MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffo2 Structured version   Visualization version   GIF version

Theorem dffo2 6776
Description: Alternate definition of an onto function. (Contributed by NM, 22-Mar-2006.)
Assertion
Ref Expression
dffo2 (𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵))

Proof of Theorem dffo2
StepHypRef Expression
1 fof 6772 . . 3 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
2 forn 6775 . . 3 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
31, 2jca 511 . 2 (𝐹:𝐴onto𝐵 → (𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵))
4 ffn 6688 . . 3 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
5 df-fo 6517 . . . 4 (𝐹:𝐴onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))
65biimpri 228 . . 3 ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → 𝐹:𝐴onto𝐵)
74, 6sylan 580 . 2 ((𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵) → 𝐹:𝐴onto𝐵)
83, 7impbii 209 1 (𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  ran crn 5639   Fn wfn 6506  wf 6507  ontowfo 6509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2721  df-ss 3931  df-f 6515  df-fo 6517
This theorem is referenced by:  focofo  6785  foconst  6787  dff1o5  6809  dffo3  7074  dffo4  7075  exfo  7077  dffo3f  7078  fo1stres  7994  fo2ndres  7995  fo2ndf  8100  cantnf  9646  hsmexlem2  10380  setcepi  18050  odf1o1  19502  efgsfo  19669  pjfo  21624  xrhmeo  24844  grpofo  30428  cnpconn  35217  lnmepi  43074  imasetpreimafvbijlemfo  47406  fargshiftfo  47443
  Copyright terms: Public domain W3C validator