| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dffo2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of an onto function. (Contributed by NM, 22-Mar-2006.) |
| Ref | Expression |
|---|---|
| dffo2 | ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ran 𝐹 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fof 6775 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 2 | forn 6778 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) | |
| 3 | 1, 2 | jca 511 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹:𝐴⟶𝐵 ∧ ran 𝐹 = 𝐵)) |
| 4 | ffn 6691 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 5 | df-fo 6520 | . . . 4 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) | |
| 6 | 5 | biimpri 228 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → 𝐹:𝐴–onto→𝐵) |
| 7 | 4, 6 | sylan 580 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ ran 𝐹 = 𝐵) → 𝐹:𝐴–onto→𝐵) |
| 8 | 3, 7 | impbii 209 | 1 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ran 𝐹 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ran crn 5642 Fn wfn 6509 ⟶wf 6510 –onto→wfo 6512 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-ss 3934 df-f 6518 df-fo 6520 |
| This theorem is referenced by: focofo 6788 foconst 6790 dff1o5 6812 dffo3 7077 dffo4 7078 exfo 7080 dffo3f 7081 fo1stres 7997 fo2ndres 7998 fo2ndf 8103 cantnf 9653 hsmexlem2 10387 setcepi 18057 odf1o1 19509 efgsfo 19676 pjfo 21631 xrhmeo 24851 grpofo 30435 cnpconn 35224 lnmepi 43081 imasetpreimafvbijlemfo 47410 fargshiftfo 47447 |
| Copyright terms: Public domain | W3C validator |