| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dffo2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of an onto function. (Contributed by NM, 22-Mar-2006.) |
| Ref | Expression |
|---|---|
| dffo2 | ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ran 𝐹 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fof 6740 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 2 | forn 6743 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) | |
| 3 | 1, 2 | jca 511 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹:𝐴⟶𝐵 ∧ ran 𝐹 = 𝐵)) |
| 4 | ffn 6656 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 5 | df-fo 6492 | . . . 4 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) | |
| 6 | 5 | biimpri 228 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → 𝐹:𝐴–onto→𝐵) |
| 7 | 4, 6 | sylan 580 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ ran 𝐹 = 𝐵) → 𝐹:𝐴–onto→𝐵) |
| 8 | 3, 7 | impbii 209 | 1 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ran 𝐹 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ran crn 5624 Fn wfn 6481 ⟶wf 6482 –onto→wfo 6484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3922 df-f 6490 df-fo 6492 |
| This theorem is referenced by: focofo 6753 foconst 6755 dff1o5 6777 dffo3 7040 dffo4 7041 exfo 7043 dffo3f 7044 fo1stres 7957 fo2ndres 7958 fo2ndf 8061 cantnf 9608 hsmexlem2 10340 setcepi 18013 odf1o1 19469 efgsfo 19636 pjfo 21640 xrhmeo 24860 grpofo 30461 cnpconn 35202 lnmepi 43058 imasetpreimafvbijlemfo 47390 fargshiftfo 47427 |
| Copyright terms: Public domain | W3C validator |