| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > indlcim | Structured version Visualization version GIF version | ||
| Description: An independent, spanning family extends to an isomorphism from a free module. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
| Ref | Expression |
|---|---|
| indlcim.f | ⊢ 𝐹 = (𝑅 freeLMod 𝐼) |
| indlcim.b | ⊢ 𝐵 = (Base‘𝐹) |
| indlcim.c | ⊢ 𝐶 = (Base‘𝑇) |
| indlcim.v | ⊢ · = ( ·𝑠 ‘𝑇) |
| indlcim.n | ⊢ 𝑁 = (LSpan‘𝑇) |
| indlcim.e | ⊢ 𝐸 = (𝑥 ∈ 𝐵 ↦ (𝑇 Σg (𝑥 ∘f · 𝐴))) |
| indlcim.t | ⊢ (𝜑 → 𝑇 ∈ LMod) |
| indlcim.i | ⊢ (𝜑 → 𝐼 ∈ 𝑋) |
| indlcim.r | ⊢ (𝜑 → 𝑅 = (Scalar‘𝑇)) |
| indlcim.a | ⊢ (𝜑 → 𝐴:𝐼–onto→𝐽) |
| indlcim.l | ⊢ (𝜑 → 𝐴 LIndF 𝑇) |
| indlcim.s | ⊢ (𝜑 → (𝑁‘𝐽) = 𝐶) |
| Ref | Expression |
|---|---|
| indlcim | ⊢ (𝜑 → 𝐸 ∈ (𝐹 LMIso 𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indlcim.f | . . 3 ⊢ 𝐹 = (𝑅 freeLMod 𝐼) | |
| 2 | indlcim.b | . . 3 ⊢ 𝐵 = (Base‘𝐹) | |
| 3 | indlcim.c | . . 3 ⊢ 𝐶 = (Base‘𝑇) | |
| 4 | indlcim.v | . . 3 ⊢ · = ( ·𝑠 ‘𝑇) | |
| 5 | indlcim.e | . . 3 ⊢ 𝐸 = (𝑥 ∈ 𝐵 ↦ (𝑇 Σg (𝑥 ∘f · 𝐴))) | |
| 6 | indlcim.t | . . 3 ⊢ (𝜑 → 𝑇 ∈ LMod) | |
| 7 | indlcim.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑋) | |
| 8 | indlcim.r | . . 3 ⊢ (𝜑 → 𝑅 = (Scalar‘𝑇)) | |
| 9 | indlcim.a | . . . . 5 ⊢ (𝜑 → 𝐴:𝐼–onto→𝐽) | |
| 10 | fofn 6822 | . . . . 5 ⊢ (𝐴:𝐼–onto→𝐽 → 𝐴 Fn 𝐼) | |
| 11 | 9, 10 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐴 Fn 𝐼) |
| 12 | indlcim.l | . . . . . 6 ⊢ (𝜑 → 𝐴 LIndF 𝑇) | |
| 13 | 3 | lindff 21835 | . . . . . 6 ⊢ ((𝐴 LIndF 𝑇 ∧ 𝑇 ∈ LMod) → 𝐴:dom 𝐴⟶𝐶) |
| 14 | 12, 6, 13 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝐴:dom 𝐴⟶𝐶) |
| 15 | 14 | frnd 6744 | . . . 4 ⊢ (𝜑 → ran 𝐴 ⊆ 𝐶) |
| 16 | df-f 6565 | . . . 4 ⊢ (𝐴:𝐼⟶𝐶 ↔ (𝐴 Fn 𝐼 ∧ ran 𝐴 ⊆ 𝐶)) | |
| 17 | 11, 15, 16 | sylanbrc 583 | . . 3 ⊢ (𝜑 → 𝐴:𝐼⟶𝐶) |
| 18 | 1, 2, 3, 4, 5, 6, 7, 8, 17 | frlmup1 21818 | . 2 ⊢ (𝜑 → 𝐸 ∈ (𝐹 LMHom 𝑇)) |
| 19 | 1, 2, 3, 4, 5, 6, 7, 8, 17 | islindf5 21859 | . . . 4 ⊢ (𝜑 → (𝐴 LIndF 𝑇 ↔ 𝐸:𝐵–1-1→𝐶)) |
| 20 | 12, 19 | mpbid 232 | . . 3 ⊢ (𝜑 → 𝐸:𝐵–1-1→𝐶) |
| 21 | indlcim.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑇) | |
| 22 | 1, 2, 3, 4, 5, 6, 7, 8, 17, 21 | frlmup3 21820 | . . . 4 ⊢ (𝜑 → ran 𝐸 = (𝑁‘ran 𝐴)) |
| 23 | forn 6823 | . . . . . 6 ⊢ (𝐴:𝐼–onto→𝐽 → ran 𝐴 = 𝐽) | |
| 24 | 9, 23 | syl 17 | . . . . 5 ⊢ (𝜑 → ran 𝐴 = 𝐽) |
| 25 | 24 | fveq2d 6910 | . . . 4 ⊢ (𝜑 → (𝑁‘ran 𝐴) = (𝑁‘𝐽)) |
| 26 | indlcim.s | . . . 4 ⊢ (𝜑 → (𝑁‘𝐽) = 𝐶) | |
| 27 | 22, 25, 26 | 3eqtrd 2781 | . . 3 ⊢ (𝜑 → ran 𝐸 = 𝐶) |
| 28 | dff1o5 6857 | . . 3 ⊢ (𝐸:𝐵–1-1-onto→𝐶 ↔ (𝐸:𝐵–1-1→𝐶 ∧ ran 𝐸 = 𝐶)) | |
| 29 | 20, 27, 28 | sylanbrc 583 | . 2 ⊢ (𝜑 → 𝐸:𝐵–1-1-onto→𝐶) |
| 30 | 2, 3 | islmim 21061 | . 2 ⊢ (𝐸 ∈ (𝐹 LMIso 𝑇) ↔ (𝐸 ∈ (𝐹 LMHom 𝑇) ∧ 𝐸:𝐵–1-1-onto→𝐶)) |
| 31 | 18, 29, 30 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐸 ∈ (𝐹 LMIso 𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ⊆ wss 3951 class class class wbr 5143 ↦ cmpt 5225 dom cdm 5685 ran crn 5686 Fn wfn 6556 ⟶wf 6557 –1-1→wf1 6558 –onto→wfo 6559 –1-1-onto→wf1o 6560 ‘cfv 6561 (class class class)co 7431 ∘f cof 7695 Basecbs 17247 Scalarcsca 17300 ·𝑠 cvsca 17301 Σg cgsu 17485 LModclmod 20858 LSpanclspn 20969 LMHom clmhm 21018 LMIso clmim 21019 freeLMod cfrlm 21766 LIndF clindf 21824 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8014 df-2nd 8015 df-supp 8186 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-er 8745 df-map 8868 df-ixp 8938 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-fsupp 9402 df-sup 9482 df-oi 9550 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-fz 13548 df-fzo 13695 df-seq 14043 df-hash 14370 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-hom 17321 df-cco 17322 df-0g 17486 df-gsum 17487 df-prds 17492 df-pws 17494 df-mre 17629 df-mrc 17630 df-acs 17632 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-mhm 18796 df-submnd 18797 df-grp 18954 df-minusg 18955 df-sbg 18956 df-mulg 19086 df-subg 19141 df-ghm 19231 df-cntz 19335 df-cmn 19800 df-abl 19801 df-mgp 20138 df-rng 20150 df-ur 20179 df-ring 20232 df-nzr 20513 df-subrg 20570 df-lmod 20860 df-lss 20930 df-lsp 20970 df-lmhm 21021 df-lmim 21022 df-lbs 21074 df-sra 21172 df-rgmod 21173 df-dsmm 21752 df-frlm 21767 df-uvc 21803 df-lindf 21826 |
| This theorem is referenced by: lbslcic 21861 |
| Copyright terms: Public domain | W3C validator |