MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1orescnv Structured version   Visualization version   GIF version

Theorem f1orescnv 6624
Description: The converse of a one-to-one-onto restricted function. (Contributed by Paul Chapman, 21-Apr-2008.)
Assertion
Ref Expression
f1orescnv ((Fun 𝐹 ∧ (𝐹𝑅):𝑅1-1-onto𝑃) → (𝐹𝑃):𝑃1-1-onto𝑅)

Proof of Theorem f1orescnv
StepHypRef Expression
1 f1ocnv 6621 . . 3 ((𝐹𝑅):𝑅1-1-onto𝑃(𝐹𝑅):𝑃1-1-onto𝑅)
21adantl 484 . 2 ((Fun 𝐹 ∧ (𝐹𝑅):𝑅1-1-onto𝑃) → (𝐹𝑅):𝑃1-1-onto𝑅)
3 funcnvres 6426 . . . 4 (Fun 𝐹(𝐹𝑅) = (𝐹 ↾ (𝐹𝑅)))
4 df-ima 5562 . . . . . 6 (𝐹𝑅) = ran (𝐹𝑅)
5 dff1o5 6618 . . . . . . 7 ((𝐹𝑅):𝑅1-1-onto𝑃 ↔ ((𝐹𝑅):𝑅1-1𝑃 ∧ ran (𝐹𝑅) = 𝑃))
65simprbi 499 . . . . . 6 ((𝐹𝑅):𝑅1-1-onto𝑃 → ran (𝐹𝑅) = 𝑃)
74, 6syl5eq 2868 . . . . 5 ((𝐹𝑅):𝑅1-1-onto𝑃 → (𝐹𝑅) = 𝑃)
87reseq2d 5847 . . . 4 ((𝐹𝑅):𝑅1-1-onto𝑃 → (𝐹 ↾ (𝐹𝑅)) = (𝐹𝑃))
93, 8sylan9eq 2876 . . 3 ((Fun 𝐹 ∧ (𝐹𝑅):𝑅1-1-onto𝑃) → (𝐹𝑅) = (𝐹𝑃))
10 f1oeq1 6598 . . 3 ((𝐹𝑅) = (𝐹𝑃) → ((𝐹𝑅):𝑃1-1-onto𝑅 ↔ (𝐹𝑃):𝑃1-1-onto𝑅))
119, 10syl 17 . 2 ((Fun 𝐹 ∧ (𝐹𝑅):𝑅1-1-onto𝑃) → ((𝐹𝑅):𝑃1-1-onto𝑅 ↔ (𝐹𝑃):𝑃1-1-onto𝑅))
122, 11mpbid 234 1 ((Fun 𝐹 ∧ (𝐹𝑅):𝑅1-1-onto𝑃) → (𝐹𝑃):𝑃1-1-onto𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  ccnv 5548  ran crn 5550  cres 5551  cima 5552  Fun wfun 6343  1-1wf1 6346  1-1-ontowf1o 6348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pr 5321
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-br 5059  df-opab 5121  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356
This theorem is referenced by:  f1oresrab  6883  relogf1o  25144
  Copyright terms: Public domain W3C validator