![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dffo2 | Structured version Visualization version GIF version |
Description: Alternate definition of an onto function. (Contributed by NM, 22-Mar-2006.) |
Ref | Expression |
---|---|
dffo2 | ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ran 𝐹 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fof 6458 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
2 | forn 6461 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) | |
3 | 1, 2 | jca 512 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹:𝐴⟶𝐵 ∧ ran 𝐹 = 𝐵)) |
4 | ffn 6382 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
5 | df-fo 6231 | . . . 4 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) | |
6 | 5 | biimpri 229 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → 𝐹:𝐴–onto→𝐵) |
7 | 4, 6 | sylan 580 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ ran 𝐹 = 𝐵) → 𝐹:𝐴–onto→𝐵) |
8 | 3, 7 | impbii 210 | 1 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ran 𝐹 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 207 ∧ wa 396 = wceq 1522 ran crn 5444 Fn wfn 6220 ⟶wf 6221 –onto→wfo 6223 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-ext 2769 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-clab 2776 df-cleq 2788 df-clel 2863 df-in 3866 df-ss 3874 df-f 6229 df-fo 6231 |
This theorem is referenced by: foco 6470 foconst 6471 dff1o5 6492 dffo3 6731 dffo4 6732 exfo 6734 fo1stres 7571 fo2ndres 7572 fo2ndf 7670 cantnf 9002 hsmexlem2 9695 setcepi 17177 odf1o1 18427 efgsfo 18592 pjfo 20541 xrhmeo 23233 grpofo 27967 cnpconn 32086 lnmepi 39189 dffo3f 40997 fargshiftfo 43104 |
Copyright terms: Public domain | W3C validator |