![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dffo2 | Structured version Visualization version GIF version |
Description: Alternate definition of an onto function. (Contributed by NM, 22-Mar-2006.) |
Ref | Expression |
---|---|
dffo2 | ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ran 𝐹 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fof 6834 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
2 | forn 6837 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) | |
3 | 1, 2 | jca 511 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹:𝐴⟶𝐵 ∧ ran 𝐹 = 𝐵)) |
4 | ffn 6747 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
5 | df-fo 6579 | . . . 4 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) | |
6 | 5 | biimpri 228 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → 𝐹:𝐴–onto→𝐵) |
7 | 4, 6 | sylan 579 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ ran 𝐹 = 𝐵) → 𝐹:𝐴–onto→𝐵) |
8 | 3, 7 | impbii 209 | 1 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ran 𝐹 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ran crn 5701 Fn wfn 6568 ⟶wf 6569 –onto→wfo 6571 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-ss 3993 df-f 6577 df-fo 6579 |
This theorem is referenced by: focofo 6847 foconst 6849 dff1o5 6871 dffo3 7136 dffo4 7137 exfo 7139 dffo3f 7140 fo1stres 8056 fo2ndres 8057 fo2ndf 8162 cantnf 9762 hsmexlem2 10496 setcepi 18155 odf1o1 19614 efgsfo 19781 pjfo 21758 xrhmeo 24996 grpofo 30531 cnpconn 35198 lnmepi 43042 imasetpreimafvbijlemfo 47279 fargshiftfo 47316 |
Copyright terms: Public domain | W3C validator |