| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > indlcim | Structured version Visualization version GIF version | ||
| Description: An independent, spanning family extends to an isomorphism from a free module. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
| Ref | Expression |
|---|---|
| indlcim.f | ⊢ 𝐹 = (𝑅 freeLMod 𝐼) |
| indlcim.b | ⊢ 𝐵 = (Base‘𝐹) |
| indlcim.c | ⊢ 𝐶 = (Base‘𝑇) |
| indlcim.v | ⊢ · = ( ·𝑠 ‘𝑇) |
| indlcim.n | ⊢ 𝑁 = (LSpan‘𝑇) |
| indlcim.e | ⊢ 𝐸 = (𝑥 ∈ 𝐵 ↦ (𝑇 Σg (𝑥 ∘f · 𝐴))) |
| indlcim.t | ⊢ (𝜑 → 𝑇 ∈ LMod) |
| indlcim.i | ⊢ (𝜑 → 𝐼 ∈ 𝑋) |
| indlcim.r | ⊢ (𝜑 → 𝑅 = (Scalar‘𝑇)) |
| indlcim.a | ⊢ (𝜑 → 𝐴:𝐼–onto→𝐽) |
| indlcim.l | ⊢ (𝜑 → 𝐴 LIndF 𝑇) |
| indlcim.s | ⊢ (𝜑 → (𝑁‘𝐽) = 𝐶) |
| Ref | Expression |
|---|---|
| indlcim | ⊢ (𝜑 → 𝐸 ∈ (𝐹 LMIso 𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indlcim.f | . . 3 ⊢ 𝐹 = (𝑅 freeLMod 𝐼) | |
| 2 | indlcim.b | . . 3 ⊢ 𝐵 = (Base‘𝐹) | |
| 3 | indlcim.c | . . 3 ⊢ 𝐶 = (Base‘𝑇) | |
| 4 | indlcim.v | . . 3 ⊢ · = ( ·𝑠 ‘𝑇) | |
| 5 | indlcim.e | . . 3 ⊢ 𝐸 = (𝑥 ∈ 𝐵 ↦ (𝑇 Σg (𝑥 ∘f · 𝐴))) | |
| 6 | indlcim.t | . . 3 ⊢ (𝜑 → 𝑇 ∈ LMod) | |
| 7 | indlcim.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑋) | |
| 8 | indlcim.r | . . 3 ⊢ (𝜑 → 𝑅 = (Scalar‘𝑇)) | |
| 9 | indlcim.a | . . . . 5 ⊢ (𝜑 → 𝐴:𝐼–onto→𝐽) | |
| 10 | fofn 6737 | . . . . 5 ⊢ (𝐴:𝐼–onto→𝐽 → 𝐴 Fn 𝐼) | |
| 11 | 9, 10 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐴 Fn 𝐼) |
| 12 | indlcim.l | . . . . . 6 ⊢ (𝜑 → 𝐴 LIndF 𝑇) | |
| 13 | 3 | lindff 21753 | . . . . . 6 ⊢ ((𝐴 LIndF 𝑇 ∧ 𝑇 ∈ LMod) → 𝐴:dom 𝐴⟶𝐶) |
| 14 | 12, 6, 13 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝐴:dom 𝐴⟶𝐶) |
| 15 | 14 | frnd 6659 | . . . 4 ⊢ (𝜑 → ran 𝐴 ⊆ 𝐶) |
| 16 | df-f 6485 | . . . 4 ⊢ (𝐴:𝐼⟶𝐶 ↔ (𝐴 Fn 𝐼 ∧ ran 𝐴 ⊆ 𝐶)) | |
| 17 | 11, 15, 16 | sylanbrc 583 | . . 3 ⊢ (𝜑 → 𝐴:𝐼⟶𝐶) |
| 18 | 1, 2, 3, 4, 5, 6, 7, 8, 17 | frlmup1 21736 | . 2 ⊢ (𝜑 → 𝐸 ∈ (𝐹 LMHom 𝑇)) |
| 19 | 1, 2, 3, 4, 5, 6, 7, 8, 17 | islindf5 21777 | . . . 4 ⊢ (𝜑 → (𝐴 LIndF 𝑇 ↔ 𝐸:𝐵–1-1→𝐶)) |
| 20 | 12, 19 | mpbid 232 | . . 3 ⊢ (𝜑 → 𝐸:𝐵–1-1→𝐶) |
| 21 | indlcim.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑇) | |
| 22 | 1, 2, 3, 4, 5, 6, 7, 8, 17, 21 | frlmup3 21738 | . . . 4 ⊢ (𝜑 → ran 𝐸 = (𝑁‘ran 𝐴)) |
| 23 | forn 6738 | . . . . . 6 ⊢ (𝐴:𝐼–onto→𝐽 → ran 𝐴 = 𝐽) | |
| 24 | 9, 23 | syl 17 | . . . . 5 ⊢ (𝜑 → ran 𝐴 = 𝐽) |
| 25 | 24 | fveq2d 6826 | . . . 4 ⊢ (𝜑 → (𝑁‘ran 𝐴) = (𝑁‘𝐽)) |
| 26 | indlcim.s | . . . 4 ⊢ (𝜑 → (𝑁‘𝐽) = 𝐶) | |
| 27 | 22, 25, 26 | 3eqtrd 2770 | . . 3 ⊢ (𝜑 → ran 𝐸 = 𝐶) |
| 28 | dff1o5 6772 | . . 3 ⊢ (𝐸:𝐵–1-1-onto→𝐶 ↔ (𝐸:𝐵–1-1→𝐶 ∧ ran 𝐸 = 𝐶)) | |
| 29 | 20, 27, 28 | sylanbrc 583 | . 2 ⊢ (𝜑 → 𝐸:𝐵–1-1-onto→𝐶) |
| 30 | 2, 3 | islmim 20997 | . 2 ⊢ (𝐸 ∈ (𝐹 LMIso 𝑇) ↔ (𝐸 ∈ (𝐹 LMHom 𝑇) ∧ 𝐸:𝐵–1-1-onto→𝐶)) |
| 31 | 18, 29, 30 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐸 ∈ (𝐹 LMIso 𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ⊆ wss 3902 class class class wbr 5091 ↦ cmpt 5172 dom cdm 5616 ran crn 5617 Fn wfn 6476 ⟶wf 6477 –1-1→wf1 6478 –onto→wfo 6479 –1-1-onto→wf1o 6480 ‘cfv 6481 (class class class)co 7346 ∘f cof 7608 Basecbs 17120 Scalarcsca 17164 ·𝑠 cvsca 17165 Σg cgsu 17344 LModclmod 20794 LSpanclspn 20905 LMHom clmhm 20954 LMIso clmim 20955 freeLMod cfrlm 21684 LIndF clindf 21742 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-sup 9326 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-fzo 13555 df-seq 13909 df-hash 14238 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-hom 17185 df-cco 17186 df-0g 17345 df-gsum 17346 df-prds 17351 df-pws 17353 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-submnd 18692 df-grp 18849 df-minusg 18850 df-sbg 18851 df-mulg 18981 df-subg 19036 df-ghm 19126 df-cntz 19230 df-cmn 19695 df-abl 19696 df-mgp 20060 df-rng 20072 df-ur 20101 df-ring 20154 df-nzr 20429 df-subrg 20486 df-lmod 20796 df-lss 20866 df-lsp 20906 df-lmhm 20957 df-lmim 20958 df-lbs 21010 df-sra 21108 df-rgmod 21109 df-dsmm 21670 df-frlm 21685 df-uvc 21721 df-lindf 21744 |
| This theorem is referenced by: lbslcic 21779 |
| Copyright terms: Public domain | W3C validator |