MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sucdom2OLD Structured version   Visualization version   GIF version

Theorem sucdom2OLD 9056
Description: Obsolete version of sucdom2 9173 as of 4-Dec-2024. (Contributed by Mario Carneiro, 12-Jan-2013.) (Proof shortened by Mario Carneiro, 27-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sucdom2OLD (𝐴𝐵 → suc 𝐴𝐵)

Proof of Theorem sucdom2OLD
Dummy variables 𝑤 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sdomdom 8954 . . 3 (𝐴𝐵𝐴𝐵)
2 brdomi 8934 . . 3 (𝐴𝐵 → ∃𝑓 𝑓:𝐴1-1𝐵)
31, 2syl 17 . 2 (𝐴𝐵 → ∃𝑓 𝑓:𝐴1-1𝐵)
4 relsdom 8928 . . . . . . 7 Rel ≺
54brrelex1i 5697 . . . . . 6 (𝐴𝐵𝐴 ∈ V)
65adantr 480 . . . . 5 ((𝐴𝐵𝑓:𝐴1-1𝐵) → 𝐴 ∈ V)
7 vex 3454 . . . . . . 7 𝑓 ∈ V
87rnex 7889 . . . . . 6 ran 𝑓 ∈ V
98a1i 11 . . . . 5 ((𝐴𝐵𝑓:𝐴1-1𝐵) → ran 𝑓 ∈ V)
10 f1f1orn 6814 . . . . . . 7 (𝑓:𝐴1-1𝐵𝑓:𝐴1-1-onto→ran 𝑓)
1110adantl 481 . . . . . 6 ((𝐴𝐵𝑓:𝐴1-1𝐵) → 𝑓:𝐴1-1-onto→ran 𝑓)
12 f1of1 6802 . . . . . 6 (𝑓:𝐴1-1-onto→ran 𝑓𝑓:𝐴1-1→ran 𝑓)
1311, 12syl 17 . . . . 5 ((𝐴𝐵𝑓:𝐴1-1𝐵) → 𝑓:𝐴1-1→ran 𝑓)
14 f1dom2g 8944 . . . . 5 ((𝐴 ∈ V ∧ ran 𝑓 ∈ V ∧ 𝑓:𝐴1-1→ran 𝑓) → 𝐴 ≼ ran 𝑓)
156, 9, 13, 14syl3anc 1373 . . . 4 ((𝐴𝐵𝑓:𝐴1-1𝐵) → 𝐴 ≼ ran 𝑓)
16 sdomnen 8955 . . . . . . . 8 (𝐴𝐵 → ¬ 𝐴𝐵)
1716adantr 480 . . . . . . 7 ((𝐴𝐵𝑓:𝐴1-1𝐵) → ¬ 𝐴𝐵)
18 ssdif0 4332 . . . . . . . 8 (𝐵 ⊆ ran 𝑓 ↔ (𝐵 ∖ ran 𝑓) = ∅)
19 simplr 768 . . . . . . . . . . 11 (((𝐴𝐵𝑓:𝐴1-1𝐵) ∧ 𝐵 ⊆ ran 𝑓) → 𝑓:𝐴1-1𝐵)
20 f1f 6759 . . . . . . . . . . . . . 14 (𝑓:𝐴1-1𝐵𝑓:𝐴𝐵)
2120frnd 6699 . . . . . . . . . . . . 13 (𝑓:𝐴1-1𝐵 → ran 𝑓𝐵)
2219, 21syl 17 . . . . . . . . . . . 12 (((𝐴𝐵𝑓:𝐴1-1𝐵) ∧ 𝐵 ⊆ ran 𝑓) → ran 𝑓𝐵)
23 simpr 484 . . . . . . . . . . . 12 (((𝐴𝐵𝑓:𝐴1-1𝐵) ∧ 𝐵 ⊆ ran 𝑓) → 𝐵 ⊆ ran 𝑓)
2422, 23eqssd 3967 . . . . . . . . . . 11 (((𝐴𝐵𝑓:𝐴1-1𝐵) ∧ 𝐵 ⊆ ran 𝑓) → ran 𝑓 = 𝐵)
25 dff1o5 6812 . . . . . . . . . . 11 (𝑓:𝐴1-1-onto𝐵 ↔ (𝑓:𝐴1-1𝐵 ∧ ran 𝑓 = 𝐵))
2619, 24, 25sylanbrc 583 . . . . . . . . . 10 (((𝐴𝐵𝑓:𝐴1-1𝐵) ∧ 𝐵 ⊆ ran 𝑓) → 𝑓:𝐴1-1-onto𝐵)
27 f1oen3g 8941 . . . . . . . . . 10 ((𝑓 ∈ V ∧ 𝑓:𝐴1-1-onto𝐵) → 𝐴𝐵)
287, 26, 27sylancr 587 . . . . . . . . 9 (((𝐴𝐵𝑓:𝐴1-1𝐵) ∧ 𝐵 ⊆ ran 𝑓) → 𝐴𝐵)
2928ex 412 . . . . . . . 8 ((𝐴𝐵𝑓:𝐴1-1𝐵) → (𝐵 ⊆ ran 𝑓𝐴𝐵))
3018, 29biimtrrid 243 . . . . . . 7 ((𝐴𝐵𝑓:𝐴1-1𝐵) → ((𝐵 ∖ ran 𝑓) = ∅ → 𝐴𝐵))
3117, 30mtod 198 . . . . . 6 ((𝐴𝐵𝑓:𝐴1-1𝐵) → ¬ (𝐵 ∖ ran 𝑓) = ∅)
32 neq0 4318 . . . . . 6 (¬ (𝐵 ∖ ran 𝑓) = ∅ ↔ ∃𝑤 𝑤 ∈ (𝐵 ∖ ran 𝑓))
3331, 32sylib 218 . . . . 5 ((𝐴𝐵𝑓:𝐴1-1𝐵) → ∃𝑤 𝑤 ∈ (𝐵 ∖ ran 𝑓))
34 snssi 4775 . . . . . . 7 (𝑤 ∈ (𝐵 ∖ ran 𝑓) → {𝑤} ⊆ (𝐵 ∖ ran 𝑓))
35 vex 3454 . . . . . . . . 9 𝑤 ∈ V
36 en2sn 9015 . . . . . . . . 9 ((𝐴 ∈ V ∧ 𝑤 ∈ V) → {𝐴} ≈ {𝑤})
376, 35, 36sylancl 586 . . . . . . . 8 ((𝐴𝐵𝑓:𝐴1-1𝐵) → {𝐴} ≈ {𝑤})
384brrelex2i 5698 . . . . . . . . . 10 (𝐴𝐵𝐵 ∈ V)
3938adantr 480 . . . . . . . . 9 ((𝐴𝐵𝑓:𝐴1-1𝐵) → 𝐵 ∈ V)
40 difexg 5287 . . . . . . . . 9 (𝐵 ∈ V → (𝐵 ∖ ran 𝑓) ∈ V)
41 ssdomg 8974 . . . . . . . . 9 ((𝐵 ∖ ran 𝑓) ∈ V → ({𝑤} ⊆ (𝐵 ∖ ran 𝑓) → {𝑤} ≼ (𝐵 ∖ ran 𝑓)))
4239, 40, 413syl 18 . . . . . . . 8 ((𝐴𝐵𝑓:𝐴1-1𝐵) → ({𝑤} ⊆ (𝐵 ∖ ran 𝑓) → {𝑤} ≼ (𝐵 ∖ ran 𝑓)))
43 endomtr 8986 . . . . . . . 8 (({𝐴} ≈ {𝑤} ∧ {𝑤} ≼ (𝐵 ∖ ran 𝑓)) → {𝐴} ≼ (𝐵 ∖ ran 𝑓))
4437, 42, 43syl6an 684 . . . . . . 7 ((𝐴𝐵𝑓:𝐴1-1𝐵) → ({𝑤} ⊆ (𝐵 ∖ ran 𝑓) → {𝐴} ≼ (𝐵 ∖ ran 𝑓)))
4534, 44syl5 34 . . . . . 6 ((𝐴𝐵𝑓:𝐴1-1𝐵) → (𝑤 ∈ (𝐵 ∖ ran 𝑓) → {𝐴} ≼ (𝐵 ∖ ran 𝑓)))
4645exlimdv 1933 . . . . 5 ((𝐴𝐵𝑓:𝐴1-1𝐵) → (∃𝑤 𝑤 ∈ (𝐵 ∖ ran 𝑓) → {𝐴} ≼ (𝐵 ∖ ran 𝑓)))
4733, 46mpd 15 . . . 4 ((𝐴𝐵𝑓:𝐴1-1𝐵) → {𝐴} ≼ (𝐵 ∖ ran 𝑓))
48 disjdif 4438 . . . . 5 (ran 𝑓 ∩ (𝐵 ∖ ran 𝑓)) = ∅
4948a1i 11 . . . 4 ((𝐴𝐵𝑓:𝐴1-1𝐵) → (ran 𝑓 ∩ (𝐵 ∖ ran 𝑓)) = ∅)
50 undom 9033 . . . 4 (((𝐴 ≼ ran 𝑓 ∧ {𝐴} ≼ (𝐵 ∖ ran 𝑓)) ∧ (ran 𝑓 ∩ (𝐵 ∖ ran 𝑓)) = ∅) → (𝐴 ∪ {𝐴}) ≼ (ran 𝑓 ∪ (𝐵 ∖ ran 𝑓)))
5115, 47, 49, 50syl21anc 837 . . 3 ((𝐴𝐵𝑓:𝐴1-1𝐵) → (𝐴 ∪ {𝐴}) ≼ (ran 𝑓 ∪ (𝐵 ∖ ran 𝑓)))
52 df-suc 6341 . . . 4 suc 𝐴 = (𝐴 ∪ {𝐴})
5352a1i 11 . . 3 ((𝐴𝐵𝑓:𝐴1-1𝐵) → suc 𝐴 = (𝐴 ∪ {𝐴}))
54 undif2 4443 . . . 4 (ran 𝑓 ∪ (𝐵 ∖ ran 𝑓)) = (ran 𝑓𝐵)
5521adantl 481 . . . . 5 ((𝐴𝐵𝑓:𝐴1-1𝐵) → ran 𝑓𝐵)
56 ssequn1 4152 . . . . 5 (ran 𝑓𝐵 ↔ (ran 𝑓𝐵) = 𝐵)
5755, 56sylib 218 . . . 4 ((𝐴𝐵𝑓:𝐴1-1𝐵) → (ran 𝑓𝐵) = 𝐵)
5854, 57eqtr2id 2778 . . 3 ((𝐴𝐵𝑓:𝐴1-1𝐵) → 𝐵 = (ran 𝑓 ∪ (𝐵 ∖ ran 𝑓)))
5951, 53, 583brtr4d 5142 . 2 ((𝐴𝐵𝑓:𝐴1-1𝐵) → suc 𝐴𝐵)
603, 59exlimddv 1935 1 (𝐴𝐵 → suc 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  Vcvv 3450  cdif 3914  cun 3915  cin 3916  wss 3917  c0 4299  {csn 4592   class class class wbr 5110  ran crn 5642  suc csuc 6337  1-1wf1 6511  1-1-ontowf1o 6513  cen 8918  cdom 8919  csdm 8920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-suc 6341  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-en 8922  df-dom 8923  df-sdom 8924
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator