MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1orescnv Structured version   Visualization version   GIF version

Theorem f1orescnv 6833
Description: The converse of a one-to-one-onto restricted function. (Contributed by Paul Chapman, 21-Apr-2008.)
Assertion
Ref Expression
f1orescnv ((Fun 𝐹 ∧ (𝐹𝑅):𝑅1-1-onto𝑃) → (𝐹𝑃):𝑃1-1-onto𝑅)

Proof of Theorem f1orescnv
StepHypRef Expression
1 f1ocnv 6830 . . 3 ((𝐹𝑅):𝑅1-1-onto𝑃(𝐹𝑅):𝑃1-1-onto𝑅)
21adantl 481 . 2 ((Fun 𝐹 ∧ (𝐹𝑅):𝑅1-1-onto𝑃) → (𝐹𝑅):𝑃1-1-onto𝑅)
3 funcnvres 6614 . . . 4 (Fun 𝐹(𝐹𝑅) = (𝐹 ↾ (𝐹𝑅)))
4 df-ima 5667 . . . . . 6 (𝐹𝑅) = ran (𝐹𝑅)
5 dff1o5 6827 . . . . . . 7 ((𝐹𝑅):𝑅1-1-onto𝑃 ↔ ((𝐹𝑅):𝑅1-1𝑃 ∧ ran (𝐹𝑅) = 𝑃))
65simprbi 496 . . . . . 6 ((𝐹𝑅):𝑅1-1-onto𝑃 → ran (𝐹𝑅) = 𝑃)
74, 6eqtrid 2782 . . . . 5 ((𝐹𝑅):𝑅1-1-onto𝑃 → (𝐹𝑅) = 𝑃)
87reseq2d 5966 . . . 4 ((𝐹𝑅):𝑅1-1-onto𝑃 → (𝐹 ↾ (𝐹𝑅)) = (𝐹𝑃))
93, 8sylan9eq 2790 . . 3 ((Fun 𝐹 ∧ (𝐹𝑅):𝑅1-1-onto𝑃) → (𝐹𝑅) = (𝐹𝑃))
109f1oeq1d 6813 . 2 ((Fun 𝐹 ∧ (𝐹𝑅):𝑅1-1-onto𝑃) → ((𝐹𝑅):𝑃1-1-onto𝑅 ↔ (𝐹𝑃):𝑃1-1-onto𝑅))
112, 10mpbid 232 1 ((Fun 𝐹 ∧ (𝐹𝑅):𝑅1-1-onto𝑃) → (𝐹𝑃):𝑃1-1-onto𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  ccnv 5653  ran crn 5655  cres 5656  cima 5657  Fun wfun 6525  1-1wf1 6528  1-1-ontowf1o 6530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538
This theorem is referenced by:  f1oresrab  7117  relogf1o  26527
  Copyright terms: Public domain W3C validator