![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > indlcim | Structured version Visualization version GIF version |
Description: An independent, spanning family extends to an isomorphism from a free module. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
Ref | Expression |
---|---|
indlcim.f | β’ πΉ = (π freeLMod πΌ) |
indlcim.b | β’ π΅ = (BaseβπΉ) |
indlcim.c | β’ πΆ = (Baseβπ) |
indlcim.v | β’ Β· = ( Β·π βπ) |
indlcim.n | β’ π = (LSpanβπ) |
indlcim.e | β’ πΈ = (π₯ β π΅ β¦ (π Ξ£g (π₯ βf Β· π΄))) |
indlcim.t | β’ (π β π β LMod) |
indlcim.i | β’ (π β πΌ β π) |
indlcim.r | β’ (π β π = (Scalarβπ)) |
indlcim.a | β’ (π β π΄:πΌβontoβπ½) |
indlcim.l | β’ (π β π΄ LIndF π) |
indlcim.s | β’ (π β (πβπ½) = πΆ) |
Ref | Expression |
---|---|
indlcim | β’ (π β πΈ β (πΉ LMIso π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indlcim.f | . . 3 β’ πΉ = (π freeLMod πΌ) | |
2 | indlcim.b | . . 3 β’ π΅ = (BaseβπΉ) | |
3 | indlcim.c | . . 3 β’ πΆ = (Baseβπ) | |
4 | indlcim.v | . . 3 β’ Β· = ( Β·π βπ) | |
5 | indlcim.e | . . 3 β’ πΈ = (π₯ β π΅ β¦ (π Ξ£g (π₯ βf Β· π΄))) | |
6 | indlcim.t | . . 3 β’ (π β π β LMod) | |
7 | indlcim.i | . . 3 β’ (π β πΌ β π) | |
8 | indlcim.r | . . 3 β’ (π β π = (Scalarβπ)) | |
9 | indlcim.a | . . . . 5 β’ (π β π΄:πΌβontoβπ½) | |
10 | fofn 6818 | . . . . 5 β’ (π΄:πΌβontoβπ½ β π΄ Fn πΌ) | |
11 | 9, 10 | syl 17 | . . . 4 β’ (π β π΄ Fn πΌ) |
12 | indlcim.l | . . . . . 6 β’ (π β π΄ LIndF π) | |
13 | 3 | lindff 21756 | . . . . . 6 β’ ((π΄ LIndF π β§ π β LMod) β π΄:dom π΄βΆπΆ) |
14 | 12, 6, 13 | syl2anc 582 | . . . . 5 β’ (π β π΄:dom π΄βΆπΆ) |
15 | 14 | frnd 6735 | . . . 4 β’ (π β ran π΄ β πΆ) |
16 | df-f 6557 | . . . 4 β’ (π΄:πΌβΆπΆ β (π΄ Fn πΌ β§ ran π΄ β πΆ)) | |
17 | 11, 15, 16 | sylanbrc 581 | . . 3 β’ (π β π΄:πΌβΆπΆ) |
18 | 1, 2, 3, 4, 5, 6, 7, 8, 17 | frlmup1 21739 | . 2 β’ (π β πΈ β (πΉ LMHom π)) |
19 | 1, 2, 3, 4, 5, 6, 7, 8, 17 | islindf5 21780 | . . . 4 β’ (π β (π΄ LIndF π β πΈ:π΅β1-1βπΆ)) |
20 | 12, 19 | mpbid 231 | . . 3 β’ (π β πΈ:π΅β1-1βπΆ) |
21 | indlcim.n | . . . . 5 β’ π = (LSpanβπ) | |
22 | 1, 2, 3, 4, 5, 6, 7, 8, 17, 21 | frlmup3 21741 | . . . 4 β’ (π β ran πΈ = (πβran π΄)) |
23 | forn 6819 | . . . . . 6 β’ (π΄:πΌβontoβπ½ β ran π΄ = π½) | |
24 | 9, 23 | syl 17 | . . . . 5 β’ (π β ran π΄ = π½) |
25 | 24 | fveq2d 6906 | . . . 4 β’ (π β (πβran π΄) = (πβπ½)) |
26 | indlcim.s | . . . 4 β’ (π β (πβπ½) = πΆ) | |
27 | 22, 25, 26 | 3eqtrd 2772 | . . 3 β’ (π β ran πΈ = πΆ) |
28 | dff1o5 6853 | . . 3 β’ (πΈ:π΅β1-1-ontoβπΆ β (πΈ:π΅β1-1βπΆ β§ ran πΈ = πΆ)) | |
29 | 20, 27, 28 | sylanbrc 581 | . 2 β’ (π β πΈ:π΅β1-1-ontoβπΆ) |
30 | 2, 3 | islmim 20954 | . 2 β’ (πΈ β (πΉ LMIso π) β (πΈ β (πΉ LMHom π) β§ πΈ:π΅β1-1-ontoβπΆ)) |
31 | 18, 29, 30 | sylanbrc 581 | 1 β’ (π β πΈ β (πΉ LMIso π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 β wss 3949 class class class wbr 5152 β¦ cmpt 5235 dom cdm 5682 ran crn 5683 Fn wfn 6548 βΆwf 6549 β1-1βwf1 6550 βontoβwfo 6551 β1-1-ontoβwf1o 6552 βcfv 6553 (class class class)co 7426 βf cof 7689 Basecbs 17187 Scalarcsca 17243 Β·π cvsca 17244 Ξ£g cgsu 17429 LModclmod 20750 LSpanclspn 20862 LMHom clmhm 20911 LMIso clmim 20912 freeLMod cfrlm 21687 LIndF clindf 21745 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-iin 5003 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-isom 6562 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-of 7691 df-om 7877 df-1st 7999 df-2nd 8000 df-supp 8172 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-er 8731 df-map 8853 df-ixp 8923 df-en 8971 df-dom 8972 df-sdom 8973 df-fin 8974 df-fsupp 9394 df-sup 9473 df-oi 9541 df-card 9970 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12251 df-2 12313 df-3 12314 df-4 12315 df-5 12316 df-6 12317 df-7 12318 df-8 12319 df-9 12320 df-n0 12511 df-z 12597 df-dec 12716 df-uz 12861 df-fz 13525 df-fzo 13668 df-seq 14007 df-hash 14330 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17188 df-ress 17217 df-plusg 17253 df-mulr 17254 df-sca 17256 df-vsca 17257 df-ip 17258 df-tset 17259 df-ple 17260 df-ds 17262 df-hom 17264 df-cco 17265 df-0g 17430 df-gsum 17431 df-prds 17436 df-pws 17438 df-mre 17573 df-mrc 17574 df-acs 17576 df-mgm 18607 df-sgrp 18686 df-mnd 18702 df-mhm 18747 df-submnd 18748 df-grp 18900 df-minusg 18901 df-sbg 18902 df-mulg 19031 df-subg 19085 df-ghm 19175 df-cntz 19275 df-cmn 19744 df-abl 19745 df-mgp 20082 df-rng 20100 df-ur 20129 df-ring 20182 df-nzr 20459 df-subrg 20515 df-lmod 20752 df-lss 20823 df-lsp 20863 df-lmhm 20914 df-lmim 20915 df-lbs 20967 df-sra 21065 df-rgmod 21066 df-dsmm 21673 df-frlm 21688 df-uvc 21724 df-lindf 21747 |
This theorem is referenced by: lbslcic 21782 |
Copyright terms: Public domain | W3C validator |