| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1orescnv | Structured version Visualization version GIF version | ||
| Description: The converse of a one-to-one-onto restricted function. (Contributed by Paul Chapman, 21-Apr-2008.) |
| Ref | Expression |
|---|---|
| f1orescnv | ⊢ ((Fun ◡𝐹 ∧ (𝐹 ↾ 𝑅):𝑅–1-1-onto→𝑃) → (◡𝐹 ↾ 𝑃):𝑃–1-1-onto→𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ocnv 6794 | . . 3 ⊢ ((𝐹 ↾ 𝑅):𝑅–1-1-onto→𝑃 → ◡(𝐹 ↾ 𝑅):𝑃–1-1-onto→𝑅) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((Fun ◡𝐹 ∧ (𝐹 ↾ 𝑅):𝑅–1-1-onto→𝑃) → ◡(𝐹 ↾ 𝑅):𝑃–1-1-onto→𝑅) |
| 3 | funcnvres 6578 | . . . 4 ⊢ (Fun ◡𝐹 → ◡(𝐹 ↾ 𝑅) = (◡𝐹 ↾ (𝐹 “ 𝑅))) | |
| 4 | df-ima 5644 | . . . . . 6 ⊢ (𝐹 “ 𝑅) = ran (𝐹 ↾ 𝑅) | |
| 5 | dff1o5 6791 | . . . . . . 7 ⊢ ((𝐹 ↾ 𝑅):𝑅–1-1-onto→𝑃 ↔ ((𝐹 ↾ 𝑅):𝑅–1-1→𝑃 ∧ ran (𝐹 ↾ 𝑅) = 𝑃)) | |
| 6 | 5 | simprbi 496 | . . . . . 6 ⊢ ((𝐹 ↾ 𝑅):𝑅–1-1-onto→𝑃 → ran (𝐹 ↾ 𝑅) = 𝑃) |
| 7 | 4, 6 | eqtrid 2776 | . . . . 5 ⊢ ((𝐹 ↾ 𝑅):𝑅–1-1-onto→𝑃 → (𝐹 “ 𝑅) = 𝑃) |
| 8 | 7 | reseq2d 5939 | . . . 4 ⊢ ((𝐹 ↾ 𝑅):𝑅–1-1-onto→𝑃 → (◡𝐹 ↾ (𝐹 “ 𝑅)) = (◡𝐹 ↾ 𝑃)) |
| 9 | 3, 8 | sylan9eq 2784 | . . 3 ⊢ ((Fun ◡𝐹 ∧ (𝐹 ↾ 𝑅):𝑅–1-1-onto→𝑃) → ◡(𝐹 ↾ 𝑅) = (◡𝐹 ↾ 𝑃)) |
| 10 | 9 | f1oeq1d 6777 | . 2 ⊢ ((Fun ◡𝐹 ∧ (𝐹 ↾ 𝑅):𝑅–1-1-onto→𝑃) → (◡(𝐹 ↾ 𝑅):𝑃–1-1-onto→𝑅 ↔ (◡𝐹 ↾ 𝑃):𝑃–1-1-onto→𝑅)) |
| 11 | 2, 10 | mpbid 232 | 1 ⊢ ((Fun ◡𝐹 ∧ (𝐹 ↾ 𝑅):𝑅–1-1-onto→𝑃) → (◡𝐹 ↾ 𝑃):𝑃–1-1-onto→𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ◡ccnv 5630 ran crn 5632 ↾ cres 5633 “ cima 5634 Fun wfun 6493 –1-1→wf1 6496 –1-1-onto→wf1o 6498 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 |
| This theorem is referenced by: f1oresrab 7081 relogf1o 26451 |
| Copyright terms: Public domain | W3C validator |