MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffo2 Structured version   Visualization version   GIF version

Theorem dffo2 6794
Description: Alternate definition of an onto function. (Contributed by NM, 22-Mar-2006.)
Assertion
Ref Expression
dffo2 (𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵))

Proof of Theorem dffo2
StepHypRef Expression
1 fof 6790 . . 3 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
2 forn 6793 . . 3 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
31, 2jca 511 . 2 (𝐹:𝐴onto𝐵 → (𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵))
4 ffn 6706 . . 3 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
5 df-fo 6537 . . . 4 (𝐹:𝐴onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))
65biimpri 228 . . 3 ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → 𝐹:𝐴onto𝐵)
74, 6sylan 580 . 2 ((𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵) → 𝐹:𝐴onto𝐵)
83, 7impbii 209 1 (𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  ran crn 5655   Fn wfn 6526  wf 6527  ontowfo 6529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2727  df-ss 3943  df-f 6535  df-fo 6537
This theorem is referenced by:  focofo  6803  foconst  6805  dff1o5  6827  dffo3  7092  dffo4  7093  exfo  7095  dffo3f  7096  fo1stres  8014  fo2ndres  8015  fo2ndf  8120  cantnf  9707  hsmexlem2  10441  setcepi  18101  odf1o1  19553  efgsfo  19720  pjfo  21675  xrhmeo  24895  grpofo  30480  cnpconn  35252  lnmepi  43109  imasetpreimafvbijlemfo  47419  fargshiftfo  47456
  Copyright terms: Public domain W3C validator