| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > indlcim | Structured version Visualization version GIF version | ||
| Description: An independent, spanning family extends to an isomorphism from a free module. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
| Ref | Expression |
|---|---|
| indlcim.f | ⊢ 𝐹 = (𝑅 freeLMod 𝐼) |
| indlcim.b | ⊢ 𝐵 = (Base‘𝐹) |
| indlcim.c | ⊢ 𝐶 = (Base‘𝑇) |
| indlcim.v | ⊢ · = ( ·𝑠 ‘𝑇) |
| indlcim.n | ⊢ 𝑁 = (LSpan‘𝑇) |
| indlcim.e | ⊢ 𝐸 = (𝑥 ∈ 𝐵 ↦ (𝑇 Σg (𝑥 ∘f · 𝐴))) |
| indlcim.t | ⊢ (𝜑 → 𝑇 ∈ LMod) |
| indlcim.i | ⊢ (𝜑 → 𝐼 ∈ 𝑋) |
| indlcim.r | ⊢ (𝜑 → 𝑅 = (Scalar‘𝑇)) |
| indlcim.a | ⊢ (𝜑 → 𝐴:𝐼–onto→𝐽) |
| indlcim.l | ⊢ (𝜑 → 𝐴 LIndF 𝑇) |
| indlcim.s | ⊢ (𝜑 → (𝑁‘𝐽) = 𝐶) |
| Ref | Expression |
|---|---|
| indlcim | ⊢ (𝜑 → 𝐸 ∈ (𝐹 LMIso 𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indlcim.f | . . 3 ⊢ 𝐹 = (𝑅 freeLMod 𝐼) | |
| 2 | indlcim.b | . . 3 ⊢ 𝐵 = (Base‘𝐹) | |
| 3 | indlcim.c | . . 3 ⊢ 𝐶 = (Base‘𝑇) | |
| 4 | indlcim.v | . . 3 ⊢ · = ( ·𝑠 ‘𝑇) | |
| 5 | indlcim.e | . . 3 ⊢ 𝐸 = (𝑥 ∈ 𝐵 ↦ (𝑇 Σg (𝑥 ∘f · 𝐴))) | |
| 6 | indlcim.t | . . 3 ⊢ (𝜑 → 𝑇 ∈ LMod) | |
| 7 | indlcim.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑋) | |
| 8 | indlcim.r | . . 3 ⊢ (𝜑 → 𝑅 = (Scalar‘𝑇)) | |
| 9 | indlcim.a | . . . . 5 ⊢ (𝜑 → 𝐴:𝐼–onto→𝐽) | |
| 10 | fofn 6789 | . . . . 5 ⊢ (𝐴:𝐼–onto→𝐽 → 𝐴 Fn 𝐼) | |
| 11 | 9, 10 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐴 Fn 𝐼) |
| 12 | indlcim.l | . . . . . 6 ⊢ (𝜑 → 𝐴 LIndF 𝑇) | |
| 13 | 3 | lindff 21762 | . . . . . 6 ⊢ ((𝐴 LIndF 𝑇 ∧ 𝑇 ∈ LMod) → 𝐴:dom 𝐴⟶𝐶) |
| 14 | 12, 6, 13 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝐴:dom 𝐴⟶𝐶) |
| 15 | 14 | frnd 6711 | . . . 4 ⊢ (𝜑 → ran 𝐴 ⊆ 𝐶) |
| 16 | df-f 6532 | . . . 4 ⊢ (𝐴:𝐼⟶𝐶 ↔ (𝐴 Fn 𝐼 ∧ ran 𝐴 ⊆ 𝐶)) | |
| 17 | 11, 15, 16 | sylanbrc 583 | . . 3 ⊢ (𝜑 → 𝐴:𝐼⟶𝐶) |
| 18 | 1, 2, 3, 4, 5, 6, 7, 8, 17 | frlmup1 21745 | . 2 ⊢ (𝜑 → 𝐸 ∈ (𝐹 LMHom 𝑇)) |
| 19 | 1, 2, 3, 4, 5, 6, 7, 8, 17 | islindf5 21786 | . . . 4 ⊢ (𝜑 → (𝐴 LIndF 𝑇 ↔ 𝐸:𝐵–1-1→𝐶)) |
| 20 | 12, 19 | mpbid 232 | . . 3 ⊢ (𝜑 → 𝐸:𝐵–1-1→𝐶) |
| 21 | indlcim.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑇) | |
| 22 | 1, 2, 3, 4, 5, 6, 7, 8, 17, 21 | frlmup3 21747 | . . . 4 ⊢ (𝜑 → ran 𝐸 = (𝑁‘ran 𝐴)) |
| 23 | forn 6790 | . . . . . 6 ⊢ (𝐴:𝐼–onto→𝐽 → ran 𝐴 = 𝐽) | |
| 24 | 9, 23 | syl 17 | . . . . 5 ⊢ (𝜑 → ran 𝐴 = 𝐽) |
| 25 | 24 | fveq2d 6877 | . . . 4 ⊢ (𝜑 → (𝑁‘ran 𝐴) = (𝑁‘𝐽)) |
| 26 | indlcim.s | . . . 4 ⊢ (𝜑 → (𝑁‘𝐽) = 𝐶) | |
| 27 | 22, 25, 26 | 3eqtrd 2773 | . . 3 ⊢ (𝜑 → ran 𝐸 = 𝐶) |
| 28 | dff1o5 6824 | . . 3 ⊢ (𝐸:𝐵–1-1-onto→𝐶 ↔ (𝐸:𝐵–1-1→𝐶 ∧ ran 𝐸 = 𝐶)) | |
| 29 | 20, 27, 28 | sylanbrc 583 | . 2 ⊢ (𝜑 → 𝐸:𝐵–1-1-onto→𝐶) |
| 30 | 2, 3 | islmim 21007 | . 2 ⊢ (𝐸 ∈ (𝐹 LMIso 𝑇) ↔ (𝐸 ∈ (𝐹 LMHom 𝑇) ∧ 𝐸:𝐵–1-1-onto→𝐶)) |
| 31 | 18, 29, 30 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐸 ∈ (𝐹 LMIso 𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ⊆ wss 3924 class class class wbr 5117 ↦ cmpt 5199 dom cdm 5652 ran crn 5653 Fn wfn 6523 ⟶wf 6524 –1-1→wf1 6525 –onto→wfo 6526 –1-1-onto→wf1o 6527 ‘cfv 6528 (class class class)co 7400 ∘f cof 7664 Basecbs 17215 Scalarcsca 17261 ·𝑠 cvsca 17262 Σg cgsu 17441 LModclmod 20804 LSpanclspn 20915 LMHom clmhm 20964 LMIso clmim 20965 freeLMod cfrlm 21693 LIndF clindf 21751 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5247 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 ax-cnex 11178 ax-resscn 11179 ax-1cn 11180 ax-icn 11181 ax-addcl 11182 ax-addrcl 11183 ax-mulcl 11184 ax-mulrcl 11185 ax-mulcom 11186 ax-addass 11187 ax-mulass 11188 ax-distr 11189 ax-i2m1 11190 ax-1ne0 11191 ax-1rid 11192 ax-rnegex 11193 ax-rrecex 11194 ax-cnre 11195 ax-pre-lttri 11196 ax-pre-lttrn 11197 ax-pre-ltadd 11198 ax-pre-mulgt0 11199 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-tp 4604 df-op 4606 df-uni 4882 df-int 4921 df-iun 4967 df-iin 4968 df-br 5118 df-opab 5180 df-mpt 5200 df-tr 5228 df-id 5546 df-eprel 5551 df-po 5559 df-so 5560 df-fr 5604 df-se 5605 df-we 5606 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-pred 6288 df-ord 6353 df-on 6354 df-lim 6355 df-suc 6356 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-isom 6537 df-riota 7357 df-ov 7403 df-oprab 7404 df-mpo 7405 df-of 7666 df-om 7857 df-1st 7983 df-2nd 7984 df-supp 8155 df-frecs 8275 df-wrecs 8306 df-recs 8380 df-rdg 8419 df-1o 8475 df-2o 8476 df-er 8714 df-map 8837 df-ixp 8907 df-en 8955 df-dom 8956 df-sdom 8957 df-fin 8958 df-fsupp 9369 df-sup 9449 df-oi 9517 df-card 9946 df-pnf 11264 df-mnf 11265 df-xr 11266 df-ltxr 11267 df-le 11268 df-sub 11461 df-neg 11462 df-nn 12234 df-2 12296 df-3 12297 df-4 12298 df-5 12299 df-6 12300 df-7 12301 df-8 12302 df-9 12303 df-n0 12495 df-z 12582 df-dec 12702 df-uz 12846 df-fz 13515 df-fzo 13662 df-seq 14010 df-hash 14339 df-struct 17153 df-sets 17170 df-slot 17188 df-ndx 17200 df-base 17216 df-ress 17239 df-plusg 17271 df-mulr 17272 df-sca 17274 df-vsca 17275 df-ip 17276 df-tset 17277 df-ple 17278 df-ds 17280 df-hom 17282 df-cco 17283 df-0g 17442 df-gsum 17443 df-prds 17448 df-pws 17450 df-mre 17585 df-mrc 17586 df-acs 17588 df-mgm 18605 df-sgrp 18684 df-mnd 18700 df-mhm 18748 df-submnd 18749 df-grp 18906 df-minusg 18907 df-sbg 18908 df-mulg 19038 df-subg 19093 df-ghm 19183 df-cntz 19287 df-cmn 19750 df-abl 19751 df-mgp 20088 df-rng 20100 df-ur 20129 df-ring 20182 df-nzr 20460 df-subrg 20517 df-lmod 20806 df-lss 20876 df-lsp 20916 df-lmhm 20967 df-lmim 20968 df-lbs 21020 df-sra 21118 df-rgmod 21119 df-dsmm 21679 df-frlm 21694 df-uvc 21730 df-lindf 21753 |
| This theorem is referenced by: lbslcic 21788 |
| Copyright terms: Public domain | W3C validator |