MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffo2 Structured version   Visualization version   GIF version

Theorem dffo2 6744
Description: Alternate definition of an onto function. (Contributed by NM, 22-Mar-2006.)
Assertion
Ref Expression
dffo2 (𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵))

Proof of Theorem dffo2
StepHypRef Expression
1 fof 6740 . . 3 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
2 forn 6743 . . 3 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
31, 2jca 511 . 2 (𝐹:𝐴onto𝐵 → (𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵))
4 ffn 6656 . . 3 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
5 df-fo 6492 . . . 4 (𝐹:𝐴onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))
65biimpri 228 . . 3 ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → 𝐹:𝐴onto𝐵)
74, 6sylan 580 . 2 ((𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵) → 𝐹:𝐴onto𝐵)
83, 7impbii 209 1 (𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  ran crn 5624   Fn wfn 6481  wf 6482  ontowfo 6484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2721  df-ss 3922  df-f 6490  df-fo 6492
This theorem is referenced by:  focofo  6753  foconst  6755  dff1o5  6777  dffo3  7040  dffo4  7041  exfo  7043  dffo3f  7044  fo1stres  7957  fo2ndres  7958  fo2ndf  8061  cantnf  9608  hsmexlem2  10340  setcepi  18013  odf1o1  19469  efgsfo  19636  pjfo  21640  xrhmeo  24860  grpofo  30461  cnpconn  35202  lnmepi  43058  imasetpreimafvbijlemfo  47390  fargshiftfo  47427
  Copyright terms: Public domain W3C validator