function. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
meadjiunlem.f (𝜑𝑀 ∈ Meas)
meadjiunlem.3 𝑆 = dom 𝑀
meadjiunlem.x (𝜑𝑋𝑉)
meadjiunlem.g (𝜑𝐺:𝑋𝑆)
meadjiunlem.y 𝑌 = {𝑖𝑋 ∣ (𝐺𝑖) ≠ ∅}
meadjiunlem.dj (𝜑Disj 𝑖𝑋 (𝐺𝑖))
Assertion
Ref Expression
meadjiunlem (𝜑 → (Σ^‘(𝑀 ↾ ran 𝐺)) = (Σ^‘(𝑀𝐺)))
Distinct variable groups:   𝑖,𝐺   𝑖,𝑋   𝑖,𝑌   𝜑,𝑖
Allowed substitution hints:   𝑆(𝑖)   𝑀(𝑖)   𝑉(𝑖)

Proof of Theorem meadjiunlem
Dummy variables 𝑗 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1914 . . . 4 𝑘𝜑
2 meadjiunlem.g . . . . . 6 (𝜑𝐺:𝑋𝑆)
3 meadjiunlem.x . . . . . 6 (𝜑𝑋𝑉)
42, 3jca 511 . . . . 5 (𝜑 → (𝐺:𝑋𝑆𝑋𝑉))
5 fex 7162 . . . . 5 ((𝐺:𝑋𝑆𝑋𝑉) → 𝐺 ∈ V)
6 rnexg 7835 . . . . 5 (𝐺 ∈ V → ran 𝐺 ∈ V)
74, 5, 63syl 18 . . . 4 (𝜑 → ran 𝐺 ∈ V)
8 difssd 4088 . . . 4 (𝜑 → (ran 𝐺 ∖ {∅}) ⊆ ran 𝐺)
9 meadjiunlem.f . . . . . . 7 (𝜑𝑀 ∈ Meas)
10 meadjiunlem.3 . . . . . . 7 𝑆 = dom 𝑀
119, 10meaf 46444 . . . . . 6 (𝜑𝑀:𝑆⟶(0[,]+∞))
1211adantr 480 . . . . 5 ((𝜑𝑘 ∈ (ran 𝐺 ∖ {∅})) → 𝑀:𝑆⟶(0[,]+∞))
132frnd 6660 . . . . . . 7 (𝜑 → ran 𝐺𝑆)
1413adantr 480 . . . . . 6 ((𝜑𝑘 ∈ (ran 𝐺 ∖ {∅})) → ran 𝐺𝑆)
158sselda 3935 . . . . . 6 ((𝜑𝑘 ∈ (ran 𝐺 ∖ {∅})) → 𝑘 ∈ ran 𝐺)
1614, 15sseldd 3936 . . . . 5 ((𝜑𝑘 ∈ (ran 𝐺 ∖ {∅})) → 𝑘𝑆)
1712, 16ffvelcdmd 7019 . . . 4 ((𝜑𝑘 ∈ (ran 𝐺 ∖ {∅})) → (𝑀𝑘) ∈ (0[,]+∞))
18 simpl 482 . . . . 5 ((𝜑𝑘 ∈ (ran 𝐺 ∖ (ran 𝐺 ∖ {∅}))) → 𝜑)
19 id 22 . . . . . . . 8 (𝑘 ∈ (ran 𝐺 ∖ (ran 𝐺 ∖ {∅})) → 𝑘 ∈ (ran 𝐺 ∖ (ran 𝐺 ∖ {∅})))
20 dfin4 4229 . . . . . . . . 9 (ran 𝐺 ∩ {∅}) = (ran 𝐺 ∖ (ran 𝐺 ∖ {∅}))
2120eqcomi 2738 . . . . . . . 8 (ran 𝐺 ∖ (ran 𝐺 ∖ {∅})) = (ran 𝐺 ∩ {∅})
2219, 21eleqtrdi 2838 . . . . . . 7 (𝑘 ∈ (ran 𝐺 ∖ (ran 𝐺 ∖ {∅})) → 𝑘 ∈ (ran 𝐺 ∩ {∅}))
23 elinel2 4153 . . . . . . . 8 (𝑘 ∈ (ran 𝐺 ∩ {∅}) → 𝑘 ∈ {∅})
24 elsni 4594 . . . . . . . 8 (𝑘 ∈ {∅} → 𝑘 = ∅)
2523, 24syl 17 . . . . . . 7 (𝑘 ∈ (ran 𝐺 ∩ {∅}) → 𝑘 = ∅)
2622, 25syl 17 . . . . . 6 (𝑘 ∈ (ran 𝐺 ∖ (ran 𝐺 ∖ {∅})) → 𝑘 = ∅)
2726adantl 481 . . . . 5 ((𝜑𝑘 ∈ (ran 𝐺 ∖ (ran 𝐺 ∖ {∅}))) → 𝑘 = ∅)
28 simpr 484 . . . . . . 7 ((𝜑𝑘 = ∅) → 𝑘 = ∅)
2928fveq2d 6826 . . . . . 6 ((𝜑𝑘 = ∅) → (𝑀𝑘) = (𝑀‘∅))
309mea0 46445 . . . . . . 7 (𝜑 → (𝑀‘∅) = 0)
3130adantr 480 . . . . . 6 ((𝜑𝑘 = ∅) → (𝑀‘∅) = 0)
3229, 31eqtrd 2764 . . . . 5 ((𝜑𝑘 = ∅) → (𝑀𝑘) = 0)
3318, 27, 32syl2anc 584 . . . 4 ((𝜑𝑘 ∈ (ran 𝐺 ∖ (ran 𝐺 ∖ {∅}))) → (𝑀𝑘) = 0)
341, 7, 8, 17, 33sge0ss 46403 . . 3 (𝜑 → (Σ^‘(𝑘 ∈ (ran 𝐺 ∖ {∅}) ↦ (𝑀𝑘))) = (Σ^‘(𝑘 ∈ ran 𝐺 ↦ (𝑀𝑘))))
3534eqcomd 2735 . 2 (𝜑 → (Σ^‘(𝑘 ∈ ran 𝐺 ↦ (𝑀𝑘))) = (Σ^‘(𝑘 ∈ (ran 𝐺 ∖ {∅}) ↦ (𝑀𝑘))))
3611, 13feqresmpt 6892 . . 3 (𝜑 → (𝑀 ↾ ran 𝐺) = (𝑘 ∈ ran 𝐺 ↦ (𝑀𝑘)))
3736fveq2d 6826 . 2 (𝜑 → (Σ^‘(𝑀 ↾ ran 𝐺)) = (Σ^‘(𝑘 ∈ ran 𝐺 ↦ (𝑀𝑘))))
382ffvelcdmda 7018 . . . . 5 ((𝜑𝑗𝑋) → (𝐺𝑗) ∈ 𝑆)
392feqmptd 6891 . . . . 5 (𝜑𝐺 = (𝑗𝑋 ↦ (𝐺𝑗)))
4011feqmptd 6891 . . . . 5 (𝜑𝑀 = (𝑘𝑆 ↦ (𝑀𝑘)))
41 fveq2 6822 . . . . 5 (𝑘 = (𝐺𝑗) → (𝑀𝑘) = (𝑀‘(𝐺𝑗)))
4238, 39, 40, 41fmptco 7063 . . . 4 (𝜑 → (𝑀𝐺) = (𝑗𝑋 ↦ (𝑀‘(𝐺𝑗))))
4342fveq2d 6826 . . 3 (𝜑 → (Σ^‘(𝑀𝐺)) = (Σ^‘(𝑗𝑋 ↦ (𝑀‘(𝐺𝑗)))))
44 nfv 1914 . . . . 5 𝑗𝜑
45 meadjiunlem.y . . . . . 6 𝑌 = {𝑖𝑋 ∣ (𝐺𝑖) ≠ ∅}
46 ssrab2 4031 . . . . . . 7 {𝑖𝑋 ∣ (𝐺𝑖) ≠ ∅} ⊆ 𝑋
4746a1i 11 . . . . . 6 (𝜑 → {𝑖𝑋 ∣ (𝐺𝑖) ≠ ∅} ⊆ 𝑋)
4845, 47eqsstrid 3974 . . . . 5 (𝜑𝑌𝑋)
4911adantr 480 . . . . . 6 ((𝜑𝑗𝑌) → 𝑀:𝑆⟶(0[,]+∞))
502adantr 480 . . . . . . 7 ((𝜑𝑗𝑌) → 𝐺:𝑋𝑆)
5148sselda 3935 . . . . . . 7 ((𝜑𝑗𝑌) → 𝑗𝑋)
5250, 51ffvelcdmd 7019 . . . . . 6 ((𝜑𝑗𝑌) → (𝐺𝑗) ∈ 𝑆)
5349, 52ffvelcdmd 7019 . . . . 5 ((𝜑𝑗𝑌) → (𝑀‘(𝐺𝑗)) ∈ (0[,]+∞))
54 eldifi 4082 . . . . . . . . . . 11 (𝑗 ∈ (𝑋𝑌) → 𝑗𝑋)
5554ad2antlr 727 . . . . . . . . . 10 (((𝜑𝑗 ∈ (𝑋𝑌)) ∧ (𝑀‘(𝐺𝑗)) ≠ 0) → 𝑗𝑋)
56 fveq2 6822 . . . . . . . . . . . . . . 15 ((𝐺𝑗) = ∅ → (𝑀‘(𝐺𝑗)) = (𝑀‘∅))
5756adantl 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐺𝑗) = ∅) → (𝑀‘(𝐺𝑗)) = (𝑀‘∅))
589adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐺𝑗) = ∅) → 𝑀 ∈ Meas)
5958mea0 46445 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐺𝑗) = ∅) → (𝑀‘∅) = 0)
6057, 59eqtrd 2764 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐺𝑗) = ∅) → (𝑀‘(𝐺𝑗)) = 0)
6160ad4ant14 752 . . . . . . . . . . . 12 ((((𝜑𝑗 ∈ (𝑋𝑌)) ∧ (𝑀‘(𝐺𝑗)) ≠ 0) ∧ (𝐺𝑗) = ∅) → (𝑀‘(𝐺𝑗)) = 0)
62 neneq 2931 . . . . . . . . . . . . 13 ((𝑀‘(𝐺𝑗)) ≠ 0 → ¬ (𝑀‘(𝐺𝑗)) = 0)
6362ad2antlr 727 . . . . . . . . . . . 12 ((((𝜑𝑗 ∈ (𝑋𝑌)) ∧ (𝑀‘(𝐺𝑗)) ≠ 0) ∧ (𝐺𝑗) = ∅) → ¬ (𝑀‘(𝐺𝑗)) = 0)
6461, 63pm2.65da 816 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (𝑋𝑌)) ∧ (𝑀‘(𝐺𝑗)) ≠ 0) → ¬ (𝐺𝑗) = ∅)
6564neqned 2932 . . . . . . . . . 10 (((𝜑𝑗 ∈ (𝑋𝑌)) ∧ (𝑀‘(𝐺𝑗)) ≠ 0) → (𝐺𝑗) ≠ ∅)
6655, 65jca 511 . . . . . . . . 9 (((𝜑𝑗 ∈ (𝑋𝑌)) ∧ (𝑀‘(𝐺𝑗)) ≠ 0) → (𝑗𝑋 ∧ (𝐺𝑗) ≠ ∅))
67 fveq2 6822 . . . . . . . . . . 11 (𝑖 = 𝑗 → (𝐺𝑖) = (𝐺𝑗))
6867neeq1d 2984 . . . . . . . . . 10 (𝑖 = 𝑗 → ((𝐺𝑖) ≠ ∅ ↔ (𝐺𝑗) ≠ ∅))
6968elrab 3648 . . . . . . . . 9 (𝑗 ∈ {𝑖𝑋 ∣ (𝐺𝑖) ≠ ∅} ↔ (𝑗𝑋 ∧ (𝐺𝑗) ≠ ∅))
7066, 69sylibr 234 . . . . . . . 8 (((𝜑𝑗 ∈ (𝑋𝑌)) ∧ (𝑀‘(𝐺𝑗)) ≠ 0) → 𝑗 ∈ {𝑖𝑋 ∣ (𝐺𝑖) ≠ ∅})
7170, 45eleqtrrdi 2839 . . . . . . 7 (((𝜑𝑗 ∈ (𝑋𝑌)) ∧ (𝑀‘(𝐺𝑗)) ≠ 0) → 𝑗𝑌)
72 eldifn 4083 . . . . . . . 8 (𝑗 ∈ (𝑋𝑌) → ¬ 𝑗𝑌)
7372ad2antlr 727 . . . . . . 7 (((𝜑𝑗 ∈ (𝑋𝑌)) ∧ (𝑀‘(𝐺𝑗)) ≠ 0) → ¬ 𝑗𝑌)
7471, 73pm2.65da 816 . . . . . 6 ((𝜑𝑗 ∈ (𝑋𝑌)) → ¬ (𝑀‘(𝐺𝑗)) ≠ 0)
75 nne 2929 . . . . . 6 (¬ (𝑀‘(𝐺𝑗)) ≠ 0 ↔ (𝑀‘(𝐺𝑗)) = 0)
7674, 75sylib 218 . . . . 5 ((𝜑𝑗 ∈ (𝑋𝑌)) → (𝑀‘(𝐺𝑗)) = 0)
7744, 3, 48, 53, 76sge0ss 46403 . . . 4 (𝜑 → (Σ^‘(𝑗𝑌 ↦ (𝑀‘(𝐺𝑗)))) = (Σ^‘(𝑗𝑋 ↦ (𝑀‘(𝐺𝑗)))))
7877eqcomd 2735 . . 3 (𝜑 → (Σ^‘(𝑗𝑋 ↦ (𝑀‘(𝐺𝑗)))) = (Σ^‘(𝑗𝑌 ↦ (𝑀‘(𝐺𝑗)))))
793, 48ssexd 5263 . . . . 5 (𝜑𝑌 ∈ V)
80 nfv 1914 . . . . . . . . 9 𝑖𝜑
81 eqid 2729 . . . . . . . . 9 (𝑖𝑌 ↦ (𝐺𝑖)) = (𝑖𝑌 ↦ (𝐺𝑖))
822ffnd 6653 . . . . . . . . . . . . 13 (𝜑𝐺 Fn 𝑋)
83 dffn3 6664 . . . . . . . . . . . . 13 (𝐺 Fn 𝑋𝐺:𝑋⟶ran 𝐺)
8482, 83sylib 218 . . . . . . . . . . . 12 (𝜑𝐺:𝑋⟶ran 𝐺)
8584adantr 480 . . . . . . . . . . 11 ((𝜑𝑖𝑌) → 𝐺:𝑋⟶ran 𝐺)
8648sselda 3935 . . . . . . . . . . 11 ((𝜑𝑖𝑌) → 𝑖𝑋)
8785, 86ffvelcdmd 7019 . . . . . . . . . 10 ((𝜑𝑖𝑌) → (𝐺𝑖) ∈ ran 𝐺)
8845eleq2i 2820 . . . . . . . . . . . . . . 15 (𝑖𝑌𝑖 ∈ {𝑖𝑋 ∣ (𝐺𝑖) ≠ ∅})
89 rabid 3416 . . . . . . . . . . . . . . 15 (𝑖 ∈ {𝑖𝑋 ∣ (𝐺𝑖) ≠ ∅} ↔ (𝑖𝑋 ∧ (𝐺𝑖) ≠ ∅))
9088, 89bitri 275 . . . . . . . . . . . . . 14 (𝑖𝑌 ↔ (𝑖𝑋 ∧ (𝐺𝑖) ≠ ∅))
9190biimpi 216 . . . . . . . . . . . . 13 (𝑖𝑌 → (𝑖𝑋 ∧ (𝐺𝑖) ≠ ∅))
9291simprd 495 . . . . . . . . . . . 12 (𝑖𝑌 → (𝐺𝑖) ≠ ∅)
9392adantl 481 . . . . . . . . . . 11 ((𝜑𝑖𝑌) → (𝐺𝑖) ≠ ∅)
94 nelsn 4618 . . . . . . . . . . 11 ((𝐺𝑖) ≠ ∅ → ¬ (𝐺𝑖) ∈ {∅})
9593, 94syl 17 . . . . . . . . . 10 ((𝜑𝑖𝑌) → ¬ (𝐺𝑖) ∈ {∅})
9687, 95eldifd 3914 . . . . . . . . 9 ((𝜑𝑖𝑌) → (𝐺𝑖) ∈ (ran 𝐺 ∖ {∅}))
97 meadjiunlem.dj . . . . . . . . . 10 (𝜑Disj 𝑖𝑋 (𝐺𝑖))
98 disjss1 5065 . . . . . . . . . 10 (𝑌𝑋 → (Disj 𝑖𝑋 (𝐺𝑖) → Disj 𝑖𝑌 (𝐺𝑖)))
9948, 97, 98sylc 65 . . . . . . . . 9 (𝜑Disj 𝑖𝑌 (𝐺𝑖))
10080, 81, 96, 93, 99disjf1 45171 . . . . . . . 8 (𝜑 → (𝑖𝑌 ↦ (𝐺𝑖)):𝑌1-1→(ran 𝐺 ∖ {∅}))
1012, 48feqresmpt 6892 . . . . . . . . 9 (𝜑 → (𝐺𝑌) = (𝑖𝑌 ↦ (𝐺𝑖)))
102 f1eq1 6715 . . . . . . . . 9 ((𝐺𝑌) = (𝑖𝑌 ↦ (𝐺𝑖)) → ((𝐺𝑌):𝑌1-1→(ran 𝐺 ∖ {∅}) ↔ (𝑖𝑌 ↦ (𝐺𝑖)):𝑌1-1→(ran 𝐺 ∖ {∅})))
103101, 102syl 17 . . . . . . . 8 (𝜑 → ((𝐺𝑌):𝑌1-1→(ran 𝐺 ∖ {∅}) ↔ (𝑖𝑌 ↦ (𝐺𝑖)):𝑌1-1→(ran 𝐺 ∖ {∅})))
104100, 103mpbird 257 . . . . . . 7 (𝜑 → (𝐺𝑌):𝑌1-1→(ran 𝐺 ∖ {∅}))
105101rneqd 5880 . . . . . . . . 9 (𝜑 → ran (𝐺𝑌) = ran (𝑖𝑌 ↦ (𝐺𝑖)))
10696ralrimiva 3121 . . . . . . . . . 10 (𝜑 → ∀𝑖𝑌 (𝐺𝑖) ∈ (ran 𝐺 ∖ {∅}))
10781rnmptss 7057 . . . . . . . . . 10 (∀𝑖𝑌 (𝐺𝑖) ∈ (ran 𝐺 ∖ {∅}) → ran (𝑖𝑌 ↦ (𝐺𝑖)) ⊆ (ran 𝐺 ∖ {∅}))
108106, 107syl 17 . . . . . . . . 9 (𝜑 → ran (𝑖𝑌 ↦ (𝐺𝑖)) ⊆ (ran 𝐺 ∖ {∅}))
109105, 108eqsstrd 3970 . . . . . . . 8 (𝜑 → ran (𝐺𝑌) ⊆ (ran 𝐺 ∖ {∅}))
110 simpl 482 . . . . . . . . 9 ((𝜑𝑥 ∈ (ran 𝐺 ∖ {∅})) → 𝜑)
111 eldifi 4082 . . . . . . . . . 10 (𝑥 ∈ (ran 𝐺 ∖ {∅}) → 𝑥 ∈ ran 𝐺)
112111adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (ran 𝐺 ∖ {∅})) → 𝑥 ∈ ran 𝐺)
113 eldifsni 4741 . . . . . . . . . 10 (𝑥 ∈ (ran 𝐺 ∖ {∅}) → 𝑥 ≠ ∅)
114113adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (ran 𝐺 ∖ {∅})) → 𝑥 ≠ ∅)
115 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ran 𝐺) → 𝑥 ∈ ran 𝐺)
116 fvelrnb 6883 . . . . . . . . . . . . . 14 (𝐺 Fn 𝑋 → (𝑥 ∈ ran 𝐺 ↔ ∃𝑖𝑋 (𝐺𝑖) = 𝑥))
11782, 116syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ ran 𝐺 ↔ ∃𝑖𝑋 (𝐺𝑖) = 𝑥))
118117adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ran 𝐺) → (𝑥 ∈ ran 𝐺 ↔ ∃𝑖𝑋 (𝐺𝑖) = 𝑥))
119115, 118mpbid 232 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ran 𝐺) → ∃𝑖𝑋 (𝐺𝑖) = 𝑥)
1201193adant3 1132 . . . . . . . . . 10 ((𝜑𝑥 ∈ ran 𝐺𝑥 ≠ ∅) → ∃𝑖𝑋 (𝐺𝑖) = 𝑥)
121 id 22 . . . . . . . . . . . . . . . 16 ((𝐺𝑖) = 𝑥 → (𝐺𝑖) = 𝑥)
122121eqcomd 2735 . . . . . . . . . . . . . . 15 ((𝐺𝑖) = 𝑥𝑥 = (𝐺𝑖))
1231223ad2ant3 1135 . . . . . . . . . . . . . 14 (((𝜑𝑥 ≠ ∅) ∧ 𝑖𝑋 ∧ (𝐺𝑖) = 𝑥) → 𝑥 = (𝐺𝑖))
124 simp1l 1198 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ≠ ∅) ∧ 𝑖𝑋 ∧ (𝐺𝑖) = 𝑥) → 𝜑)
125 simp2 1137 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ≠ ∅) ∧ 𝑖𝑋 ∧ (𝐺𝑖) = 𝑥) → 𝑖𝑋)
126 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝑥 ≠ ∅ ∧ (𝐺𝑖) = 𝑥) → (𝐺𝑖) = 𝑥)
127 simpl 482 . . . . . . . . . . . . . . . . . 18 ((𝑥 ≠ ∅ ∧ (𝐺𝑖) = 𝑥) → 𝑥 ≠ ∅)
128126, 127eqnetrd 2992 . . . . . . . . . . . . . . . . 17 ((𝑥 ≠ ∅ ∧ (𝐺𝑖) = 𝑥) → (𝐺𝑖) ≠ ∅)
129128adantll 714 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ≠ ∅) ∧ (𝐺𝑖) = 𝑥) → (𝐺𝑖) ≠ ∅)
1301293adant2 1131 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ≠ ∅) ∧ 𝑖𝑋 ∧ (𝐺𝑖) = 𝑥) → (𝐺𝑖) ≠ ∅)
13190biimpri 228 . . . . . . . . . . . . . . . . . 18 ((𝑖𝑋 ∧ (𝐺𝑖) ≠ ∅) → 𝑖𝑌)
132 fvexd 6837 . . . . . . . . . . . . . . . . . 18 ((𝑖𝑋 ∧ (𝐺𝑖) ≠ ∅) → (𝐺𝑖) ∈ V)
13381elrnmpt1 5902 . . . . . . . . . . . . . . . . . 18 ((𝑖𝑌 ∧ (𝐺𝑖) ∈ V) → (𝐺𝑖) ∈ ran (𝑖𝑌 ↦ (𝐺𝑖)))
134131, 132, 133syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝑖𝑋 ∧ (𝐺𝑖) ≠ ∅) → (𝐺𝑖) ∈ ran (𝑖𝑌 ↦ (𝐺𝑖)))
1351343adant1 1130 . . . . . . . . . . . . . . . 16 ((𝜑𝑖𝑋 ∧ (𝐺𝑖) ≠ ∅) → (𝐺𝑖) ∈ ran (𝑖𝑌 ↦ (𝐺𝑖)))
136105eqcomd 2735 . . . . . . . . . . . . . . . . 17 (𝜑 → ran (𝑖𝑌 ↦ (𝐺𝑖)) = ran (𝐺𝑌))
1371363ad2ant1 1133 . . . . . . . . . . . . . . . 16 ((𝜑𝑖𝑋 ∧ (𝐺𝑖) ≠ ∅) → ran (𝑖𝑌 ↦ (𝐺𝑖)) = ran (𝐺𝑌))
138135, 137eleqtrd 2830 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑋 ∧ (𝐺𝑖) ≠ ∅) → (𝐺𝑖) ∈ ran (𝐺𝑌))
139124, 125, 130, 138syl3anc 1373 . . . . . . . . . . . . . 14 (((𝜑𝑥 ≠ ∅) ∧ 𝑖𝑋 ∧ (𝐺𝑖) = 𝑥) → (𝐺𝑖) ∈ ran (𝐺𝑌))
140123, 139eqeltrd 2828 . . . . . . . . . . . . 13 (((𝜑𝑥 ≠ ∅) ∧ 𝑖𝑋 ∧ (𝐺𝑖) = 𝑥) → 𝑥 ∈ ran (𝐺𝑌))
1411403exp 1119 . . . . . . . . . . . 12 ((𝜑𝑥 ≠ ∅) → (𝑖𝑋 → ((𝐺𝑖) = 𝑥𝑥 ∈ ran (𝐺𝑌))))
142141rexlimdv 3128 . . . . . . . . . . 11 ((𝜑𝑥 ≠ ∅) → (∃𝑖𝑋 (𝐺𝑖) = 𝑥𝑥 ∈ ran (𝐺𝑌)))
1431423adant2 1131 . . . . . . . . . 10 ((𝜑𝑥 ∈ ran 𝐺𝑥 ≠ ∅) → (∃𝑖𝑋 (𝐺𝑖) = 𝑥𝑥 ∈ ran (𝐺𝑌)))
144120, 143mpd 15 . . . . . . . . 9 ((𝜑𝑥 ∈ ran 𝐺𝑥 ≠ ∅) → 𝑥 ∈ ran (𝐺𝑌))
145110, 112, 114, 144syl3anc 1373 . . . . . . . 8 ((𝜑𝑥 ∈ (ran 𝐺 ∖ {∅})) → 𝑥 ∈ ran (𝐺𝑌))
146109, 145eqelssd 3957 . . . . . . 7 (𝜑 → ran (𝐺𝑌) = (ran 𝐺 ∖ {∅}))
147104, 146jca 511 . . . . . 6 (𝜑 → ((𝐺𝑌):𝑌1-1→(ran 𝐺 ∖ {∅}) ∧ ran (𝐺𝑌) = (ran 𝐺 ∖ {∅})))
148 dff1o5 6773 . . . . . 6 ((𝐺𝑌):𝑌1-1-onto→(ran 𝐺 ∖ {∅}) ↔ ((𝐺𝑌):𝑌1-1→(ran 𝐺 ∖ {∅}) ∧ ran (𝐺𝑌) = (ran 𝐺 ∖ {∅})))
149147, 148sylibr 234 . . . . 5 (𝜑 → (𝐺𝑌):𝑌1-1-onto→(ran 𝐺 ∖ {∅}))
150 fvres 6841 . . . . . 6 (𝑗𝑌 → ((𝐺𝑌)‘𝑗) = (𝐺𝑗))
151150adantl 481 . . . . 5 ((𝜑𝑗𝑌) → ((𝐺𝑌)‘𝑗) = (𝐺𝑗))
1521, 44, 41, 79, 149, 151, 17sge0f1o 46373 . . . 4 (𝜑 → (Σ^‘(𝑘 ∈ (ran 𝐺 ∖ {∅}) ↦ (𝑀𝑘))) = (Σ^‘(𝑗𝑌 ↦ (𝑀‘(𝐺𝑗)))))
153152eqcomd 2735 . . 3 (𝜑 → (Σ^‘(𝑗𝑌 ↦ (𝑀‘(𝐺𝑗)))) = (Σ^‘(𝑘 ∈ (ran 𝐺 ∖ {∅}) ↦ (𝑀𝑘))))
15443, 78, 1533eqtrd 2768 . 2 (𝜑 → (Σ^‘(𝑀𝐺)) = (Σ^‘(𝑘 ∈ (ran 𝐺 ∖ {∅}) ↦ (𝑀𝑘))))
15535, 37, 1543eqtr4d 2774 1 (𝜑 → (Σ^‘(𝑀 ↾ ran 𝐺)) = (Σ^‘(𝑀𝐺)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3394  Vcvv 3436  cdif 3900  cin 3902  wss 3903  c0 4284  {csn 4577  Disj wdisj 5059  cmpt 5173  dom cdm 5619  ran crn 5620  cres 5621  ccom 5623   Fn wfn 6477  wf 6478  1-1wf1 6479  1-1-ontowf1o 6481  cfv 6482  (class class class)co 7349  0cc0 11009  +∞cpnf 11146  [,]cicc 13251  Σ^csumge0 46353  Meascmea 46440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-disj 5060  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-xadd 13015  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-sumge0 46354  df-mea 46441
This theorem is referenced by:  meadjiun  46457
  Copyright terms: Public domain W3C validator