![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > indlcim | Structured version Visualization version GIF version |
Description: An independent, spanning family extends to an isomorphism from a free module. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
Ref | Expression |
---|---|
indlcim.f | β’ πΉ = (π freeLMod πΌ) |
indlcim.b | β’ π΅ = (BaseβπΉ) |
indlcim.c | β’ πΆ = (Baseβπ) |
indlcim.v | β’ Β· = ( Β·π βπ) |
indlcim.n | β’ π = (LSpanβπ) |
indlcim.e | β’ πΈ = (π₯ β π΅ β¦ (π Ξ£g (π₯ βf Β· π΄))) |
indlcim.t | β’ (π β π β LMod) |
indlcim.i | β’ (π β πΌ β π) |
indlcim.r | β’ (π β π = (Scalarβπ)) |
indlcim.a | β’ (π β π΄:πΌβontoβπ½) |
indlcim.l | β’ (π β π΄ LIndF π) |
indlcim.s | β’ (π β (πβπ½) = πΆ) |
Ref | Expression |
---|---|
indlcim | β’ (π β πΈ β (πΉ LMIso π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indlcim.f | . . 3 β’ πΉ = (π freeLMod πΌ) | |
2 | indlcim.b | . . 3 β’ π΅ = (BaseβπΉ) | |
3 | indlcim.c | . . 3 β’ πΆ = (Baseβπ) | |
4 | indlcim.v | . . 3 β’ Β· = ( Β·π βπ) | |
5 | indlcim.e | . . 3 β’ πΈ = (π₯ β π΅ β¦ (π Ξ£g (π₯ βf Β· π΄))) | |
6 | indlcim.t | . . 3 β’ (π β π β LMod) | |
7 | indlcim.i | . . 3 β’ (π β πΌ β π) | |
8 | indlcim.r | . . 3 β’ (π β π = (Scalarβπ)) | |
9 | indlcim.a | . . . . 5 β’ (π β π΄:πΌβontoβπ½) | |
10 | fofn 6804 | . . . . 5 β’ (π΄:πΌβontoβπ½ β π΄ Fn πΌ) | |
11 | 9, 10 | syl 17 | . . . 4 β’ (π β π΄ Fn πΌ) |
12 | indlcim.l | . . . . . 6 β’ (π β π΄ LIndF π) | |
13 | 3 | lindff 21361 | . . . . . 6 β’ ((π΄ LIndF π β§ π β LMod) β π΄:dom π΄βΆπΆ) |
14 | 12, 6, 13 | syl2anc 584 | . . . . 5 β’ (π β π΄:dom π΄βΆπΆ) |
15 | 14 | frnd 6722 | . . . 4 β’ (π β ran π΄ β πΆ) |
16 | df-f 6544 | . . . 4 β’ (π΄:πΌβΆπΆ β (π΄ Fn πΌ β§ ran π΄ β πΆ)) | |
17 | 11, 15, 16 | sylanbrc 583 | . . 3 β’ (π β π΄:πΌβΆπΆ) |
18 | 1, 2, 3, 4, 5, 6, 7, 8, 17 | frlmup1 21344 | . 2 β’ (π β πΈ β (πΉ LMHom π)) |
19 | 1, 2, 3, 4, 5, 6, 7, 8, 17 | islindf5 21385 | . . . 4 β’ (π β (π΄ LIndF π β πΈ:π΅β1-1βπΆ)) |
20 | 12, 19 | mpbid 231 | . . 3 β’ (π β πΈ:π΅β1-1βπΆ) |
21 | indlcim.n | . . . . 5 β’ π = (LSpanβπ) | |
22 | 1, 2, 3, 4, 5, 6, 7, 8, 17, 21 | frlmup3 21346 | . . . 4 β’ (π β ran πΈ = (πβran π΄)) |
23 | forn 6805 | . . . . . 6 β’ (π΄:πΌβontoβπ½ β ran π΄ = π½) | |
24 | 9, 23 | syl 17 | . . . . 5 β’ (π β ran π΄ = π½) |
25 | 24 | fveq2d 6892 | . . . 4 β’ (π β (πβran π΄) = (πβπ½)) |
26 | indlcim.s | . . . 4 β’ (π β (πβπ½) = πΆ) | |
27 | 22, 25, 26 | 3eqtrd 2776 | . . 3 β’ (π β ran πΈ = πΆ) |
28 | dff1o5 6839 | . . 3 β’ (πΈ:π΅β1-1-ontoβπΆ β (πΈ:π΅β1-1βπΆ β§ ran πΈ = πΆ)) | |
29 | 20, 27, 28 | sylanbrc 583 | . 2 β’ (π β πΈ:π΅β1-1-ontoβπΆ) |
30 | 2, 3 | islmim 20665 | . 2 β’ (πΈ β (πΉ LMIso π) β (πΈ β (πΉ LMHom π) β§ πΈ:π΅β1-1-ontoβπΆ)) |
31 | 18, 29, 30 | sylanbrc 583 | 1 β’ (π β πΈ β (πΉ LMIso π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 β wss 3947 class class class wbr 5147 β¦ cmpt 5230 dom cdm 5675 ran crn 5676 Fn wfn 6535 βΆwf 6536 β1-1βwf1 6537 βontoβwfo 6538 β1-1-ontoβwf1o 6539 βcfv 6540 (class class class)co 7405 βf cof 7664 Basecbs 17140 Scalarcsca 17196 Β·π cvsca 17197 Ξ£g cgsu 17382 LModclmod 20463 LSpanclspn 20574 LMHom clmhm 20622 LMIso clmim 20623 freeLMod cfrlm 21292 LIndF clindf 21350 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7666 df-om 7852 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-map 8818 df-ixp 8888 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-sup 9433 df-oi 9501 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-fz 13481 df-fzo 13624 df-seq 13963 df-hash 14287 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-sca 17209 df-vsca 17210 df-ip 17211 df-tset 17212 df-ple 17213 df-ds 17215 df-hom 17217 df-cco 17218 df-0g 17383 df-gsum 17384 df-prds 17389 df-pws 17391 df-mre 17526 df-mrc 17527 df-acs 17529 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-mhm 18667 df-submnd 18668 df-grp 18818 df-minusg 18819 df-sbg 18820 df-mulg 18945 df-subg 18997 df-ghm 19084 df-cntz 19175 df-cmn 19644 df-abl 19645 df-mgp 19982 df-ur 19999 df-ring 20051 df-nzr 20284 df-subrg 20353 df-lmod 20465 df-lss 20535 df-lsp 20575 df-lmhm 20625 df-lmim 20626 df-lbs 20678 df-sra 20777 df-rgmod 20778 df-dsmm 21278 df-frlm 21293 df-uvc 21329 df-lindf 21352 |
This theorem is referenced by: lbslcic 21387 |
Copyright terms: Public domain | W3C validator |