Step | Hyp | Ref
| Expression |
1 | | sdomdom 8768 |
. . 3
⊢ (𝐴 ≺ 𝐵 → 𝐴 ≼ 𝐵) |
2 | | brdomi 8748 |
. . 3
⊢ (𝐴 ≼ 𝐵 → ∃𝑓 𝑓:𝐴–1-1→𝐵) |
3 | 1, 2 | syl 17 |
. 2
⊢ (𝐴 ≺ 𝐵 → ∃𝑓 𝑓:𝐴–1-1→𝐵) |
4 | | relsdom 8740 |
. . . . . . 7
⊢ Rel
≺ |
5 | 4 | brrelex1i 5643 |
. . . . . 6
⊢ (𝐴 ≺ 𝐵 → 𝐴 ∈ V) |
6 | 5 | adantr 481 |
. . . . 5
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → 𝐴 ∈ V) |
7 | | vex 3436 |
. . . . . . 7
⊢ 𝑓 ∈ V |
8 | 7 | rnex 7759 |
. . . . . 6
⊢ ran 𝑓 ∈ V |
9 | 8 | a1i 11 |
. . . . 5
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → ran 𝑓 ∈ V) |
10 | | f1f1orn 6727 |
. . . . . . 7
⊢ (𝑓:𝐴–1-1→𝐵 → 𝑓:𝐴–1-1-onto→ran
𝑓) |
11 | 10 | adantl 482 |
. . . . . 6
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → 𝑓:𝐴–1-1-onto→ran
𝑓) |
12 | | f1of1 6715 |
. . . . . 6
⊢ (𝑓:𝐴–1-1-onto→ran
𝑓 → 𝑓:𝐴–1-1→ran 𝑓) |
13 | 11, 12 | syl 17 |
. . . . 5
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → 𝑓:𝐴–1-1→ran 𝑓) |
14 | | f1dom2g 8757 |
. . . . 5
⊢ ((𝐴 ∈ V ∧ ran 𝑓 ∈ V ∧ 𝑓:𝐴–1-1→ran 𝑓) → 𝐴 ≼ ran 𝑓) |
15 | 6, 9, 13, 14 | syl3anc 1370 |
. . . 4
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → 𝐴 ≼ ran 𝑓) |
16 | | sdomnen 8769 |
. . . . . . . 8
⊢ (𝐴 ≺ 𝐵 → ¬ 𝐴 ≈ 𝐵) |
17 | 16 | adantr 481 |
. . . . . . 7
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → ¬ 𝐴 ≈ 𝐵) |
18 | | ssdif0 4297 |
. . . . . . . 8
⊢ (𝐵 ⊆ ran 𝑓 ↔ (𝐵 ∖ ran 𝑓) = ∅) |
19 | | simplr 766 |
. . . . . . . . . . 11
⊢ (((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) ∧ 𝐵 ⊆ ran 𝑓) → 𝑓:𝐴–1-1→𝐵) |
20 | | f1f 6670 |
. . . . . . . . . . . . . 14
⊢ (𝑓:𝐴–1-1→𝐵 → 𝑓:𝐴⟶𝐵) |
21 | 20 | frnd 6608 |
. . . . . . . . . . . . 13
⊢ (𝑓:𝐴–1-1→𝐵 → ran 𝑓 ⊆ 𝐵) |
22 | 19, 21 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) ∧ 𝐵 ⊆ ran 𝑓) → ran 𝑓 ⊆ 𝐵) |
23 | | simpr 485 |
. . . . . . . . . . . 12
⊢ (((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) ∧ 𝐵 ⊆ ran 𝑓) → 𝐵 ⊆ ran 𝑓) |
24 | 22, 23 | eqssd 3938 |
. . . . . . . . . . 11
⊢ (((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) ∧ 𝐵 ⊆ ran 𝑓) → ran 𝑓 = 𝐵) |
25 | | dff1o5 6725 |
. . . . . . . . . . 11
⊢ (𝑓:𝐴–1-1-onto→𝐵 ↔ (𝑓:𝐴–1-1→𝐵 ∧ ran 𝑓 = 𝐵)) |
26 | 19, 24, 25 | sylanbrc 583 |
. . . . . . . . . 10
⊢ (((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) ∧ 𝐵 ⊆ ran 𝑓) → 𝑓:𝐴–1-1-onto→𝐵) |
27 | | f1oen3g 8754 |
. . . . . . . . . 10
⊢ ((𝑓 ∈ V ∧ 𝑓:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) |
28 | 7, 26, 27 | sylancr 587 |
. . . . . . . . 9
⊢ (((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) ∧ 𝐵 ⊆ ran 𝑓) → 𝐴 ≈ 𝐵) |
29 | 28 | ex 413 |
. . . . . . . 8
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → (𝐵 ⊆ ran 𝑓 → 𝐴 ≈ 𝐵)) |
30 | 18, 29 | syl5bir 242 |
. . . . . . 7
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → ((𝐵 ∖ ran 𝑓) = ∅ → 𝐴 ≈ 𝐵)) |
31 | 17, 30 | mtod 197 |
. . . . . 6
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → ¬ (𝐵 ∖ ran 𝑓) = ∅) |
32 | | neq0 4279 |
. . . . . 6
⊢ (¬
(𝐵 ∖ ran 𝑓) = ∅ ↔ ∃𝑤 𝑤 ∈ (𝐵 ∖ ran 𝑓)) |
33 | 31, 32 | sylib 217 |
. . . . 5
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → ∃𝑤 𝑤 ∈ (𝐵 ∖ ran 𝑓)) |
34 | | snssi 4741 |
. . . . . . 7
⊢ (𝑤 ∈ (𝐵 ∖ ran 𝑓) → {𝑤} ⊆ (𝐵 ∖ ran 𝑓)) |
35 | | vex 3436 |
. . . . . . . . 9
⊢ 𝑤 ∈ V |
36 | | en2sn 8831 |
. . . . . . . . 9
⊢ ((𝐴 ∈ V ∧ 𝑤 ∈ V) → {𝐴} ≈ {𝑤}) |
37 | 6, 35, 36 | sylancl 586 |
. . . . . . . 8
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → {𝐴} ≈ {𝑤}) |
38 | 4 | brrelex2i 5644 |
. . . . . . . . . 10
⊢ (𝐴 ≺ 𝐵 → 𝐵 ∈ V) |
39 | 38 | adantr 481 |
. . . . . . . . 9
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → 𝐵 ∈ V) |
40 | | difexg 5251 |
. . . . . . . . 9
⊢ (𝐵 ∈ V → (𝐵 ∖ ran 𝑓) ∈ V) |
41 | | ssdomg 8786 |
. . . . . . . . 9
⊢ ((𝐵 ∖ ran 𝑓) ∈ V → ({𝑤} ⊆ (𝐵 ∖ ran 𝑓) → {𝑤} ≼ (𝐵 ∖ ran 𝑓))) |
42 | 39, 40, 41 | 3syl 18 |
. . . . . . . 8
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → ({𝑤} ⊆ (𝐵 ∖ ran 𝑓) → {𝑤} ≼ (𝐵 ∖ ran 𝑓))) |
43 | | endomtr 8798 |
. . . . . . . 8
⊢ (({𝐴} ≈ {𝑤} ∧ {𝑤} ≼ (𝐵 ∖ ran 𝑓)) → {𝐴} ≼ (𝐵 ∖ ran 𝑓)) |
44 | 37, 42, 43 | syl6an 681 |
. . . . . . 7
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → ({𝑤} ⊆ (𝐵 ∖ ran 𝑓) → {𝐴} ≼ (𝐵 ∖ ran 𝑓))) |
45 | 34, 44 | syl5 34 |
. . . . . 6
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → (𝑤 ∈ (𝐵 ∖ ran 𝑓) → {𝐴} ≼ (𝐵 ∖ ran 𝑓))) |
46 | 45 | exlimdv 1936 |
. . . . 5
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → (∃𝑤 𝑤 ∈ (𝐵 ∖ ran 𝑓) → {𝐴} ≼ (𝐵 ∖ ran 𝑓))) |
47 | 33, 46 | mpd 15 |
. . . 4
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → {𝐴} ≼ (𝐵 ∖ ran 𝑓)) |
48 | | disjdif 4405 |
. . . . 5
⊢ (ran
𝑓 ∩ (𝐵 ∖ ran 𝑓)) = ∅ |
49 | 48 | a1i 11 |
. . . 4
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → (ran 𝑓 ∩ (𝐵 ∖ ran 𝑓)) = ∅) |
50 | | undom 8846 |
. . . 4
⊢ (((𝐴 ≼ ran 𝑓 ∧ {𝐴} ≼ (𝐵 ∖ ran 𝑓)) ∧ (ran 𝑓 ∩ (𝐵 ∖ ran 𝑓)) = ∅) → (𝐴 ∪ {𝐴}) ≼ (ran 𝑓 ∪ (𝐵 ∖ ran 𝑓))) |
51 | 15, 47, 49, 50 | syl21anc 835 |
. . 3
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → (𝐴 ∪ {𝐴}) ≼ (ran 𝑓 ∪ (𝐵 ∖ ran 𝑓))) |
52 | | df-suc 6272 |
. . . 4
⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) |
53 | 52 | a1i 11 |
. . 3
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → suc 𝐴 = (𝐴 ∪ {𝐴})) |
54 | | undif2 4410 |
. . . 4
⊢ (ran
𝑓 ∪ (𝐵 ∖ ran 𝑓)) = (ran 𝑓 ∪ 𝐵) |
55 | 21 | adantl 482 |
. . . . 5
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → ran 𝑓 ⊆ 𝐵) |
56 | | ssequn1 4114 |
. . . . 5
⊢ (ran
𝑓 ⊆ 𝐵 ↔ (ran 𝑓 ∪ 𝐵) = 𝐵) |
57 | 55, 56 | sylib 217 |
. . . 4
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → (ran 𝑓 ∪ 𝐵) = 𝐵) |
58 | 54, 57 | eqtr2id 2791 |
. . 3
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → 𝐵 = (ran 𝑓 ∪ (𝐵 ∖ ran 𝑓))) |
59 | 51, 53, 58 | 3brtr4d 5106 |
. 2
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → suc 𝐴 ≼ 𝐵) |
60 | 3, 59 | exlimddv 1938 |
1
⊢ (𝐴 ≺ 𝐵 → suc 𝐴 ≼ 𝐵) |