MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffo2 Structured version   Visualization version   GIF version

Theorem dffo2 6735
Description: Alternate definition of an onto function. (Contributed by NM, 22-Mar-2006.)
Assertion
Ref Expression
dffo2 (𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵))

Proof of Theorem dffo2
StepHypRef Expression
1 fof 6731 . . 3 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
2 forn 6734 . . 3 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
31, 2jca 511 . 2 (𝐹:𝐴onto𝐵 → (𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵))
4 ffn 6647 . . 3 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
5 df-fo 6483 . . . 4 (𝐹:𝐴onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))
65biimpri 228 . . 3 ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → 𝐹:𝐴onto𝐵)
74, 6sylan 580 . 2 ((𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵) → 𝐹:𝐴onto𝐵)
83, 7impbii 209 1 (𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  ran crn 5615   Fn wfn 6472  wf 6473  ontowfo 6475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2120  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-cleq 2722  df-ss 3917  df-f 6481  df-fo 6483
This theorem is referenced by:  focofo  6744  foconst  6746  dff1o5  6768  dffo3  7030  dffo4  7031  exfo  7033  dffo3f  7034  fo1stres  7942  fo2ndres  7943  fo2ndf  8046  cantnf  9578  hsmexlem2  10310  setcepi  17987  odf1o1  19477  efgsfo  19644  pjfo  21645  xrhmeo  24864  grpofo  30469  cnpconn  35242  lnmepi  43097  imasetpreimafvbijlemfo  47415  fargshiftfo  47452
  Copyright terms: Public domain W3C validator