MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffo2 Structured version   Visualization version   GIF version

Theorem dffo2 6812
Description: Alternate definition of an onto function. (Contributed by NM, 22-Mar-2006.)
Assertion
Ref Expression
dffo2 (𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵))

Proof of Theorem dffo2
StepHypRef Expression
1 fof 6808 . . 3 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
2 forn 6811 . . 3 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
31, 2jca 510 . 2 (𝐹:𝐴onto𝐵 → (𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵))
4 ffn 6721 . . 3 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
5 df-fo 6553 . . . 4 (𝐹:𝐴onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))
65biimpri 227 . . 3 ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → 𝐹:𝐴onto𝐵)
74, 6sylan 578 . 2 ((𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵) → 𝐹:𝐴onto𝐵)
83, 7impbii 208 1 (𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 394   = wceq 1533  ran crn 5678   Fn wfn 6542  wf 6543  ontowfo 6545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-ex 1774  df-cleq 2717  df-ss 3962  df-f 6551  df-fo 6553
This theorem is referenced by:  focofo  6821  foconst  6823  dff1o5  6845  dffo3  7109  dffo4  7110  exfo  7112  dffo3f  7113  fo1stres  8018  fo2ndres  8019  fo2ndf  8124  cantnf  9716  hsmexlem2  10450  setcepi  18076  odf1o1  19531  efgsfo  19698  pjfo  21653  xrhmeo  24901  grpofo  30365  cnpconn  34910  lnmepi  42574  imasetpreimafvbijlemfo  46808  fargshiftfo  46845
  Copyright terms: Public domain W3C validator