| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dffo2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of an onto function. (Contributed by NM, 22-Mar-2006.) |
| Ref | Expression |
|---|---|
| dffo2 | ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ran 𝐹 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fof 6731 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 2 | forn 6734 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) | |
| 3 | 1, 2 | jca 511 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹:𝐴⟶𝐵 ∧ ran 𝐹 = 𝐵)) |
| 4 | ffn 6647 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 5 | df-fo 6483 | . . . 4 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) | |
| 6 | 5 | biimpri 228 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → 𝐹:𝐴–onto→𝐵) |
| 7 | 4, 6 | sylan 580 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ ran 𝐹 = 𝐵) → 𝐹:𝐴–onto→𝐵) |
| 8 | 3, 7 | impbii 209 | 1 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ran 𝐹 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ran crn 5615 Fn wfn 6472 ⟶wf 6473 –onto→wfo 6475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2120 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2722 df-ss 3917 df-f 6481 df-fo 6483 |
| This theorem is referenced by: focofo 6744 foconst 6746 dff1o5 6768 dffo3 7030 dffo4 7031 exfo 7033 dffo3f 7034 fo1stres 7942 fo2ndres 7943 fo2ndf 8046 cantnf 9578 hsmexlem2 10310 setcepi 17987 odf1o1 19477 efgsfo 19644 pjfo 21645 xrhmeo 24864 grpofo 30469 cnpconn 35242 lnmepi 43097 imasetpreimafvbijlemfo 47415 fargshiftfo 47452 |
| Copyright terms: Public domain | W3C validator |