Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  meadjiunlem Structured version   Visualization version   GIF version

Theorem meadjiunlem 46480
Description: The sum of nonnegative extended reals, restricted to the range of another function. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
meadjiunlem.f (𝜑𝑀 ∈ Meas)
meadjiunlem.3 𝑆 = dom 𝑀
meadjiunlem.x (𝜑𝑋𝑉)
meadjiunlem.g (𝜑𝐺:𝑋𝑆)
meadjiunlem.y 𝑌 = {𝑖𝑋 ∣ (𝐺𝑖) ≠ ∅}
meadjiunlem.dj (𝜑Disj 𝑖𝑋 (𝐺𝑖))
Assertion
Ref Expression
meadjiunlem (𝜑 → (Σ^‘(𝑀 ↾ ran 𝐺)) = (Σ^‘(𝑀𝐺)))
Distinct variable groups:   𝑖,𝐺   𝑖,𝑋   𝑖,𝑌   𝜑,𝑖
Allowed substitution hints:   𝑆(𝑖)   𝑀(𝑖)   𝑉(𝑖)

Proof of Theorem meadjiunlem
Dummy variables 𝑗 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1914 . . . 4 𝑘𝜑
2 meadjiunlem.g . . . . . 6 (𝜑𝐺:𝑋𝑆)
3 meadjiunlem.x . . . . . 6 (𝜑𝑋𝑉)
42, 3jca 511 . . . . 5 (𝜑 → (𝐺:𝑋𝑆𝑋𝑉))
5 fex 7246 . . . . 5 ((𝐺:𝑋𝑆𝑋𝑉) → 𝐺 ∈ V)
6 rnexg 7924 . . . . 5 (𝐺 ∈ V → ran 𝐺 ∈ V)
74, 5, 63syl 18 . . . 4 (𝜑 → ran 𝐺 ∈ V)
8 difssd 4137 . . . 4 (𝜑 → (ran 𝐺 ∖ {∅}) ⊆ ran 𝐺)
9 meadjiunlem.f . . . . . . 7 (𝜑𝑀 ∈ Meas)
10 meadjiunlem.3 . . . . . . 7 𝑆 = dom 𝑀
119, 10meaf 46468 . . . . . 6 (𝜑𝑀:𝑆⟶(0[,]+∞))
1211adantr 480 . . . . 5 ((𝜑𝑘 ∈ (ran 𝐺 ∖ {∅})) → 𝑀:𝑆⟶(0[,]+∞))
132frnd 6744 . . . . . . 7 (𝜑 → ran 𝐺𝑆)
1413adantr 480 . . . . . 6 ((𝜑𝑘 ∈ (ran 𝐺 ∖ {∅})) → ran 𝐺𝑆)
158sselda 3983 . . . . . 6 ((𝜑𝑘 ∈ (ran 𝐺 ∖ {∅})) → 𝑘 ∈ ran 𝐺)
1614, 15sseldd 3984 . . . . 5 ((𝜑𝑘 ∈ (ran 𝐺 ∖ {∅})) → 𝑘𝑆)
1712, 16ffvelcdmd 7105 . . . 4 ((𝜑𝑘 ∈ (ran 𝐺 ∖ {∅})) → (𝑀𝑘) ∈ (0[,]+∞))
18 simpl 482 . . . . 5 ((𝜑𝑘 ∈ (ran 𝐺 ∖ (ran 𝐺 ∖ {∅}))) → 𝜑)
19 id 22 . . . . . . . 8 (𝑘 ∈ (ran 𝐺 ∖ (ran 𝐺 ∖ {∅})) → 𝑘 ∈ (ran 𝐺 ∖ (ran 𝐺 ∖ {∅})))
20 dfin4 4278 . . . . . . . . 9 (ran 𝐺 ∩ {∅}) = (ran 𝐺 ∖ (ran 𝐺 ∖ {∅}))
2120eqcomi 2746 . . . . . . . 8 (ran 𝐺 ∖ (ran 𝐺 ∖ {∅})) = (ran 𝐺 ∩ {∅})
2219, 21eleqtrdi 2851 . . . . . . 7 (𝑘 ∈ (ran 𝐺 ∖ (ran 𝐺 ∖ {∅})) → 𝑘 ∈ (ran 𝐺 ∩ {∅}))
23 elinel2 4202 . . . . . . . 8 (𝑘 ∈ (ran 𝐺 ∩ {∅}) → 𝑘 ∈ {∅})
24 elsni 4643 . . . . . . . 8 (𝑘 ∈ {∅} → 𝑘 = ∅)
2523, 24syl 17 . . . . . . 7 (𝑘 ∈ (ran 𝐺 ∩ {∅}) → 𝑘 = ∅)
2622, 25syl 17 . . . . . 6 (𝑘 ∈ (ran 𝐺 ∖ (ran 𝐺 ∖ {∅})) → 𝑘 = ∅)
2726adantl 481 . . . . 5 ((𝜑𝑘 ∈ (ran 𝐺 ∖ (ran 𝐺 ∖ {∅}))) → 𝑘 = ∅)
28 simpr 484 . . . . . . 7 ((𝜑𝑘 = ∅) → 𝑘 = ∅)
2928fveq2d 6910 . . . . . 6 ((𝜑𝑘 = ∅) → (𝑀𝑘) = (𝑀‘∅))
309mea0 46469 . . . . . . 7 (𝜑 → (𝑀‘∅) = 0)
3130adantr 480 . . . . . 6 ((𝜑𝑘 = ∅) → (𝑀‘∅) = 0)
3229, 31eqtrd 2777 . . . . 5 ((𝜑𝑘 = ∅) → (𝑀𝑘) = 0)
3318, 27, 32syl2anc 584 . . . 4 ((𝜑𝑘 ∈ (ran 𝐺 ∖ (ran 𝐺 ∖ {∅}))) → (𝑀𝑘) = 0)
341, 7, 8, 17, 33sge0ss 46427 . . 3 (𝜑 → (Σ^‘(𝑘 ∈ (ran 𝐺 ∖ {∅}) ↦ (𝑀𝑘))) = (Σ^‘(𝑘 ∈ ran 𝐺 ↦ (𝑀𝑘))))
3534eqcomd 2743 . 2 (𝜑 → (Σ^‘(𝑘 ∈ ran 𝐺 ↦ (𝑀𝑘))) = (Σ^‘(𝑘 ∈ (ran 𝐺 ∖ {∅}) ↦ (𝑀𝑘))))
3611, 13feqresmpt 6978 . . 3 (𝜑 → (𝑀 ↾ ran 𝐺) = (𝑘 ∈ ran 𝐺 ↦ (𝑀𝑘)))
3736fveq2d 6910 . 2 (𝜑 → (Σ^‘(𝑀 ↾ ran 𝐺)) = (Σ^‘(𝑘 ∈ ran 𝐺 ↦ (𝑀𝑘))))
382ffvelcdmda 7104 . . . . 5 ((𝜑𝑗𝑋) → (𝐺𝑗) ∈ 𝑆)
392feqmptd 6977 . . . . 5 (𝜑𝐺 = (𝑗𝑋 ↦ (𝐺𝑗)))
4011feqmptd 6977 . . . . 5 (𝜑𝑀 = (𝑘𝑆 ↦ (𝑀𝑘)))
41 fveq2 6906 . . . . 5 (𝑘 = (𝐺𝑗) → (𝑀𝑘) = (𝑀‘(𝐺𝑗)))
4238, 39, 40, 41fmptco 7149 . . . 4 (𝜑 → (𝑀𝐺) = (𝑗𝑋 ↦ (𝑀‘(𝐺𝑗))))
4342fveq2d 6910 . . 3 (𝜑 → (Σ^‘(𝑀𝐺)) = (Σ^‘(𝑗𝑋 ↦ (𝑀‘(𝐺𝑗)))))
44 nfv 1914 . . . . 5 𝑗𝜑
45 meadjiunlem.y . . . . . 6 𝑌 = {𝑖𝑋 ∣ (𝐺𝑖) ≠ ∅}
46 ssrab2 4080 . . . . . . 7 {𝑖𝑋 ∣ (𝐺𝑖) ≠ ∅} ⊆ 𝑋
4746a1i 11 . . . . . 6 (𝜑 → {𝑖𝑋 ∣ (𝐺𝑖) ≠ ∅} ⊆ 𝑋)
4845, 47eqsstrid 4022 . . . . 5 (𝜑𝑌𝑋)
4911adantr 480 . . . . . 6 ((𝜑𝑗𝑌) → 𝑀:𝑆⟶(0[,]+∞))
502adantr 480 . . . . . . 7 ((𝜑𝑗𝑌) → 𝐺:𝑋𝑆)
5148sselda 3983 . . . . . . 7 ((𝜑𝑗𝑌) → 𝑗𝑋)
5250, 51ffvelcdmd 7105 . . . . . 6 ((𝜑𝑗𝑌) → (𝐺𝑗) ∈ 𝑆)
5349, 52ffvelcdmd 7105 . . . . 5 ((𝜑𝑗𝑌) → (𝑀‘(𝐺𝑗)) ∈ (0[,]+∞))
54 eldifi 4131 . . . . . . . . . . 11 (𝑗 ∈ (𝑋𝑌) → 𝑗𝑋)
5554ad2antlr 727 . . . . . . . . . 10 (((𝜑𝑗 ∈ (𝑋𝑌)) ∧ (𝑀‘(𝐺𝑗)) ≠ 0) → 𝑗𝑋)
56 fveq2 6906 . . . . . . . . . . . . . . 15 ((𝐺𝑗) = ∅ → (𝑀‘(𝐺𝑗)) = (𝑀‘∅))
5756adantl 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐺𝑗) = ∅) → (𝑀‘(𝐺𝑗)) = (𝑀‘∅))
589adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐺𝑗) = ∅) → 𝑀 ∈ Meas)
5958mea0 46469 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐺𝑗) = ∅) → (𝑀‘∅) = 0)
6057, 59eqtrd 2777 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐺𝑗) = ∅) → (𝑀‘(𝐺𝑗)) = 0)
6160ad4ant14 752 . . . . . . . . . . . 12 ((((𝜑𝑗 ∈ (𝑋𝑌)) ∧ (𝑀‘(𝐺𝑗)) ≠ 0) ∧ (𝐺𝑗) = ∅) → (𝑀‘(𝐺𝑗)) = 0)
62 neneq 2946 . . . . . . . . . . . . 13 ((𝑀‘(𝐺𝑗)) ≠ 0 → ¬ (𝑀‘(𝐺𝑗)) = 0)
6362ad2antlr 727 . . . . . . . . . . . 12 ((((𝜑𝑗 ∈ (𝑋𝑌)) ∧ (𝑀‘(𝐺𝑗)) ≠ 0) ∧ (𝐺𝑗) = ∅) → ¬ (𝑀‘(𝐺𝑗)) = 0)
6461, 63pm2.65da 817 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (𝑋𝑌)) ∧ (𝑀‘(𝐺𝑗)) ≠ 0) → ¬ (𝐺𝑗) = ∅)
6564neqned 2947 . . . . . . . . . 10 (((𝜑𝑗 ∈ (𝑋𝑌)) ∧ (𝑀‘(𝐺𝑗)) ≠ 0) → (𝐺𝑗) ≠ ∅)
6655, 65jca 511 . . . . . . . . 9 (((𝜑𝑗 ∈ (𝑋𝑌)) ∧ (𝑀‘(𝐺𝑗)) ≠ 0) → (𝑗𝑋 ∧ (𝐺𝑗) ≠ ∅))
67 fveq2 6906 . . . . . . . . . . 11 (𝑖 = 𝑗 → (𝐺𝑖) = (𝐺𝑗))
6867neeq1d 3000 . . . . . . . . . 10 (𝑖 = 𝑗 → ((𝐺𝑖) ≠ ∅ ↔ (𝐺𝑗) ≠ ∅))
6968elrab 3692 . . . . . . . . 9 (𝑗 ∈ {𝑖𝑋 ∣ (𝐺𝑖) ≠ ∅} ↔ (𝑗𝑋 ∧ (𝐺𝑗) ≠ ∅))
7066, 69sylibr 234 . . . . . . . 8 (((𝜑𝑗 ∈ (𝑋𝑌)) ∧ (𝑀‘(𝐺𝑗)) ≠ 0) → 𝑗 ∈ {𝑖𝑋 ∣ (𝐺𝑖) ≠ ∅})
7170, 45eleqtrrdi 2852 . . . . . . 7 (((𝜑𝑗 ∈ (𝑋𝑌)) ∧ (𝑀‘(𝐺𝑗)) ≠ 0) → 𝑗𝑌)
72 eldifn 4132 . . . . . . . 8 (𝑗 ∈ (𝑋𝑌) → ¬ 𝑗𝑌)
7372ad2antlr 727 . . . . . . 7 (((𝜑𝑗 ∈ (𝑋𝑌)) ∧ (𝑀‘(𝐺𝑗)) ≠ 0) → ¬ 𝑗𝑌)
7471, 73pm2.65da 817 . . . . . 6 ((𝜑𝑗 ∈ (𝑋𝑌)) → ¬ (𝑀‘(𝐺𝑗)) ≠ 0)
75 nne 2944 . . . . . 6 (¬ (𝑀‘(𝐺𝑗)) ≠ 0 ↔ (𝑀‘(𝐺𝑗)) = 0)
7674, 75sylib 218 . . . . 5 ((𝜑𝑗 ∈ (𝑋𝑌)) → (𝑀‘(𝐺𝑗)) = 0)
7744, 3, 48, 53, 76sge0ss 46427 . . . 4 (𝜑 → (Σ^‘(𝑗𝑌 ↦ (𝑀‘(𝐺𝑗)))) = (Σ^‘(𝑗𝑋 ↦ (𝑀‘(𝐺𝑗)))))
7877eqcomd 2743 . . 3 (𝜑 → (Σ^‘(𝑗𝑋 ↦ (𝑀‘(𝐺𝑗)))) = (Σ^‘(𝑗𝑌 ↦ (𝑀‘(𝐺𝑗)))))
793, 48ssexd 5324 . . . . 5 (𝜑𝑌 ∈ V)
80 nfv 1914 . . . . . . . . 9 𝑖𝜑
81 eqid 2737 . . . . . . . . 9 (𝑖𝑌 ↦ (𝐺𝑖)) = (𝑖𝑌 ↦ (𝐺𝑖))
822ffnd 6737 . . . . . . . . . . . . 13 (𝜑𝐺 Fn 𝑋)
83 dffn3 6748 . . . . . . . . . . . . 13 (𝐺 Fn 𝑋𝐺:𝑋⟶ran 𝐺)
8482, 83sylib 218 . . . . . . . . . . . 12 (𝜑𝐺:𝑋⟶ran 𝐺)
8584adantr 480 . . . . . . . . . . 11 ((𝜑𝑖𝑌) → 𝐺:𝑋⟶ran 𝐺)
8648sselda 3983 . . . . . . . . . . 11 ((𝜑𝑖𝑌) → 𝑖𝑋)
8785, 86ffvelcdmd 7105 . . . . . . . . . 10 ((𝜑𝑖𝑌) → (𝐺𝑖) ∈ ran 𝐺)
8845eleq2i 2833 . . . . . . . . . . . . . . 15 (𝑖𝑌𝑖 ∈ {𝑖𝑋 ∣ (𝐺𝑖) ≠ ∅})
89 rabid 3458 . . . . . . . . . . . . . . 15 (𝑖 ∈ {𝑖𝑋 ∣ (𝐺𝑖) ≠ ∅} ↔ (𝑖𝑋 ∧ (𝐺𝑖) ≠ ∅))
9088, 89bitri 275 . . . . . . . . . . . . . 14 (𝑖𝑌 ↔ (𝑖𝑋 ∧ (𝐺𝑖) ≠ ∅))
9190biimpi 216 . . . . . . . . . . . . 13 (𝑖𝑌 → (𝑖𝑋 ∧ (𝐺𝑖) ≠ ∅))
9291simprd 495 . . . . . . . . . . . 12 (𝑖𝑌 → (𝐺𝑖) ≠ ∅)
9392adantl 481 . . . . . . . . . . 11 ((𝜑𝑖𝑌) → (𝐺𝑖) ≠ ∅)
94 nelsn 4666 . . . . . . . . . . 11 ((𝐺𝑖) ≠ ∅ → ¬ (𝐺𝑖) ∈ {∅})
9593, 94syl 17 . . . . . . . . . 10 ((𝜑𝑖𝑌) → ¬ (𝐺𝑖) ∈ {∅})
9687, 95eldifd 3962 . . . . . . . . 9 ((𝜑𝑖𝑌) → (𝐺𝑖) ∈ (ran 𝐺 ∖ {∅}))
97 meadjiunlem.dj . . . . . . . . . 10 (𝜑Disj 𝑖𝑋 (𝐺𝑖))
98 disjss1 5116 . . . . . . . . . 10 (𝑌𝑋 → (Disj 𝑖𝑋 (𝐺𝑖) → Disj 𝑖𝑌 (𝐺𝑖)))
9948, 97, 98sylc 65 . . . . . . . . 9 (𝜑Disj 𝑖𝑌 (𝐺𝑖))
10080, 81, 96, 93, 99disjf1 45188 . . . . . . . 8 (𝜑 → (𝑖𝑌 ↦ (𝐺𝑖)):𝑌1-1→(ran 𝐺 ∖ {∅}))
1012, 48feqresmpt 6978 . . . . . . . . 9 (𝜑 → (𝐺𝑌) = (𝑖𝑌 ↦ (𝐺𝑖)))
102 f1eq1 6799 . . . . . . . . 9 ((𝐺𝑌) = (𝑖𝑌 ↦ (𝐺𝑖)) → ((𝐺𝑌):𝑌1-1→(ran 𝐺 ∖ {∅}) ↔ (𝑖𝑌 ↦ (𝐺𝑖)):𝑌1-1→(ran 𝐺 ∖ {∅})))
103101, 102syl 17 . . . . . . . 8 (𝜑 → ((𝐺𝑌):𝑌1-1→(ran 𝐺 ∖ {∅}) ↔ (𝑖𝑌 ↦ (𝐺𝑖)):𝑌1-1→(ran 𝐺 ∖ {∅})))
104100, 103mpbird 257 . . . . . . 7 (𝜑 → (𝐺𝑌):𝑌1-1→(ran 𝐺 ∖ {∅}))
105101rneqd 5949 . . . . . . . . 9 (𝜑 → ran (𝐺𝑌) = ran (𝑖𝑌 ↦ (𝐺𝑖)))
10696ralrimiva 3146 . . . . . . . . . 10 (𝜑 → ∀𝑖𝑌 (𝐺𝑖) ∈ (ran 𝐺 ∖ {∅}))
10781rnmptss 7143 . . . . . . . . . 10 (∀𝑖𝑌 (𝐺𝑖) ∈ (ran 𝐺 ∖ {∅}) → ran (𝑖𝑌 ↦ (𝐺𝑖)) ⊆ (ran 𝐺 ∖ {∅}))
108106, 107syl 17 . . . . . . . . 9 (𝜑 → ran (𝑖𝑌 ↦ (𝐺𝑖)) ⊆ (ran 𝐺 ∖ {∅}))
109105, 108eqsstrd 4018 . . . . . . . 8 (𝜑 → ran (𝐺𝑌) ⊆ (ran 𝐺 ∖ {∅}))
110 simpl 482 . . . . . . . . 9 ((𝜑𝑥 ∈ (ran 𝐺 ∖ {∅})) → 𝜑)
111 eldifi 4131 . . . . . . . . . 10 (𝑥 ∈ (ran 𝐺 ∖ {∅}) → 𝑥 ∈ ran 𝐺)
112111adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (ran 𝐺 ∖ {∅})) → 𝑥 ∈ ran 𝐺)
113 eldifsni 4790 . . . . . . . . . 10 (𝑥 ∈ (ran 𝐺 ∖ {∅}) → 𝑥 ≠ ∅)
114113adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ (ran 𝐺 ∖ {∅})) → 𝑥 ≠ ∅)
115 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ran 𝐺) → 𝑥 ∈ ran 𝐺)
116 fvelrnb 6969 . . . . . . . . . . . . . 14 (𝐺 Fn 𝑋 → (𝑥 ∈ ran 𝐺 ↔ ∃𝑖𝑋 (𝐺𝑖) = 𝑥))
11782, 116syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ ran 𝐺 ↔ ∃𝑖𝑋 (𝐺𝑖) = 𝑥))
118117adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ran 𝐺) → (𝑥 ∈ ran 𝐺 ↔ ∃𝑖𝑋 (𝐺𝑖) = 𝑥))
119115, 118mpbid 232 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ran 𝐺) → ∃𝑖𝑋 (𝐺𝑖) = 𝑥)
1201193adant3 1133 . . . . . . . . . 10 ((𝜑𝑥 ∈ ran 𝐺𝑥 ≠ ∅) → ∃𝑖𝑋 (𝐺𝑖) = 𝑥)
121 id 22 . . . . . . . . . . . . . . . 16 ((𝐺𝑖) = 𝑥 → (𝐺𝑖) = 𝑥)
122121eqcomd 2743 . . . . . . . . . . . . . . 15 ((𝐺𝑖) = 𝑥𝑥 = (𝐺𝑖))
1231223ad2ant3 1136 . . . . . . . . . . . . . 14 (((𝜑𝑥 ≠ ∅) ∧ 𝑖𝑋 ∧ (𝐺𝑖) = 𝑥) → 𝑥 = (𝐺𝑖))
124 simp1l 1198 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ≠ ∅) ∧ 𝑖𝑋 ∧ (𝐺𝑖) = 𝑥) → 𝜑)
125 simp2 1138 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ≠ ∅) ∧ 𝑖𝑋 ∧ (𝐺𝑖) = 𝑥) → 𝑖𝑋)
126 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝑥 ≠ ∅ ∧ (𝐺𝑖) = 𝑥) → (𝐺𝑖) = 𝑥)
127 simpl 482 . . . . . . . . . . . . . . . . . 18 ((𝑥 ≠ ∅ ∧ (𝐺𝑖) = 𝑥) → 𝑥 ≠ ∅)
128126, 127eqnetrd 3008 . . . . . . . . . . . . . . . . 17 ((𝑥 ≠ ∅ ∧ (𝐺𝑖) = 𝑥) → (𝐺𝑖) ≠ ∅)
129128adantll 714 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ≠ ∅) ∧ (𝐺𝑖) = 𝑥) → (𝐺𝑖) ≠ ∅)
1301293adant2 1132 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ≠ ∅) ∧ 𝑖𝑋 ∧ (𝐺𝑖) = 𝑥) → (𝐺𝑖) ≠ ∅)
13190biimpri 228 . . . . . . . . . . . . . . . . . 18 ((𝑖𝑋 ∧ (𝐺𝑖) ≠ ∅) → 𝑖𝑌)
132 fvexd 6921 . . . . . . . . . . . . . . . . . 18 ((𝑖𝑋 ∧ (𝐺𝑖) ≠ ∅) → (𝐺𝑖) ∈ V)
13381elrnmpt1 5971 . . . . . . . . . . . . . . . . . 18 ((𝑖𝑌 ∧ (𝐺𝑖) ∈ V) → (𝐺𝑖) ∈ ran (𝑖𝑌 ↦ (𝐺𝑖)))
134131, 132, 133syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝑖𝑋 ∧ (𝐺𝑖) ≠ ∅) → (𝐺𝑖) ∈ ran (𝑖𝑌 ↦ (𝐺𝑖)))
1351343adant1 1131 . . . . . . . . . . . . . . . 16 ((𝜑𝑖𝑋 ∧ (𝐺𝑖) ≠ ∅) → (𝐺𝑖) ∈ ran (𝑖𝑌 ↦ (𝐺𝑖)))
136105eqcomd 2743 . . . . . . . . . . . . . . . . 17 (𝜑 → ran (𝑖𝑌 ↦ (𝐺𝑖)) = ran (𝐺𝑌))
1371363ad2ant1 1134 . . . . . . . . . . . . . . . 16 ((𝜑𝑖𝑋 ∧ (𝐺𝑖) ≠ ∅) → ran (𝑖𝑌 ↦ (𝐺𝑖)) = ran (𝐺𝑌))
138135, 137eleqtrd 2843 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝑋 ∧ (𝐺𝑖) ≠ ∅) → (𝐺𝑖) ∈ ran (𝐺𝑌))
139124, 125, 130, 138syl3anc 1373 . . . . . . . . . . . . . 14 (((𝜑𝑥 ≠ ∅) ∧ 𝑖𝑋 ∧ (𝐺𝑖) = 𝑥) → (𝐺𝑖) ∈ ran (𝐺𝑌))
140123, 139eqeltrd 2841 . . . . . . . . . . . . 13 (((𝜑𝑥 ≠ ∅) ∧ 𝑖𝑋 ∧ (𝐺𝑖) = 𝑥) → 𝑥 ∈ ran (𝐺𝑌))
1411403exp 1120 . . . . . . . . . . . 12 ((𝜑𝑥 ≠ ∅) → (𝑖𝑋 → ((𝐺𝑖) = 𝑥𝑥 ∈ ran (𝐺𝑌))))
142141rexlimdv 3153 . . . . . . . . . . 11 ((𝜑𝑥 ≠ ∅) → (∃𝑖𝑋 (𝐺𝑖) = 𝑥𝑥 ∈ ran (𝐺𝑌)))
1431423adant2 1132 . . . . . . . . . 10 ((𝜑𝑥 ∈ ran 𝐺𝑥 ≠ ∅) → (∃𝑖𝑋 (𝐺𝑖) = 𝑥𝑥 ∈ ran (𝐺𝑌)))
144120, 143mpd 15 . . . . . . . . 9 ((𝜑𝑥 ∈ ran 𝐺𝑥 ≠ ∅) → 𝑥 ∈ ran (𝐺𝑌))
145110, 112, 114, 144syl3anc 1373 . . . . . . . 8 ((𝜑𝑥 ∈ (ran 𝐺 ∖ {∅})) → 𝑥 ∈ ran (𝐺𝑌))
146109, 145eqelssd 4005 . . . . . . 7 (𝜑 → ran (𝐺𝑌) = (ran 𝐺 ∖ {∅}))
147104, 146jca 511 . . . . . 6 (𝜑 → ((𝐺𝑌):𝑌1-1→(ran 𝐺 ∖ {∅}) ∧ ran (𝐺𝑌) = (ran 𝐺 ∖ {∅})))
148 dff1o5 6857 . . . . . 6 ((𝐺𝑌):𝑌1-1-onto→(ran 𝐺 ∖ {∅}) ↔ ((𝐺𝑌):𝑌1-1→(ran 𝐺 ∖ {∅}) ∧ ran (𝐺𝑌) = (ran 𝐺 ∖ {∅})))
149147, 148sylibr 234 . . . . 5 (𝜑 → (𝐺𝑌):𝑌1-1-onto→(ran 𝐺 ∖ {∅}))
150 fvres 6925 . . . . . 6 (𝑗𝑌 → ((𝐺𝑌)‘𝑗) = (𝐺𝑗))
151150adantl 481 . . . . 5 ((𝜑𝑗𝑌) → ((𝐺𝑌)‘𝑗) = (𝐺𝑗))
1521, 44, 41, 79, 149, 151, 17sge0f1o 46397 . . . 4 (𝜑 → (Σ^‘(𝑘 ∈ (ran 𝐺 ∖ {∅}) ↦ (𝑀𝑘))) = (Σ^‘(𝑗𝑌 ↦ (𝑀‘(𝐺𝑗)))))
153152eqcomd 2743 . . 3 (𝜑 → (Σ^‘(𝑗𝑌 ↦ (𝑀‘(𝐺𝑗)))) = (Σ^‘(𝑘 ∈ (ran 𝐺 ∖ {∅}) ↦ (𝑀𝑘))))
15443, 78, 1533eqtrd 2781 . 2 (𝜑 → (Σ^‘(𝑀𝐺)) = (Σ^‘(𝑘 ∈ (ran 𝐺 ∖ {∅}) ↦ (𝑀𝑘))))
15535, 37, 1543eqtr4d 2787 1 (𝜑 → (Σ^‘(𝑀 ↾ ran 𝐺)) = (Σ^‘(𝑀𝐺)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wral 3061  wrex 3070  {crab 3436  Vcvv 3480  cdif 3948  cin 3950  wss 3951  c0 4333  {csn 4626  Disj wdisj 5110  cmpt 5225  dom cdm 5685  ran crn 5686  cres 5687  ccom 5689   Fn wfn 6556  wf 6557  1-1wf1 6558  1-1-ontowf1o 6560  cfv 6561  (class class class)co 7431  0cc0 11155  +∞cpnf 11292  [,]cicc 13390  Σ^csumge0 46377  Meascmea 46464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-disj 5111  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-xadd 13155  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723  df-sumge0 46378  df-mea 46465
This theorem is referenced by:  meadjiun  46481
  Copyright terms: Public domain W3C validator