MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dff1o4 Structured version   Visualization version   GIF version

Theorem dff1o4 6776
Description: Alternate definition of one-to-one onto function. (Contributed by NM, 25-Mar-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
dff1o4 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹 Fn 𝐴𝐹 Fn 𝐵))

Proof of Theorem dff1o4
StepHypRef Expression
1 dff1o2 6773 . 2 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝐵))
2 3anass 1094 . 2 ((𝐹 Fn 𝐴 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝐵) ↔ (𝐹 Fn 𝐴 ∧ (Fun 𝐹 ∧ ran 𝐹 = 𝐵)))
3 df-rn 5630 . . . . . 6 ran 𝐹 = dom 𝐹
43eqeq1i 2738 . . . . 5 (ran 𝐹 = 𝐵 ↔ dom 𝐹 = 𝐵)
54anbi2i 623 . . . 4 ((Fun 𝐹 ∧ ran 𝐹 = 𝐵) ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐵))
6 df-fn 6489 . . . 4 (𝐹 Fn 𝐵 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐵))
75, 6bitr4i 278 . . 3 ((Fun 𝐹 ∧ ran 𝐹 = 𝐵) ↔ 𝐹 Fn 𝐵)
87anbi2i 623 . 2 ((𝐹 Fn 𝐴 ∧ (Fun 𝐹 ∧ ran 𝐹 = 𝐵)) ↔ (𝐹 Fn 𝐴𝐹 Fn 𝐵))
91, 2, 83bitri 297 1 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹 Fn 𝐴𝐹 Fn 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1541  ccnv 5618  dom cdm 5619  ran crn 5620  Fun wfun 6480   Fn wfn 6481  1-1-ontowf1o 6485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-ex 1781  df-cleq 2725  df-ss 3915  df-rn 5630  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493
This theorem is referenced by:  f1ocnv  6780  f1oun  6787  f1o00  6803  f1oiOLD  6807  f1osn  6809  f1oprswap  6813  f1ompt  7050  f1ofveu  7346  f1ocnvd  7603  curry1  8040  curry2  8043  mapsnf1o2  8824  omxpenlem  8998  sbthlem9  9015  compssiso  10272  mptfzshft  15687  invf1o  17678  mgmhmf1o  18610  mhmf1o  18706  grpinvf1o  18924  ghmf1o  19162  rnghmf1o  20372  rhmf1o  20410  srngf1o  20765  lmhmf1o  20982  hmeof1o2  23679  axcontlem2  28945  f1o3d  32610  padct  32705  f1od2  32706  cdleme51finvN  40675  fsovf1od  44133  gricushgr  48041  imaf1homlem  49232  idemb  49284
  Copyright terms: Public domain W3C validator