![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1orescnv | Structured version Visualization version GIF version |
Description: The converse of a one-to-one-onto restricted function. (Contributed by Paul Chapman, 21-Apr-2008.) |
Ref | Expression |
---|---|
f1orescnv | ⊢ ((Fun ◡𝐹 ∧ (𝐹 ↾ 𝑅):𝑅–1-1-onto→𝑃) → (◡𝐹 ↾ 𝑃):𝑃–1-1-onto→𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ocnv 6797 | . . 3 ⊢ ((𝐹 ↾ 𝑅):𝑅–1-1-onto→𝑃 → ◡(𝐹 ↾ 𝑅):𝑃–1-1-onto→𝑅) | |
2 | 1 | adantl 483 | . 2 ⊢ ((Fun ◡𝐹 ∧ (𝐹 ↾ 𝑅):𝑅–1-1-onto→𝑃) → ◡(𝐹 ↾ 𝑅):𝑃–1-1-onto→𝑅) |
3 | funcnvres 6580 | . . . 4 ⊢ (Fun ◡𝐹 → ◡(𝐹 ↾ 𝑅) = (◡𝐹 ↾ (𝐹 “ 𝑅))) | |
4 | df-ima 5647 | . . . . . 6 ⊢ (𝐹 “ 𝑅) = ran (𝐹 ↾ 𝑅) | |
5 | dff1o5 6794 | . . . . . . 7 ⊢ ((𝐹 ↾ 𝑅):𝑅–1-1-onto→𝑃 ↔ ((𝐹 ↾ 𝑅):𝑅–1-1→𝑃 ∧ ran (𝐹 ↾ 𝑅) = 𝑃)) | |
6 | 5 | simprbi 498 | . . . . . 6 ⊢ ((𝐹 ↾ 𝑅):𝑅–1-1-onto→𝑃 → ran (𝐹 ↾ 𝑅) = 𝑃) |
7 | 4, 6 | eqtrid 2789 | . . . . 5 ⊢ ((𝐹 ↾ 𝑅):𝑅–1-1-onto→𝑃 → (𝐹 “ 𝑅) = 𝑃) |
8 | 7 | reseq2d 5938 | . . . 4 ⊢ ((𝐹 ↾ 𝑅):𝑅–1-1-onto→𝑃 → (◡𝐹 ↾ (𝐹 “ 𝑅)) = (◡𝐹 ↾ 𝑃)) |
9 | 3, 8 | sylan9eq 2797 | . . 3 ⊢ ((Fun ◡𝐹 ∧ (𝐹 ↾ 𝑅):𝑅–1-1-onto→𝑃) → ◡(𝐹 ↾ 𝑅) = (◡𝐹 ↾ 𝑃)) |
10 | 9 | f1oeq1d 6780 | . 2 ⊢ ((Fun ◡𝐹 ∧ (𝐹 ↾ 𝑅):𝑅–1-1-onto→𝑃) → (◡(𝐹 ↾ 𝑅):𝑃–1-1-onto→𝑅 ↔ (◡𝐹 ↾ 𝑃):𝑃–1-1-onto→𝑅)) |
11 | 2, 10 | mpbid 231 | 1 ⊢ ((Fun ◡𝐹 ∧ (𝐹 ↾ 𝑅):𝑅–1-1-onto→𝑃) → (◡𝐹 ↾ 𝑃):𝑃–1-1-onto→𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ◡ccnv 5633 ran crn 5635 ↾ cres 5636 “ cima 5637 Fun wfun 6491 –1-1→wf1 6494 –1-1-onto→wf1o 6496 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-12 2172 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3066 df-rex 3075 df-rab 3409 df-v 3448 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-br 5107 df-opab 5169 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 |
This theorem is referenced by: f1oresrab 7074 relogf1o 25925 |
Copyright terms: Public domain | W3C validator |