MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffo2 Structured version   Visualization version   GIF version

Theorem dffo2 6838
Description: Alternate definition of an onto function. (Contributed by NM, 22-Mar-2006.)
Assertion
Ref Expression
dffo2 (𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵))

Proof of Theorem dffo2
StepHypRef Expression
1 fof 6834 . . 3 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
2 forn 6837 . . 3 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
31, 2jca 511 . 2 (𝐹:𝐴onto𝐵 → (𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵))
4 ffn 6747 . . 3 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
5 df-fo 6579 . . . 4 (𝐹:𝐴onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))
65biimpri 228 . . 3 ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → 𝐹:𝐴onto𝐵)
74, 6sylan 579 . 2 ((𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵) → 𝐹:𝐴onto𝐵)
83, 7impbii 209 1 (𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  ran crn 5701   Fn wfn 6568  wf 6569  ontowfo 6571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-cleq 2732  df-ss 3993  df-f 6577  df-fo 6579
This theorem is referenced by:  focofo  6847  foconst  6849  dff1o5  6871  dffo3  7136  dffo4  7137  exfo  7139  dffo3f  7140  fo1stres  8056  fo2ndres  8057  fo2ndf  8162  cantnf  9762  hsmexlem2  10496  setcepi  18155  odf1o1  19614  efgsfo  19781  pjfo  21758  xrhmeo  24996  grpofo  30531  cnpconn  35198  lnmepi  43042  imasetpreimafvbijlemfo  47279  fargshiftfo  47316
  Copyright terms: Public domain W3C validator