![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > indlcim | Structured version Visualization version GIF version |
Description: An independent, spanning family extends to an isomorphism from a free module. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
Ref | Expression |
---|---|
indlcim.f | β’ πΉ = (π freeLMod πΌ) |
indlcim.b | β’ π΅ = (BaseβπΉ) |
indlcim.c | β’ πΆ = (Baseβπ) |
indlcim.v | β’ Β· = ( Β·π βπ) |
indlcim.n | β’ π = (LSpanβπ) |
indlcim.e | β’ πΈ = (π₯ β π΅ β¦ (π Ξ£g (π₯ βf Β· π΄))) |
indlcim.t | β’ (π β π β LMod) |
indlcim.i | β’ (π β πΌ β π) |
indlcim.r | β’ (π β π = (Scalarβπ)) |
indlcim.a | β’ (π β π΄:πΌβontoβπ½) |
indlcim.l | β’ (π β π΄ LIndF π) |
indlcim.s | β’ (π β (πβπ½) = πΆ) |
Ref | Expression |
---|---|
indlcim | β’ (π β πΈ β (πΉ LMIso π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indlcim.f | . . 3 β’ πΉ = (π freeLMod πΌ) | |
2 | indlcim.b | . . 3 β’ π΅ = (BaseβπΉ) | |
3 | indlcim.c | . . 3 β’ πΆ = (Baseβπ) | |
4 | indlcim.v | . . 3 β’ Β· = ( Β·π βπ) | |
5 | indlcim.e | . . 3 β’ πΈ = (π₯ β π΅ β¦ (π Ξ£g (π₯ βf Β· π΄))) | |
6 | indlcim.t | . . 3 β’ (π β π β LMod) | |
7 | indlcim.i | . . 3 β’ (π β πΌ β π) | |
8 | indlcim.r | . . 3 β’ (π β π = (Scalarβπ)) | |
9 | indlcim.a | . . . . 5 β’ (π β π΄:πΌβontoβπ½) | |
10 | fofn 6800 | . . . . 5 β’ (π΄:πΌβontoβπ½ β π΄ Fn πΌ) | |
11 | 9, 10 | syl 17 | . . . 4 β’ (π β π΄ Fn πΌ) |
12 | indlcim.l | . . . . . 6 β’ (π β π΄ LIndF π) | |
13 | 3 | lindff 21705 | . . . . . 6 β’ ((π΄ LIndF π β§ π β LMod) β π΄:dom π΄βΆπΆ) |
14 | 12, 6, 13 | syl2anc 583 | . . . . 5 β’ (π β π΄:dom π΄βΆπΆ) |
15 | 14 | frnd 6718 | . . . 4 β’ (π β ran π΄ β πΆ) |
16 | df-f 6540 | . . . 4 β’ (π΄:πΌβΆπΆ β (π΄ Fn πΌ β§ ran π΄ β πΆ)) | |
17 | 11, 15, 16 | sylanbrc 582 | . . 3 β’ (π β π΄:πΌβΆπΆ) |
18 | 1, 2, 3, 4, 5, 6, 7, 8, 17 | frlmup1 21688 | . 2 β’ (π β πΈ β (πΉ LMHom π)) |
19 | 1, 2, 3, 4, 5, 6, 7, 8, 17 | islindf5 21729 | . . . 4 β’ (π β (π΄ LIndF π β πΈ:π΅β1-1βπΆ)) |
20 | 12, 19 | mpbid 231 | . . 3 β’ (π β πΈ:π΅β1-1βπΆ) |
21 | indlcim.n | . . . . 5 β’ π = (LSpanβπ) | |
22 | 1, 2, 3, 4, 5, 6, 7, 8, 17, 21 | frlmup3 21690 | . . . 4 β’ (π β ran πΈ = (πβran π΄)) |
23 | forn 6801 | . . . . . 6 β’ (π΄:πΌβontoβπ½ β ran π΄ = π½) | |
24 | 9, 23 | syl 17 | . . . . 5 β’ (π β ran π΄ = π½) |
25 | 24 | fveq2d 6888 | . . . 4 β’ (π β (πβran π΄) = (πβπ½)) |
26 | indlcim.s | . . . 4 β’ (π β (πβπ½) = πΆ) | |
27 | 22, 25, 26 | 3eqtrd 2770 | . . 3 β’ (π β ran πΈ = πΆ) |
28 | dff1o5 6835 | . . 3 β’ (πΈ:π΅β1-1-ontoβπΆ β (πΈ:π΅β1-1βπΆ β§ ran πΈ = πΆ)) | |
29 | 20, 27, 28 | sylanbrc 582 | . 2 β’ (π β πΈ:π΅β1-1-ontoβπΆ) |
30 | 2, 3 | islmim 20907 | . 2 β’ (πΈ β (πΉ LMIso π) β (πΈ β (πΉ LMHom π) β§ πΈ:π΅β1-1-ontoβπΆ)) |
31 | 18, 29, 30 | sylanbrc 582 | 1 β’ (π β πΈ β (πΉ LMIso π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 β wss 3943 class class class wbr 5141 β¦ cmpt 5224 dom cdm 5669 ran crn 5670 Fn wfn 6531 βΆwf 6532 β1-1βwf1 6533 βontoβwfo 6534 β1-1-ontoβwf1o 6535 βcfv 6536 (class class class)co 7404 βf cof 7664 Basecbs 17150 Scalarcsca 17206 Β·π cvsca 17207 Ξ£g cgsu 17392 LModclmod 20703 LSpanclspn 20815 LMHom clmhm 20864 LMIso clmim 20865 freeLMod cfrlm 21636 LIndF clindf 21694 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-of 7666 df-om 7852 df-1st 7971 df-2nd 7972 df-supp 8144 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-er 8702 df-map 8821 df-ixp 8891 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-fsupp 9361 df-sup 9436 df-oi 9504 df-card 9933 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-nn 12214 df-2 12276 df-3 12277 df-4 12278 df-5 12279 df-6 12280 df-7 12281 df-8 12282 df-9 12283 df-n0 12474 df-z 12560 df-dec 12679 df-uz 12824 df-fz 13488 df-fzo 13631 df-seq 13970 df-hash 14293 df-struct 17086 df-sets 17103 df-slot 17121 df-ndx 17133 df-base 17151 df-ress 17180 df-plusg 17216 df-mulr 17217 df-sca 17219 df-vsca 17220 df-ip 17221 df-tset 17222 df-ple 17223 df-ds 17225 df-hom 17227 df-cco 17228 df-0g 17393 df-gsum 17394 df-prds 17399 df-pws 17401 df-mre 17536 df-mrc 17537 df-acs 17539 df-mgm 18570 df-sgrp 18649 df-mnd 18665 df-mhm 18710 df-submnd 18711 df-grp 18863 df-minusg 18864 df-sbg 18865 df-mulg 18993 df-subg 19047 df-ghm 19136 df-cntz 19230 df-cmn 19699 df-abl 19700 df-mgp 20037 df-rng 20055 df-ur 20084 df-ring 20137 df-nzr 20412 df-subrg 20468 df-lmod 20705 df-lss 20776 df-lsp 20816 df-lmhm 20867 df-lmim 20868 df-lbs 20920 df-sra 21018 df-rgmod 21019 df-dsmm 21622 df-frlm 21637 df-uvc 21673 df-lindf 21696 |
This theorem is referenced by: lbslcic 21731 |
Copyright terms: Public domain | W3C validator |