MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffo2 Structured version   Visualization version   GIF version

Theorem dffo2 6676
Description: Alternate definition of an onto function. (Contributed by NM, 22-Mar-2006.)
Assertion
Ref Expression
dffo2 (𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵))

Proof of Theorem dffo2
StepHypRef Expression
1 fof 6672 . . 3 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
2 forn 6675 . . 3 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
31, 2jca 511 . 2 (𝐹:𝐴onto𝐵 → (𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵))
4 ffn 6584 . . 3 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
5 df-fo 6424 . . . 4 (𝐹:𝐴onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))
65biimpri 227 . . 3 ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → 𝐹:𝐴onto𝐵)
74, 6sylan 579 . 2 ((𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵) → 𝐹:𝐴onto𝐵)
83, 7impbii 208 1 (𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  ran crn 5581   Fn wfn 6413  wf 6414  ontowfo 6416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-in 3890  df-ss 3900  df-f 6422  df-fo 6424
This theorem is referenced by:  focofo  6685  foconst  6687  dff1o5  6709  dffo3  6960  dffo4  6961  exfo  6963  fo1stres  7830  fo2ndres  7831  fo2ndf  7933  cantnf  9381  hsmexlem2  10114  setcepi  17719  odf1o1  19092  efgsfo  19260  pjfo  20832  xrhmeo  24015  grpofo  28762  cnpconn  33092  lnmepi  40826  dffo3f  42606  imasetpreimafvbijlemfo  44745  fargshiftfo  44782
  Copyright terms: Public domain W3C validator