![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1orescnv | Structured version Visualization version GIF version |
Description: The converse of a one-to-one-onto restricted function. (Contributed by Paul Chapman, 21-Apr-2008.) |
Ref | Expression |
---|---|
f1orescnv | ⊢ ((Fun ◡𝐹 ∧ (𝐹 ↾ 𝑅):𝑅–1-1-onto→𝑃) → (◡𝐹 ↾ 𝑃):𝑃–1-1-onto→𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ocnv 6845 | . . 3 ⊢ ((𝐹 ↾ 𝑅):𝑅–1-1-onto→𝑃 → ◡(𝐹 ↾ 𝑅):𝑃–1-1-onto→𝑅) | |
2 | 1 | adantl 481 | . 2 ⊢ ((Fun ◡𝐹 ∧ (𝐹 ↾ 𝑅):𝑅–1-1-onto→𝑃) → ◡(𝐹 ↾ 𝑅):𝑃–1-1-onto→𝑅) |
3 | funcnvres 6626 | . . . 4 ⊢ (Fun ◡𝐹 → ◡(𝐹 ↾ 𝑅) = (◡𝐹 ↾ (𝐹 “ 𝑅))) | |
4 | df-ima 5689 | . . . . . 6 ⊢ (𝐹 “ 𝑅) = ran (𝐹 ↾ 𝑅) | |
5 | dff1o5 6842 | . . . . . . 7 ⊢ ((𝐹 ↾ 𝑅):𝑅–1-1-onto→𝑃 ↔ ((𝐹 ↾ 𝑅):𝑅–1-1→𝑃 ∧ ran (𝐹 ↾ 𝑅) = 𝑃)) | |
6 | 5 | simprbi 496 | . . . . . 6 ⊢ ((𝐹 ↾ 𝑅):𝑅–1-1-onto→𝑃 → ran (𝐹 ↾ 𝑅) = 𝑃) |
7 | 4, 6 | eqtrid 2783 | . . . . 5 ⊢ ((𝐹 ↾ 𝑅):𝑅–1-1-onto→𝑃 → (𝐹 “ 𝑅) = 𝑃) |
8 | 7 | reseq2d 5981 | . . . 4 ⊢ ((𝐹 ↾ 𝑅):𝑅–1-1-onto→𝑃 → (◡𝐹 ↾ (𝐹 “ 𝑅)) = (◡𝐹 ↾ 𝑃)) |
9 | 3, 8 | sylan9eq 2791 | . . 3 ⊢ ((Fun ◡𝐹 ∧ (𝐹 ↾ 𝑅):𝑅–1-1-onto→𝑃) → ◡(𝐹 ↾ 𝑅) = (◡𝐹 ↾ 𝑃)) |
10 | 9 | f1oeq1d 6828 | . 2 ⊢ ((Fun ◡𝐹 ∧ (𝐹 ↾ 𝑅):𝑅–1-1-onto→𝑃) → (◡(𝐹 ↾ 𝑅):𝑃–1-1-onto→𝑅 ↔ (◡𝐹 ↾ 𝑃):𝑃–1-1-onto→𝑅)) |
11 | 2, 10 | mpbid 231 | 1 ⊢ ((Fun ◡𝐹 ∧ (𝐹 ↾ 𝑅):𝑅–1-1-onto→𝑃) → (◡𝐹 ↾ 𝑃):𝑃–1-1-onto→𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ◡ccnv 5675 ran crn 5677 ↾ cres 5678 “ cima 5679 Fun wfun 6537 –1-1→wf1 6540 –1-1-onto→wf1o 6542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 |
This theorem is referenced by: f1oresrab 7127 relogf1o 26415 |
Copyright terms: Public domain | W3C validator |