![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dffo2 | Structured version Visualization version GIF version |
Description: Alternate definition of an onto function. (Contributed by NM, 22-Mar-2006.) |
Ref | Expression |
---|---|
dffo2 | ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ran 𝐹 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fof 6821 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
2 | forn 6824 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) | |
3 | 1, 2 | jca 511 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹:𝐴⟶𝐵 ∧ ran 𝐹 = 𝐵)) |
4 | ffn 6737 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
5 | df-fo 6569 | . . . 4 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) | |
6 | 5 | biimpri 228 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → 𝐹:𝐴–onto→𝐵) |
7 | 4, 6 | sylan 580 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ ran 𝐹 = 𝐵) → 𝐹:𝐴–onto→𝐵) |
8 | 3, 7 | impbii 209 | 1 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ran 𝐹 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ran crn 5690 Fn wfn 6558 ⟶wf 6559 –onto→wfo 6561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-cleq 2727 df-ss 3980 df-f 6567 df-fo 6569 |
This theorem is referenced by: focofo 6834 foconst 6836 dff1o5 6858 dffo3 7122 dffo4 7123 exfo 7125 dffo3f 7126 fo1stres 8039 fo2ndres 8040 fo2ndf 8145 cantnf 9731 hsmexlem2 10465 setcepi 18142 odf1o1 19605 efgsfo 19772 pjfo 21753 xrhmeo 24991 grpofo 30528 cnpconn 35215 lnmepi 43074 imasetpreimafvbijlemfo 47330 fargshiftfo 47367 |
Copyright terms: Public domain | W3C validator |