Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > indlcim | Structured version Visualization version GIF version |
Description: An independent, spanning family extends to an isomorphism from a free module. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
Ref | Expression |
---|---|
indlcim.f | ⊢ 𝐹 = (𝑅 freeLMod 𝐼) |
indlcim.b | ⊢ 𝐵 = (Base‘𝐹) |
indlcim.c | ⊢ 𝐶 = (Base‘𝑇) |
indlcim.v | ⊢ · = ( ·𝑠 ‘𝑇) |
indlcim.n | ⊢ 𝑁 = (LSpan‘𝑇) |
indlcim.e | ⊢ 𝐸 = (𝑥 ∈ 𝐵 ↦ (𝑇 Σg (𝑥 ∘f · 𝐴))) |
indlcim.t | ⊢ (𝜑 → 𝑇 ∈ LMod) |
indlcim.i | ⊢ (𝜑 → 𝐼 ∈ 𝑋) |
indlcim.r | ⊢ (𝜑 → 𝑅 = (Scalar‘𝑇)) |
indlcim.a | ⊢ (𝜑 → 𝐴:𝐼–onto→𝐽) |
indlcim.l | ⊢ (𝜑 → 𝐴 LIndF 𝑇) |
indlcim.s | ⊢ (𝜑 → (𝑁‘𝐽) = 𝐶) |
Ref | Expression |
---|---|
indlcim | ⊢ (𝜑 → 𝐸 ∈ (𝐹 LMIso 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indlcim.f | . . 3 ⊢ 𝐹 = (𝑅 freeLMod 𝐼) | |
2 | indlcim.b | . . 3 ⊢ 𝐵 = (Base‘𝐹) | |
3 | indlcim.c | . . 3 ⊢ 𝐶 = (Base‘𝑇) | |
4 | indlcim.v | . . 3 ⊢ · = ( ·𝑠 ‘𝑇) | |
5 | indlcim.e | . . 3 ⊢ 𝐸 = (𝑥 ∈ 𝐵 ↦ (𝑇 Σg (𝑥 ∘f · 𝐴))) | |
6 | indlcim.t | . . 3 ⊢ (𝜑 → 𝑇 ∈ LMod) | |
7 | indlcim.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑋) | |
8 | indlcim.r | . . 3 ⊢ (𝜑 → 𝑅 = (Scalar‘𝑇)) | |
9 | indlcim.a | . . . . 5 ⊢ (𝜑 → 𝐴:𝐼–onto→𝐽) | |
10 | fofn 6674 | . . . . 5 ⊢ (𝐴:𝐼–onto→𝐽 → 𝐴 Fn 𝐼) | |
11 | 9, 10 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐴 Fn 𝐼) |
12 | indlcim.l | . . . . . 6 ⊢ (𝜑 → 𝐴 LIndF 𝑇) | |
13 | 3 | lindff 20932 | . . . . . 6 ⊢ ((𝐴 LIndF 𝑇 ∧ 𝑇 ∈ LMod) → 𝐴:dom 𝐴⟶𝐶) |
14 | 12, 6, 13 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → 𝐴:dom 𝐴⟶𝐶) |
15 | 14 | frnd 6592 | . . . 4 ⊢ (𝜑 → ran 𝐴 ⊆ 𝐶) |
16 | df-f 6422 | . . . 4 ⊢ (𝐴:𝐼⟶𝐶 ↔ (𝐴 Fn 𝐼 ∧ ran 𝐴 ⊆ 𝐶)) | |
17 | 11, 15, 16 | sylanbrc 582 | . . 3 ⊢ (𝜑 → 𝐴:𝐼⟶𝐶) |
18 | 1, 2, 3, 4, 5, 6, 7, 8, 17 | frlmup1 20915 | . 2 ⊢ (𝜑 → 𝐸 ∈ (𝐹 LMHom 𝑇)) |
19 | 1, 2, 3, 4, 5, 6, 7, 8, 17 | islindf5 20956 | . . . 4 ⊢ (𝜑 → (𝐴 LIndF 𝑇 ↔ 𝐸:𝐵–1-1→𝐶)) |
20 | 12, 19 | mpbid 231 | . . 3 ⊢ (𝜑 → 𝐸:𝐵–1-1→𝐶) |
21 | indlcim.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑇) | |
22 | 1, 2, 3, 4, 5, 6, 7, 8, 17, 21 | frlmup3 20917 | . . . 4 ⊢ (𝜑 → ran 𝐸 = (𝑁‘ran 𝐴)) |
23 | forn 6675 | . . . . . 6 ⊢ (𝐴:𝐼–onto→𝐽 → ran 𝐴 = 𝐽) | |
24 | 9, 23 | syl 17 | . . . . 5 ⊢ (𝜑 → ran 𝐴 = 𝐽) |
25 | 24 | fveq2d 6760 | . . . 4 ⊢ (𝜑 → (𝑁‘ran 𝐴) = (𝑁‘𝐽)) |
26 | indlcim.s | . . . 4 ⊢ (𝜑 → (𝑁‘𝐽) = 𝐶) | |
27 | 22, 25, 26 | 3eqtrd 2782 | . . 3 ⊢ (𝜑 → ran 𝐸 = 𝐶) |
28 | dff1o5 6709 | . . 3 ⊢ (𝐸:𝐵–1-1-onto→𝐶 ↔ (𝐸:𝐵–1-1→𝐶 ∧ ran 𝐸 = 𝐶)) | |
29 | 20, 27, 28 | sylanbrc 582 | . 2 ⊢ (𝜑 → 𝐸:𝐵–1-1-onto→𝐶) |
30 | 2, 3 | islmim 20239 | . 2 ⊢ (𝐸 ∈ (𝐹 LMIso 𝑇) ↔ (𝐸 ∈ (𝐹 LMHom 𝑇) ∧ 𝐸:𝐵–1-1-onto→𝐶)) |
31 | 18, 29, 30 | sylanbrc 582 | 1 ⊢ (𝜑 → 𝐸 ∈ (𝐹 LMIso 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 class class class wbr 5070 ↦ cmpt 5153 dom cdm 5580 ran crn 5581 Fn wfn 6413 ⟶wf 6414 –1-1→wf1 6415 –onto→wfo 6416 –1-1-onto→wf1o 6417 ‘cfv 6418 (class class class)co 7255 ∘f cof 7509 Basecbs 16840 Scalarcsca 16891 ·𝑠 cvsca 16892 Σg cgsu 17068 LModclmod 20038 LSpanclspn 20148 LMHom clmhm 20196 LMIso clmim 20197 freeLMod cfrlm 20863 LIndF clindf 20921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-sup 9131 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-fzo 13312 df-seq 13650 df-hash 13973 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-hom 16912 df-cco 16913 df-0g 17069 df-gsum 17070 df-prds 17075 df-pws 17077 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-submnd 18346 df-grp 18495 df-minusg 18496 df-sbg 18497 df-mulg 18616 df-subg 18667 df-ghm 18747 df-cntz 18838 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-subrg 19937 df-lmod 20040 df-lss 20109 df-lsp 20149 df-lmhm 20199 df-lmim 20200 df-lbs 20252 df-sra 20349 df-rgmod 20350 df-nzr 20442 df-dsmm 20849 df-frlm 20864 df-uvc 20900 df-lindf 20923 |
This theorem is referenced by: lbslcic 20958 |
Copyright terms: Public domain | W3C validator |