MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffo2 Structured version   Visualization version   GIF version

Theorem dffo2 6745
Description: Alternate definition of an onto function. (Contributed by NM, 22-Mar-2006.)
Assertion
Ref Expression
dffo2 (𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵))

Proof of Theorem dffo2
StepHypRef Expression
1 fof 6741 . . 3 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
2 forn 6744 . . 3 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
31, 2jca 511 . 2 (𝐹:𝐴onto𝐵 → (𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵))
4 ffn 6657 . . 3 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
5 df-fo 6493 . . . 4 (𝐹:𝐴onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))
65biimpri 228 . . 3 ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → 𝐹:𝐴onto𝐵)
74, 6sylan 580 . 2 ((𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵) → 𝐹:𝐴onto𝐵)
83, 7impbii 209 1 (𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  ran crn 5620   Fn wfn 6482  wf 6483  ontowfo 6485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-cleq 2723  df-ss 3914  df-f 6491  df-fo 6493
This theorem is referenced by:  focofo  6754  foconst  6756  dff1o5  6778  dffo3  7041  dffo4  7042  exfo  7044  dffo3f  7045  fo1stres  7953  fo2ndres  7954  fo2ndf  8057  cantnf  9589  hsmexlem2  10324  setcepi  18001  odf1o1  19490  efgsfo  19657  pjfo  21658  xrhmeo  24877  grpofo  30486  cnpconn  35281  lnmepi  43183  imasetpreimafvbijlemfo  47510  fargshiftfo  47547
  Copyright terms: Public domain W3C validator