MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1orescnv Structured version   Visualization version   GIF version

Theorem f1orescnv 6877
Description: The converse of a one-to-one-onto restricted function. (Contributed by Paul Chapman, 21-Apr-2008.)
Assertion
Ref Expression
f1orescnv ((Fun 𝐹 ∧ (𝐹𝑅):𝑅1-1-onto𝑃) → (𝐹𝑃):𝑃1-1-onto𝑅)

Proof of Theorem f1orescnv
StepHypRef Expression
1 f1ocnv 6874 . . 3 ((𝐹𝑅):𝑅1-1-onto𝑃(𝐹𝑅):𝑃1-1-onto𝑅)
21adantl 481 . 2 ((Fun 𝐹 ∧ (𝐹𝑅):𝑅1-1-onto𝑃) → (𝐹𝑅):𝑃1-1-onto𝑅)
3 funcnvres 6656 . . . 4 (Fun 𝐹(𝐹𝑅) = (𝐹 ↾ (𝐹𝑅)))
4 df-ima 5713 . . . . . 6 (𝐹𝑅) = ran (𝐹𝑅)
5 dff1o5 6871 . . . . . . 7 ((𝐹𝑅):𝑅1-1-onto𝑃 ↔ ((𝐹𝑅):𝑅1-1𝑃 ∧ ran (𝐹𝑅) = 𝑃))
65simprbi 496 . . . . . 6 ((𝐹𝑅):𝑅1-1-onto𝑃 → ran (𝐹𝑅) = 𝑃)
74, 6eqtrid 2792 . . . . 5 ((𝐹𝑅):𝑅1-1-onto𝑃 → (𝐹𝑅) = 𝑃)
87reseq2d 6009 . . . 4 ((𝐹𝑅):𝑅1-1-onto𝑃 → (𝐹 ↾ (𝐹𝑅)) = (𝐹𝑃))
93, 8sylan9eq 2800 . . 3 ((Fun 𝐹 ∧ (𝐹𝑅):𝑅1-1-onto𝑃) → (𝐹𝑅) = (𝐹𝑃))
109f1oeq1d 6857 . 2 ((Fun 𝐹 ∧ (𝐹𝑅):𝑅1-1-onto𝑃) → ((𝐹𝑅):𝑃1-1-onto𝑅 ↔ (𝐹𝑃):𝑃1-1-onto𝑅))
112, 10mpbid 232 1 ((Fun 𝐹 ∧ (𝐹𝑅):𝑅1-1-onto𝑃) → (𝐹𝑃):𝑃1-1-onto𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  ccnv 5699  ran crn 5701  cres 5702  cima 5703  Fun wfun 6567  1-1wf1 6570  1-1-ontowf1o 6572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580
This theorem is referenced by:  f1oresrab  7161  relogf1o  26626
  Copyright terms: Public domain W3C validator