MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sucdom2OLD Structured version   Visualization version   GIF version

Theorem sucdom2OLD 8939
Description: Obsolete version of sucdom2 9063 as of 4-Dec-2024. (Contributed by Mario Carneiro, 12-Jan-2013.) (Proof shortened by Mario Carneiro, 27-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sucdom2OLD (𝐴𝐵 → suc 𝐴𝐵)

Proof of Theorem sucdom2OLD
Dummy variables 𝑤 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sdomdom 8833 . . 3 (𝐴𝐵𝐴𝐵)
2 brdomi 8811 . . 3 (𝐴𝐵 → ∃𝑓 𝑓:𝐴1-1𝐵)
31, 2syl 17 . 2 (𝐴𝐵 → ∃𝑓 𝑓:𝐴1-1𝐵)
4 relsdom 8803 . . . . . . 7 Rel ≺
54brrelex1i 5668 . . . . . 6 (𝐴𝐵𝐴 ∈ V)
65adantr 481 . . . . 5 ((𝐴𝐵𝑓:𝐴1-1𝐵) → 𝐴 ∈ V)
7 vex 3445 . . . . . . 7 𝑓 ∈ V
87rnex 7819 . . . . . 6 ran 𝑓 ∈ V
98a1i 11 . . . . 5 ((𝐴𝐵𝑓:𝐴1-1𝐵) → ran 𝑓 ∈ V)
10 f1f1orn 6772 . . . . . . 7 (𝑓:𝐴1-1𝐵𝑓:𝐴1-1-onto→ran 𝑓)
1110adantl 482 . . . . . 6 ((𝐴𝐵𝑓:𝐴1-1𝐵) → 𝑓:𝐴1-1-onto→ran 𝑓)
12 f1of1 6760 . . . . . 6 (𝑓:𝐴1-1-onto→ran 𝑓𝑓:𝐴1-1→ran 𝑓)
1311, 12syl 17 . . . . 5 ((𝐴𝐵𝑓:𝐴1-1𝐵) → 𝑓:𝐴1-1→ran 𝑓)
14 f1dom2g 8822 . . . . 5 ((𝐴 ∈ V ∧ ran 𝑓 ∈ V ∧ 𝑓:𝐴1-1→ran 𝑓) → 𝐴 ≼ ran 𝑓)
156, 9, 13, 14syl3anc 1370 . . . 4 ((𝐴𝐵𝑓:𝐴1-1𝐵) → 𝐴 ≼ ran 𝑓)
16 sdomnen 8834 . . . . . . . 8 (𝐴𝐵 → ¬ 𝐴𝐵)
1716adantr 481 . . . . . . 7 ((𝐴𝐵𝑓:𝐴1-1𝐵) → ¬ 𝐴𝐵)
18 ssdif0 4309 . . . . . . . 8 (𝐵 ⊆ ran 𝑓 ↔ (𝐵 ∖ ran 𝑓) = ∅)
19 simplr 766 . . . . . . . . . . 11 (((𝐴𝐵𝑓:𝐴1-1𝐵) ∧ 𝐵 ⊆ ran 𝑓) → 𝑓:𝐴1-1𝐵)
20 f1f 6715 . . . . . . . . . . . . . 14 (𝑓:𝐴1-1𝐵𝑓:𝐴𝐵)
2120frnd 6653 . . . . . . . . . . . . 13 (𝑓:𝐴1-1𝐵 → ran 𝑓𝐵)
2219, 21syl 17 . . . . . . . . . . . 12 (((𝐴𝐵𝑓:𝐴1-1𝐵) ∧ 𝐵 ⊆ ran 𝑓) → ran 𝑓𝐵)
23 simpr 485 . . . . . . . . . . . 12 (((𝐴𝐵𝑓:𝐴1-1𝐵) ∧ 𝐵 ⊆ ran 𝑓) → 𝐵 ⊆ ran 𝑓)
2422, 23eqssd 3948 . . . . . . . . . . 11 (((𝐴𝐵𝑓:𝐴1-1𝐵) ∧ 𝐵 ⊆ ran 𝑓) → ran 𝑓 = 𝐵)
25 dff1o5 6770 . . . . . . . . . . 11 (𝑓:𝐴1-1-onto𝐵 ↔ (𝑓:𝐴1-1𝐵 ∧ ran 𝑓 = 𝐵))
2619, 24, 25sylanbrc 583 . . . . . . . . . 10 (((𝐴𝐵𝑓:𝐴1-1𝐵) ∧ 𝐵 ⊆ ran 𝑓) → 𝑓:𝐴1-1-onto𝐵)
27 f1oen3g 8819 . . . . . . . . . 10 ((𝑓 ∈ V ∧ 𝑓:𝐴1-1-onto𝐵) → 𝐴𝐵)
287, 26, 27sylancr 587 . . . . . . . . 9 (((𝐴𝐵𝑓:𝐴1-1𝐵) ∧ 𝐵 ⊆ ran 𝑓) → 𝐴𝐵)
2928ex 413 . . . . . . . 8 ((𝐴𝐵𝑓:𝐴1-1𝐵) → (𝐵 ⊆ ran 𝑓𝐴𝐵))
3018, 29syl5bir 242 . . . . . . 7 ((𝐴𝐵𝑓:𝐴1-1𝐵) → ((𝐵 ∖ ran 𝑓) = ∅ → 𝐴𝐵))
3117, 30mtod 197 . . . . . 6 ((𝐴𝐵𝑓:𝐴1-1𝐵) → ¬ (𝐵 ∖ ran 𝑓) = ∅)
32 neq0 4291 . . . . . 6 (¬ (𝐵 ∖ ran 𝑓) = ∅ ↔ ∃𝑤 𝑤 ∈ (𝐵 ∖ ran 𝑓))
3331, 32sylib 217 . . . . 5 ((𝐴𝐵𝑓:𝐴1-1𝐵) → ∃𝑤 𝑤 ∈ (𝐵 ∖ ran 𝑓))
34 snssi 4754 . . . . . . 7 (𝑤 ∈ (𝐵 ∖ ran 𝑓) → {𝑤} ⊆ (𝐵 ∖ ran 𝑓))
35 vex 3445 . . . . . . . . 9 𝑤 ∈ V
36 en2sn 8898 . . . . . . . . 9 ((𝐴 ∈ V ∧ 𝑤 ∈ V) → {𝐴} ≈ {𝑤})
376, 35, 36sylancl 586 . . . . . . . 8 ((𝐴𝐵𝑓:𝐴1-1𝐵) → {𝐴} ≈ {𝑤})
384brrelex2i 5669 . . . . . . . . . 10 (𝐴𝐵𝐵 ∈ V)
3938adantr 481 . . . . . . . . 9 ((𝐴𝐵𝑓:𝐴1-1𝐵) → 𝐵 ∈ V)
40 difexg 5268 . . . . . . . . 9 (𝐵 ∈ V → (𝐵 ∖ ran 𝑓) ∈ V)
41 ssdomg 8853 . . . . . . . . 9 ((𝐵 ∖ ran 𝑓) ∈ V → ({𝑤} ⊆ (𝐵 ∖ ran 𝑓) → {𝑤} ≼ (𝐵 ∖ ran 𝑓)))
4239, 40, 413syl 18 . . . . . . . 8 ((𝐴𝐵𝑓:𝐴1-1𝐵) → ({𝑤} ⊆ (𝐵 ∖ ran 𝑓) → {𝑤} ≼ (𝐵 ∖ ran 𝑓)))
43 endomtr 8865 . . . . . . . 8 (({𝐴} ≈ {𝑤} ∧ {𝑤} ≼ (𝐵 ∖ ran 𝑓)) → {𝐴} ≼ (𝐵 ∖ ran 𝑓))
4437, 42, 43syl6an 681 . . . . . . 7 ((𝐴𝐵𝑓:𝐴1-1𝐵) → ({𝑤} ⊆ (𝐵 ∖ ran 𝑓) → {𝐴} ≼ (𝐵 ∖ ran 𝑓)))
4534, 44syl5 34 . . . . . 6 ((𝐴𝐵𝑓:𝐴1-1𝐵) → (𝑤 ∈ (𝐵 ∖ ran 𝑓) → {𝐴} ≼ (𝐵 ∖ ran 𝑓)))
4645exlimdv 1935 . . . . 5 ((𝐴𝐵𝑓:𝐴1-1𝐵) → (∃𝑤 𝑤 ∈ (𝐵 ∖ ran 𝑓) → {𝐴} ≼ (𝐵 ∖ ran 𝑓)))
4733, 46mpd 15 . . . 4 ((𝐴𝐵𝑓:𝐴1-1𝐵) → {𝐴} ≼ (𝐵 ∖ ran 𝑓))
48 disjdif 4417 . . . . 5 (ran 𝑓 ∩ (𝐵 ∖ ran 𝑓)) = ∅
4948a1i 11 . . . 4 ((𝐴𝐵𝑓:𝐴1-1𝐵) → (ran 𝑓 ∩ (𝐵 ∖ ran 𝑓)) = ∅)
50 undom 8916 . . . 4 (((𝐴 ≼ ran 𝑓 ∧ {𝐴} ≼ (𝐵 ∖ ran 𝑓)) ∧ (ran 𝑓 ∩ (𝐵 ∖ ran 𝑓)) = ∅) → (𝐴 ∪ {𝐴}) ≼ (ran 𝑓 ∪ (𝐵 ∖ ran 𝑓)))
5115, 47, 49, 50syl21anc 835 . . 3 ((𝐴𝐵𝑓:𝐴1-1𝐵) → (𝐴 ∪ {𝐴}) ≼ (ran 𝑓 ∪ (𝐵 ∖ ran 𝑓)))
52 df-suc 6302 . . . 4 suc 𝐴 = (𝐴 ∪ {𝐴})
5352a1i 11 . . 3 ((𝐴𝐵𝑓:𝐴1-1𝐵) → suc 𝐴 = (𝐴 ∪ {𝐴}))
54 undif2 4422 . . . 4 (ran 𝑓 ∪ (𝐵 ∖ ran 𝑓)) = (ran 𝑓𝐵)
5521adantl 482 . . . . 5 ((𝐴𝐵𝑓:𝐴1-1𝐵) → ran 𝑓𝐵)
56 ssequn1 4126 . . . . 5 (ran 𝑓𝐵 ↔ (ran 𝑓𝐵) = 𝐵)
5755, 56sylib 217 . . . 4 ((𝐴𝐵𝑓:𝐴1-1𝐵) → (ran 𝑓𝐵) = 𝐵)
5854, 57eqtr2id 2789 . . 3 ((𝐴𝐵𝑓:𝐴1-1𝐵) → 𝐵 = (ran 𝑓 ∪ (𝐵 ∖ ran 𝑓)))
5951, 53, 583brtr4d 5121 . 2 ((𝐴𝐵𝑓:𝐴1-1𝐵) → suc 𝐴𝐵)
603, 59exlimddv 1937 1 (𝐴𝐵 → suc 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1540  wex 1780  wcel 2105  Vcvv 3441  cdif 3894  cun 3895  cin 3896  wss 3897  c0 4268  {csn 4572   class class class wbr 5089  ran crn 5615  suc csuc 6298  1-1wf1 6470  1-1-ontowf1o 6472  cen 8793  cdom 8794  csdm 8795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-br 5090  df-opab 5152  df-id 5512  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-suc 6302  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-en 8797  df-dom 8798  df-sdom 8799
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator