MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sucdom2OLD Structured version   Visualization version   GIF version

Theorem sucdom2OLD 9085
Description: Obsolete version of sucdom2 9209 as of 4-Dec-2024. (Contributed by Mario Carneiro, 12-Jan-2013.) (Proof shortened by Mario Carneiro, 27-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sucdom2OLD (𝐴 β‰Ί 𝐡 β†’ suc 𝐴 β‰Ό 𝐡)

Proof of Theorem sucdom2OLD
Dummy variables 𝑀 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sdomdom 8979 . . 3 (𝐴 β‰Ί 𝐡 β†’ 𝐴 β‰Ό 𝐡)
2 brdomi 8957 . . 3 (𝐴 β‰Ό 𝐡 β†’ βˆƒπ‘“ 𝑓:𝐴–1-1→𝐡)
31, 2syl 17 . 2 (𝐴 β‰Ί 𝐡 β†’ βˆƒπ‘“ 𝑓:𝐴–1-1→𝐡)
4 relsdom 8949 . . . . . . 7 Rel β‰Ί
54brrelex1i 5733 . . . . . 6 (𝐴 β‰Ί 𝐡 β†’ 𝐴 ∈ V)
65adantr 480 . . . . 5 ((𝐴 β‰Ί 𝐡 ∧ 𝑓:𝐴–1-1→𝐡) β†’ 𝐴 ∈ V)
7 vex 3477 . . . . . . 7 𝑓 ∈ V
87rnex 7906 . . . . . 6 ran 𝑓 ∈ V
98a1i 11 . . . . 5 ((𝐴 β‰Ί 𝐡 ∧ 𝑓:𝐴–1-1→𝐡) β†’ ran 𝑓 ∈ V)
10 f1f1orn 6845 . . . . . . 7 (𝑓:𝐴–1-1→𝐡 β†’ 𝑓:𝐴–1-1-ontoβ†’ran 𝑓)
1110adantl 481 . . . . . 6 ((𝐴 β‰Ί 𝐡 ∧ 𝑓:𝐴–1-1→𝐡) β†’ 𝑓:𝐴–1-1-ontoβ†’ran 𝑓)
12 f1of1 6833 . . . . . 6 (𝑓:𝐴–1-1-ontoβ†’ran 𝑓 β†’ 𝑓:𝐴–1-1β†’ran 𝑓)
1311, 12syl 17 . . . . 5 ((𝐴 β‰Ί 𝐡 ∧ 𝑓:𝐴–1-1→𝐡) β†’ 𝑓:𝐴–1-1β†’ran 𝑓)
14 f1dom2g 8968 . . . . 5 ((𝐴 ∈ V ∧ ran 𝑓 ∈ V ∧ 𝑓:𝐴–1-1β†’ran 𝑓) β†’ 𝐴 β‰Ό ran 𝑓)
156, 9, 13, 14syl3anc 1370 . . . 4 ((𝐴 β‰Ί 𝐡 ∧ 𝑓:𝐴–1-1→𝐡) β†’ 𝐴 β‰Ό ran 𝑓)
16 sdomnen 8980 . . . . . . . 8 (𝐴 β‰Ί 𝐡 β†’ Β¬ 𝐴 β‰ˆ 𝐡)
1716adantr 480 . . . . . . 7 ((𝐴 β‰Ί 𝐡 ∧ 𝑓:𝐴–1-1→𝐡) β†’ Β¬ 𝐴 β‰ˆ 𝐡)
18 ssdif0 4364 . . . . . . . 8 (𝐡 βŠ† ran 𝑓 ↔ (𝐡 βˆ– ran 𝑓) = βˆ…)
19 simplr 766 . . . . . . . . . . 11 (((𝐴 β‰Ί 𝐡 ∧ 𝑓:𝐴–1-1→𝐡) ∧ 𝐡 βŠ† ran 𝑓) β†’ 𝑓:𝐴–1-1→𝐡)
20 f1f 6788 . . . . . . . . . . . . . 14 (𝑓:𝐴–1-1→𝐡 β†’ 𝑓:𝐴⟢𝐡)
2120frnd 6726 . . . . . . . . . . . . 13 (𝑓:𝐴–1-1→𝐡 β†’ ran 𝑓 βŠ† 𝐡)
2219, 21syl 17 . . . . . . . . . . . 12 (((𝐴 β‰Ί 𝐡 ∧ 𝑓:𝐴–1-1→𝐡) ∧ 𝐡 βŠ† ran 𝑓) β†’ ran 𝑓 βŠ† 𝐡)
23 simpr 484 . . . . . . . . . . . 12 (((𝐴 β‰Ί 𝐡 ∧ 𝑓:𝐴–1-1→𝐡) ∧ 𝐡 βŠ† ran 𝑓) β†’ 𝐡 βŠ† ran 𝑓)
2422, 23eqssd 4000 . . . . . . . . . . 11 (((𝐴 β‰Ί 𝐡 ∧ 𝑓:𝐴–1-1→𝐡) ∧ 𝐡 βŠ† ran 𝑓) β†’ ran 𝑓 = 𝐡)
25 dff1o5 6843 . . . . . . . . . . 11 (𝑓:𝐴–1-1-onto→𝐡 ↔ (𝑓:𝐴–1-1→𝐡 ∧ ran 𝑓 = 𝐡))
2619, 24, 25sylanbrc 582 . . . . . . . . . 10 (((𝐴 β‰Ί 𝐡 ∧ 𝑓:𝐴–1-1→𝐡) ∧ 𝐡 βŠ† ran 𝑓) β†’ 𝑓:𝐴–1-1-onto→𝐡)
27 f1oen3g 8965 . . . . . . . . . 10 ((𝑓 ∈ V ∧ 𝑓:𝐴–1-1-onto→𝐡) β†’ 𝐴 β‰ˆ 𝐡)
287, 26, 27sylancr 586 . . . . . . . . 9 (((𝐴 β‰Ί 𝐡 ∧ 𝑓:𝐴–1-1→𝐡) ∧ 𝐡 βŠ† ran 𝑓) β†’ 𝐴 β‰ˆ 𝐡)
2928ex 412 . . . . . . . 8 ((𝐴 β‰Ί 𝐡 ∧ 𝑓:𝐴–1-1→𝐡) β†’ (𝐡 βŠ† ran 𝑓 β†’ 𝐴 β‰ˆ 𝐡))
3018, 29biimtrrid 242 . . . . . . 7 ((𝐴 β‰Ί 𝐡 ∧ 𝑓:𝐴–1-1→𝐡) β†’ ((𝐡 βˆ– ran 𝑓) = βˆ… β†’ 𝐴 β‰ˆ 𝐡))
3117, 30mtod 197 . . . . . 6 ((𝐴 β‰Ί 𝐡 ∧ 𝑓:𝐴–1-1→𝐡) β†’ Β¬ (𝐡 βˆ– ran 𝑓) = βˆ…)
32 neq0 4346 . . . . . 6 (Β¬ (𝐡 βˆ– ran 𝑓) = βˆ… ↔ βˆƒπ‘€ 𝑀 ∈ (𝐡 βˆ– ran 𝑓))
3331, 32sylib 217 . . . . 5 ((𝐴 β‰Ί 𝐡 ∧ 𝑓:𝐴–1-1→𝐡) β†’ βˆƒπ‘€ 𝑀 ∈ (𝐡 βˆ– ran 𝑓))
34 snssi 4812 . . . . . . 7 (𝑀 ∈ (𝐡 βˆ– ran 𝑓) β†’ {𝑀} βŠ† (𝐡 βˆ– ran 𝑓))
35 vex 3477 . . . . . . . . 9 𝑀 ∈ V
36 en2sn 9044 . . . . . . . . 9 ((𝐴 ∈ V ∧ 𝑀 ∈ V) β†’ {𝐴} β‰ˆ {𝑀})
376, 35, 36sylancl 585 . . . . . . . 8 ((𝐴 β‰Ί 𝐡 ∧ 𝑓:𝐴–1-1→𝐡) β†’ {𝐴} β‰ˆ {𝑀})
384brrelex2i 5734 . . . . . . . . . 10 (𝐴 β‰Ί 𝐡 β†’ 𝐡 ∈ V)
3938adantr 480 . . . . . . . . 9 ((𝐴 β‰Ί 𝐡 ∧ 𝑓:𝐴–1-1→𝐡) β†’ 𝐡 ∈ V)
40 difexg 5328 . . . . . . . . 9 (𝐡 ∈ V β†’ (𝐡 βˆ– ran 𝑓) ∈ V)
41 ssdomg 8999 . . . . . . . . 9 ((𝐡 βˆ– ran 𝑓) ∈ V β†’ ({𝑀} βŠ† (𝐡 βˆ– ran 𝑓) β†’ {𝑀} β‰Ό (𝐡 βˆ– ran 𝑓)))
4239, 40, 413syl 18 . . . . . . . 8 ((𝐴 β‰Ί 𝐡 ∧ 𝑓:𝐴–1-1→𝐡) β†’ ({𝑀} βŠ† (𝐡 βˆ– ran 𝑓) β†’ {𝑀} β‰Ό (𝐡 βˆ– ran 𝑓)))
43 endomtr 9011 . . . . . . . 8 (({𝐴} β‰ˆ {𝑀} ∧ {𝑀} β‰Ό (𝐡 βˆ– ran 𝑓)) β†’ {𝐴} β‰Ό (𝐡 βˆ– ran 𝑓))
4437, 42, 43syl6an 681 . . . . . . 7 ((𝐴 β‰Ί 𝐡 ∧ 𝑓:𝐴–1-1→𝐡) β†’ ({𝑀} βŠ† (𝐡 βˆ– ran 𝑓) β†’ {𝐴} β‰Ό (𝐡 βˆ– ran 𝑓)))
4534, 44syl5 34 . . . . . 6 ((𝐴 β‰Ί 𝐡 ∧ 𝑓:𝐴–1-1→𝐡) β†’ (𝑀 ∈ (𝐡 βˆ– ran 𝑓) β†’ {𝐴} β‰Ό (𝐡 βˆ– ran 𝑓)))
4645exlimdv 1935 . . . . 5 ((𝐴 β‰Ί 𝐡 ∧ 𝑓:𝐴–1-1→𝐡) β†’ (βˆƒπ‘€ 𝑀 ∈ (𝐡 βˆ– ran 𝑓) β†’ {𝐴} β‰Ό (𝐡 βˆ– ran 𝑓)))
4733, 46mpd 15 . . . 4 ((𝐴 β‰Ί 𝐡 ∧ 𝑓:𝐴–1-1→𝐡) β†’ {𝐴} β‰Ό (𝐡 βˆ– ran 𝑓))
48 disjdif 4472 . . . . 5 (ran 𝑓 ∩ (𝐡 βˆ– ran 𝑓)) = βˆ…
4948a1i 11 . . . 4 ((𝐴 β‰Ί 𝐡 ∧ 𝑓:𝐴–1-1→𝐡) β†’ (ran 𝑓 ∩ (𝐡 βˆ– ran 𝑓)) = βˆ…)
50 undom 9062 . . . 4 (((𝐴 β‰Ό ran 𝑓 ∧ {𝐴} β‰Ό (𝐡 βˆ– ran 𝑓)) ∧ (ran 𝑓 ∩ (𝐡 βˆ– ran 𝑓)) = βˆ…) β†’ (𝐴 βˆͺ {𝐴}) β‰Ό (ran 𝑓 βˆͺ (𝐡 βˆ– ran 𝑓)))
5115, 47, 49, 50syl21anc 835 . . 3 ((𝐴 β‰Ί 𝐡 ∧ 𝑓:𝐴–1-1→𝐡) β†’ (𝐴 βˆͺ {𝐴}) β‰Ό (ran 𝑓 βˆͺ (𝐡 βˆ– ran 𝑓)))
52 df-suc 6371 . . . 4 suc 𝐴 = (𝐴 βˆͺ {𝐴})
5352a1i 11 . . 3 ((𝐴 β‰Ί 𝐡 ∧ 𝑓:𝐴–1-1→𝐡) β†’ suc 𝐴 = (𝐴 βˆͺ {𝐴}))
54 undif2 4477 . . . 4 (ran 𝑓 βˆͺ (𝐡 βˆ– ran 𝑓)) = (ran 𝑓 βˆͺ 𝐡)
5521adantl 481 . . . . 5 ((𝐴 β‰Ί 𝐡 ∧ 𝑓:𝐴–1-1→𝐡) β†’ ran 𝑓 βŠ† 𝐡)
56 ssequn1 4181 . . . . 5 (ran 𝑓 βŠ† 𝐡 ↔ (ran 𝑓 βˆͺ 𝐡) = 𝐡)
5755, 56sylib 217 . . . 4 ((𝐴 β‰Ί 𝐡 ∧ 𝑓:𝐴–1-1→𝐡) β†’ (ran 𝑓 βˆͺ 𝐡) = 𝐡)
5854, 57eqtr2id 2784 . . 3 ((𝐴 β‰Ί 𝐡 ∧ 𝑓:𝐴–1-1→𝐡) β†’ 𝐡 = (ran 𝑓 βˆͺ (𝐡 βˆ– ran 𝑓)))
5951, 53, 583brtr4d 5181 . 2 ((𝐴 β‰Ί 𝐡 ∧ 𝑓:𝐴–1-1→𝐡) β†’ suc 𝐴 β‰Ό 𝐡)
603, 59exlimddv 1937 1 (𝐴 β‰Ί 𝐡 β†’ suc 𝐴 β‰Ό 𝐡)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 395   = wceq 1540  βˆƒwex 1780   ∈ wcel 2105  Vcvv 3473   βˆ– cdif 3946   βˆͺ cun 3947   ∩ cin 3948   βŠ† wss 3949  βˆ…c0 4323  {csn 4629   class class class wbr 5149  ran crn 5678  suc csuc 6367  β€“1-1β†’wf1 6541  β€“1-1-ontoβ†’wf1o 6543   β‰ˆ cen 8939   β‰Ό cdom 8940   β‰Ί csdm 8941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-suc 6371  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-en 8943  df-dom 8944  df-sdom 8945
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator