![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > indlcim | Structured version Visualization version GIF version |
Description: An independent, spanning family extends to an isomorphism from a free module. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
Ref | Expression |
---|---|
indlcim.f | ⊢ 𝐹 = (𝑅 freeLMod 𝐼) |
indlcim.b | ⊢ 𝐵 = (Base‘𝐹) |
indlcim.c | ⊢ 𝐶 = (Base‘𝑇) |
indlcim.v | ⊢ · = ( ·𝑠 ‘𝑇) |
indlcim.n | ⊢ 𝑁 = (LSpan‘𝑇) |
indlcim.e | ⊢ 𝐸 = (𝑥 ∈ 𝐵 ↦ (𝑇 Σg (𝑥 ∘f · 𝐴))) |
indlcim.t | ⊢ (𝜑 → 𝑇 ∈ LMod) |
indlcim.i | ⊢ (𝜑 → 𝐼 ∈ 𝑋) |
indlcim.r | ⊢ (𝜑 → 𝑅 = (Scalar‘𝑇)) |
indlcim.a | ⊢ (𝜑 → 𝐴:𝐼–onto→𝐽) |
indlcim.l | ⊢ (𝜑 → 𝐴 LIndF 𝑇) |
indlcim.s | ⊢ (𝜑 → (𝑁‘𝐽) = 𝐶) |
Ref | Expression |
---|---|
indlcim | ⊢ (𝜑 → 𝐸 ∈ (𝐹 LMIso 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indlcim.f | . . 3 ⊢ 𝐹 = (𝑅 freeLMod 𝐼) | |
2 | indlcim.b | . . 3 ⊢ 𝐵 = (Base‘𝐹) | |
3 | indlcim.c | . . 3 ⊢ 𝐶 = (Base‘𝑇) | |
4 | indlcim.v | . . 3 ⊢ · = ( ·𝑠 ‘𝑇) | |
5 | indlcim.e | . . 3 ⊢ 𝐸 = (𝑥 ∈ 𝐵 ↦ (𝑇 Σg (𝑥 ∘f · 𝐴))) | |
6 | indlcim.t | . . 3 ⊢ (𝜑 → 𝑇 ∈ LMod) | |
7 | indlcim.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑋) | |
8 | indlcim.r | . . 3 ⊢ (𝜑 → 𝑅 = (Scalar‘𝑇)) | |
9 | indlcim.a | . . . . 5 ⊢ (𝜑 → 𝐴:𝐼–onto→𝐽) | |
10 | fofn 6816 | . . . . 5 ⊢ (𝐴:𝐼–onto→𝐽 → 𝐴 Fn 𝐼) | |
11 | 9, 10 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐴 Fn 𝐼) |
12 | indlcim.l | . . . . . 6 ⊢ (𝜑 → 𝐴 LIndF 𝑇) | |
13 | 3 | lindff 21805 | . . . . . 6 ⊢ ((𝐴 LIndF 𝑇 ∧ 𝑇 ∈ LMod) → 𝐴:dom 𝐴⟶𝐶) |
14 | 12, 6, 13 | syl2anc 582 | . . . . 5 ⊢ (𝜑 → 𝐴:dom 𝐴⟶𝐶) |
15 | 14 | frnd 6735 | . . . 4 ⊢ (𝜑 → ran 𝐴 ⊆ 𝐶) |
16 | df-f 6557 | . . . 4 ⊢ (𝐴:𝐼⟶𝐶 ↔ (𝐴 Fn 𝐼 ∧ ran 𝐴 ⊆ 𝐶)) | |
17 | 11, 15, 16 | sylanbrc 581 | . . 3 ⊢ (𝜑 → 𝐴:𝐼⟶𝐶) |
18 | 1, 2, 3, 4, 5, 6, 7, 8, 17 | frlmup1 21788 | . 2 ⊢ (𝜑 → 𝐸 ∈ (𝐹 LMHom 𝑇)) |
19 | 1, 2, 3, 4, 5, 6, 7, 8, 17 | islindf5 21829 | . . . 4 ⊢ (𝜑 → (𝐴 LIndF 𝑇 ↔ 𝐸:𝐵–1-1→𝐶)) |
20 | 12, 19 | mpbid 231 | . . 3 ⊢ (𝜑 → 𝐸:𝐵–1-1→𝐶) |
21 | indlcim.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑇) | |
22 | 1, 2, 3, 4, 5, 6, 7, 8, 17, 21 | frlmup3 21790 | . . . 4 ⊢ (𝜑 → ran 𝐸 = (𝑁‘ran 𝐴)) |
23 | forn 6817 | . . . . . 6 ⊢ (𝐴:𝐼–onto→𝐽 → ran 𝐴 = 𝐽) | |
24 | 9, 23 | syl 17 | . . . . 5 ⊢ (𝜑 → ran 𝐴 = 𝐽) |
25 | 24 | fveq2d 6904 | . . . 4 ⊢ (𝜑 → (𝑁‘ran 𝐴) = (𝑁‘𝐽)) |
26 | indlcim.s | . . . 4 ⊢ (𝜑 → (𝑁‘𝐽) = 𝐶) | |
27 | 22, 25, 26 | 3eqtrd 2769 | . . 3 ⊢ (𝜑 → ran 𝐸 = 𝐶) |
28 | dff1o5 6851 | . . 3 ⊢ (𝐸:𝐵–1-1-onto→𝐶 ↔ (𝐸:𝐵–1-1→𝐶 ∧ ran 𝐸 = 𝐶)) | |
29 | 20, 27, 28 | sylanbrc 581 | . 2 ⊢ (𝜑 → 𝐸:𝐵–1-1-onto→𝐶) |
30 | 2, 3 | islmim 20987 | . 2 ⊢ (𝐸 ∈ (𝐹 LMIso 𝑇) ↔ (𝐸 ∈ (𝐹 LMHom 𝑇) ∧ 𝐸:𝐵–1-1-onto→𝐶)) |
31 | 18, 29, 30 | sylanbrc 581 | 1 ⊢ (𝜑 → 𝐸 ∈ (𝐹 LMIso 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ⊆ wss 3946 class class class wbr 5152 ↦ cmpt 5235 dom cdm 5681 ran crn 5682 Fn wfn 6548 ⟶wf 6549 –1-1→wf1 6550 –onto→wfo 6551 –1-1-onto→wf1o 6552 ‘cfv 6553 (class class class)co 7423 ∘f cof 7687 Basecbs 17208 Scalarcsca 17264 ·𝑠 cvsca 17265 Σg cgsu 17450 LModclmod 20783 LSpanclspn 20895 LMHom clmhm 20944 LMIso clmim 20945 freeLMod cfrlm 21736 LIndF clindf 21794 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5368 ax-pr 5432 ax-un 7745 ax-cnex 11210 ax-resscn 11211 ax-1cn 11212 ax-icn 11213 ax-addcl 11214 ax-addrcl 11215 ax-mulcl 11216 ax-mulrcl 11217 ax-mulcom 11218 ax-addass 11219 ax-mulass 11220 ax-distr 11221 ax-i2m1 11222 ax-1ne0 11223 ax-1rid 11224 ax-rnegex 11225 ax-rrecex 11226 ax-cnre 11227 ax-pre-lttri 11228 ax-pre-lttrn 11229 ax-pre-ltadd 11230 ax-pre-mulgt0 11231 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4325 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-iin 5003 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5579 df-eprel 5585 df-po 5593 df-so 5594 df-fr 5636 df-se 5637 df-we 5638 df-xp 5687 df-rel 5688 df-cnv 5689 df-co 5690 df-dm 5691 df-rn 5692 df-res 5693 df-ima 5694 df-pred 6311 df-ord 6378 df-on 6379 df-lim 6380 df-suc 6381 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-isom 6562 df-riota 7379 df-ov 7426 df-oprab 7427 df-mpo 7428 df-of 7689 df-om 7876 df-1st 8002 df-2nd 8003 df-supp 8174 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-1o 8495 df-2o 8496 df-er 8733 df-map 8856 df-ixp 8926 df-en 8974 df-dom 8975 df-sdom 8976 df-fin 8977 df-fsupp 9402 df-sup 9481 df-oi 9549 df-card 9978 df-pnf 11296 df-mnf 11297 df-xr 11298 df-ltxr 11299 df-le 11300 df-sub 11492 df-neg 11493 df-nn 12260 df-2 12322 df-3 12323 df-4 12324 df-5 12325 df-6 12326 df-7 12327 df-8 12328 df-9 12329 df-n0 12520 df-z 12606 df-dec 12725 df-uz 12870 df-fz 13534 df-fzo 13677 df-seq 14017 df-hash 14343 df-struct 17144 df-sets 17161 df-slot 17179 df-ndx 17191 df-base 17209 df-ress 17238 df-plusg 17274 df-mulr 17275 df-sca 17277 df-vsca 17278 df-ip 17279 df-tset 17280 df-ple 17281 df-ds 17283 df-hom 17285 df-cco 17286 df-0g 17451 df-gsum 17452 df-prds 17457 df-pws 17459 df-mre 17594 df-mrc 17595 df-acs 17597 df-mgm 18628 df-sgrp 18707 df-mnd 18723 df-mhm 18768 df-submnd 18769 df-grp 18926 df-minusg 18927 df-sbg 18928 df-mulg 19057 df-subg 19112 df-ghm 19202 df-cntz 19306 df-cmn 19775 df-abl 19776 df-mgp 20113 df-rng 20131 df-ur 20160 df-ring 20213 df-nzr 20490 df-subrg 20548 df-lmod 20785 df-lss 20856 df-lsp 20896 df-lmhm 20947 df-lmim 20948 df-lbs 21000 df-sra 21098 df-rgmod 21099 df-dsmm 21722 df-frlm 21737 df-uvc 21773 df-lindf 21796 |
This theorem is referenced by: lbslcic 21831 |
Copyright terms: Public domain | W3C validator |