| Step | Hyp | Ref
| Expression |
| 1 | | sdomdom 8999 |
. . 3
⊢ (𝐴 ≺ 𝐵 → 𝐴 ≼ 𝐵) |
| 2 | | brdomi 8978 |
. . 3
⊢ (𝐴 ≼ 𝐵 → ∃𝑓 𝑓:𝐴–1-1→𝐵) |
| 3 | 1, 2 | syl 17 |
. 2
⊢ (𝐴 ≺ 𝐵 → ∃𝑓 𝑓:𝐴–1-1→𝐵) |
| 4 | | relsdom 8971 |
. . . . . . 7
⊢ Rel
≺ |
| 5 | 4 | brrelex1i 5715 |
. . . . . 6
⊢ (𝐴 ≺ 𝐵 → 𝐴 ∈ V) |
| 6 | 5 | adantr 480 |
. . . . 5
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → 𝐴 ∈ V) |
| 7 | | vex 3468 |
. . . . . . 7
⊢ 𝑓 ∈ V |
| 8 | 7 | rnex 7911 |
. . . . . 6
⊢ ran 𝑓 ∈ V |
| 9 | 8 | a1i 11 |
. . . . 5
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → ran 𝑓 ∈ V) |
| 10 | | f1f1orn 6834 |
. . . . . . 7
⊢ (𝑓:𝐴–1-1→𝐵 → 𝑓:𝐴–1-1-onto→ran
𝑓) |
| 11 | 10 | adantl 481 |
. . . . . 6
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → 𝑓:𝐴–1-1-onto→ran
𝑓) |
| 12 | | f1of1 6822 |
. . . . . 6
⊢ (𝑓:𝐴–1-1-onto→ran
𝑓 → 𝑓:𝐴–1-1→ran 𝑓) |
| 13 | 11, 12 | syl 17 |
. . . . 5
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → 𝑓:𝐴–1-1→ran 𝑓) |
| 14 | | f1dom2g 8989 |
. . . . 5
⊢ ((𝐴 ∈ V ∧ ran 𝑓 ∈ V ∧ 𝑓:𝐴–1-1→ran 𝑓) → 𝐴 ≼ ran 𝑓) |
| 15 | 6, 9, 13, 14 | syl3anc 1373 |
. . . 4
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → 𝐴 ≼ ran 𝑓) |
| 16 | | sdomnen 9000 |
. . . . . . . 8
⊢ (𝐴 ≺ 𝐵 → ¬ 𝐴 ≈ 𝐵) |
| 17 | 16 | adantr 480 |
. . . . . . 7
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → ¬ 𝐴 ≈ 𝐵) |
| 18 | | ssdif0 4346 |
. . . . . . . 8
⊢ (𝐵 ⊆ ran 𝑓 ↔ (𝐵 ∖ ran 𝑓) = ∅) |
| 19 | | simplr 768 |
. . . . . . . . . . 11
⊢ (((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) ∧ 𝐵 ⊆ ran 𝑓) → 𝑓:𝐴–1-1→𝐵) |
| 20 | | f1f 6779 |
. . . . . . . . . . . . . 14
⊢ (𝑓:𝐴–1-1→𝐵 → 𝑓:𝐴⟶𝐵) |
| 21 | 20 | frnd 6719 |
. . . . . . . . . . . . 13
⊢ (𝑓:𝐴–1-1→𝐵 → ran 𝑓 ⊆ 𝐵) |
| 22 | 19, 21 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) ∧ 𝐵 ⊆ ran 𝑓) → ran 𝑓 ⊆ 𝐵) |
| 23 | | simpr 484 |
. . . . . . . . . . . 12
⊢ (((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) ∧ 𝐵 ⊆ ran 𝑓) → 𝐵 ⊆ ran 𝑓) |
| 24 | 22, 23 | eqssd 3981 |
. . . . . . . . . . 11
⊢ (((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) ∧ 𝐵 ⊆ ran 𝑓) → ran 𝑓 = 𝐵) |
| 25 | | dff1o5 6832 |
. . . . . . . . . . 11
⊢ (𝑓:𝐴–1-1-onto→𝐵 ↔ (𝑓:𝐴–1-1→𝐵 ∧ ran 𝑓 = 𝐵)) |
| 26 | 19, 24, 25 | sylanbrc 583 |
. . . . . . . . . 10
⊢ (((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) ∧ 𝐵 ⊆ ran 𝑓) → 𝑓:𝐴–1-1-onto→𝐵) |
| 27 | | f1oen3g 8986 |
. . . . . . . . . 10
⊢ ((𝑓 ∈ V ∧ 𝑓:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) |
| 28 | 7, 26, 27 | sylancr 587 |
. . . . . . . . 9
⊢ (((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) ∧ 𝐵 ⊆ ran 𝑓) → 𝐴 ≈ 𝐵) |
| 29 | 28 | ex 412 |
. . . . . . . 8
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → (𝐵 ⊆ ran 𝑓 → 𝐴 ≈ 𝐵)) |
| 30 | 18, 29 | biimtrrid 243 |
. . . . . . 7
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → ((𝐵 ∖ ran 𝑓) = ∅ → 𝐴 ≈ 𝐵)) |
| 31 | 17, 30 | mtod 198 |
. . . . . 6
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → ¬ (𝐵 ∖ ran 𝑓) = ∅) |
| 32 | | neq0 4332 |
. . . . . 6
⊢ (¬
(𝐵 ∖ ran 𝑓) = ∅ ↔ ∃𝑤 𝑤 ∈ (𝐵 ∖ ran 𝑓)) |
| 33 | 31, 32 | sylib 218 |
. . . . 5
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → ∃𝑤 𝑤 ∈ (𝐵 ∖ ran 𝑓)) |
| 34 | | snssi 4789 |
. . . . . . 7
⊢ (𝑤 ∈ (𝐵 ∖ ran 𝑓) → {𝑤} ⊆ (𝐵 ∖ ran 𝑓)) |
| 35 | | vex 3468 |
. . . . . . . . 9
⊢ 𝑤 ∈ V |
| 36 | | en2sn 9060 |
. . . . . . . . 9
⊢ ((𝐴 ∈ V ∧ 𝑤 ∈ V) → {𝐴} ≈ {𝑤}) |
| 37 | 6, 35, 36 | sylancl 586 |
. . . . . . . 8
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → {𝐴} ≈ {𝑤}) |
| 38 | 4 | brrelex2i 5716 |
. . . . . . . . . 10
⊢ (𝐴 ≺ 𝐵 → 𝐵 ∈ V) |
| 39 | 38 | adantr 480 |
. . . . . . . . 9
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → 𝐵 ∈ V) |
| 40 | | difexg 5304 |
. . . . . . . . 9
⊢ (𝐵 ∈ V → (𝐵 ∖ ran 𝑓) ∈ V) |
| 41 | | ssdomg 9019 |
. . . . . . . . 9
⊢ ((𝐵 ∖ ran 𝑓) ∈ V → ({𝑤} ⊆ (𝐵 ∖ ran 𝑓) → {𝑤} ≼ (𝐵 ∖ ran 𝑓))) |
| 42 | 39, 40, 41 | 3syl 18 |
. . . . . . . 8
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → ({𝑤} ⊆ (𝐵 ∖ ran 𝑓) → {𝑤} ≼ (𝐵 ∖ ran 𝑓))) |
| 43 | | endomtr 9031 |
. . . . . . . 8
⊢ (({𝐴} ≈ {𝑤} ∧ {𝑤} ≼ (𝐵 ∖ ran 𝑓)) → {𝐴} ≼ (𝐵 ∖ ran 𝑓)) |
| 44 | 37, 42, 43 | syl6an 684 |
. . . . . . 7
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → ({𝑤} ⊆ (𝐵 ∖ ran 𝑓) → {𝐴} ≼ (𝐵 ∖ ran 𝑓))) |
| 45 | 34, 44 | syl5 34 |
. . . . . 6
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → (𝑤 ∈ (𝐵 ∖ ran 𝑓) → {𝐴} ≼ (𝐵 ∖ ran 𝑓))) |
| 46 | 45 | exlimdv 1933 |
. . . . 5
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → (∃𝑤 𝑤 ∈ (𝐵 ∖ ran 𝑓) → {𝐴} ≼ (𝐵 ∖ ran 𝑓))) |
| 47 | 33, 46 | mpd 15 |
. . . 4
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → {𝐴} ≼ (𝐵 ∖ ran 𝑓)) |
| 48 | | disjdif 4452 |
. . . . 5
⊢ (ran
𝑓 ∩ (𝐵 ∖ ran 𝑓)) = ∅ |
| 49 | 48 | a1i 11 |
. . . 4
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → (ran 𝑓 ∩ (𝐵 ∖ ran 𝑓)) = ∅) |
| 50 | | undom 9078 |
. . . 4
⊢ (((𝐴 ≼ ran 𝑓 ∧ {𝐴} ≼ (𝐵 ∖ ran 𝑓)) ∧ (ran 𝑓 ∩ (𝐵 ∖ ran 𝑓)) = ∅) → (𝐴 ∪ {𝐴}) ≼ (ran 𝑓 ∪ (𝐵 ∖ ran 𝑓))) |
| 51 | 15, 47, 49, 50 | syl21anc 837 |
. . 3
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → (𝐴 ∪ {𝐴}) ≼ (ran 𝑓 ∪ (𝐵 ∖ ran 𝑓))) |
| 52 | | df-suc 6363 |
. . . 4
⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) |
| 53 | 52 | a1i 11 |
. . 3
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → suc 𝐴 = (𝐴 ∪ {𝐴})) |
| 54 | | undif2 4457 |
. . . 4
⊢ (ran
𝑓 ∪ (𝐵 ∖ ran 𝑓)) = (ran 𝑓 ∪ 𝐵) |
| 55 | 21 | adantl 481 |
. . . . 5
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → ran 𝑓 ⊆ 𝐵) |
| 56 | | ssequn1 4166 |
. . . . 5
⊢ (ran
𝑓 ⊆ 𝐵 ↔ (ran 𝑓 ∪ 𝐵) = 𝐵) |
| 57 | 55, 56 | sylib 218 |
. . . 4
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → (ran 𝑓 ∪ 𝐵) = 𝐵) |
| 58 | 54, 57 | eqtr2id 2784 |
. . 3
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → 𝐵 = (ran 𝑓 ∪ (𝐵 ∖ ran 𝑓))) |
| 59 | 51, 53, 58 | 3brtr4d 5156 |
. 2
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → suc 𝐴 ≼ 𝐵) |
| 60 | 3, 59 | exlimddv 1935 |
1
⊢ (𝐴 ≺ 𝐵 → suc 𝐴 ≼ 𝐵) |