| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dff1o4 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of one-to-one onto function. (Contributed by NM, 25-Mar-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| dff1o4 | ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ◡𝐹 Fn 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dff1o2 6773 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ Fun ◡𝐹 ∧ ran 𝐹 = 𝐵)) | |
| 2 | 3anass 1094 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ Fun ◡𝐹 ∧ ran 𝐹 = 𝐵) ↔ (𝐹 Fn 𝐴 ∧ (Fun ◡𝐹 ∧ ran 𝐹 = 𝐵))) | |
| 3 | df-rn 5634 | . . . . . 6 ⊢ ran 𝐹 = dom ◡𝐹 | |
| 4 | 3 | eqeq1i 2734 | . . . . 5 ⊢ (ran 𝐹 = 𝐵 ↔ dom ◡𝐹 = 𝐵) |
| 5 | 4 | anbi2i 623 | . . . 4 ⊢ ((Fun ◡𝐹 ∧ ran 𝐹 = 𝐵) ↔ (Fun ◡𝐹 ∧ dom ◡𝐹 = 𝐵)) |
| 6 | df-fn 6489 | . . . 4 ⊢ (◡𝐹 Fn 𝐵 ↔ (Fun ◡𝐹 ∧ dom ◡𝐹 = 𝐵)) | |
| 7 | 5, 6 | bitr4i 278 | . . 3 ⊢ ((Fun ◡𝐹 ∧ ran 𝐹 = 𝐵) ↔ ◡𝐹 Fn 𝐵) |
| 8 | 7 | anbi2i 623 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ (Fun ◡𝐹 ∧ ran 𝐹 = 𝐵)) ↔ (𝐹 Fn 𝐴 ∧ ◡𝐹 Fn 𝐵)) |
| 9 | 1, 2, 8 | 3bitri 297 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ◡𝐹 Fn 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ◡ccnv 5622 dom cdm 5623 ran crn 5624 Fun wfun 6480 Fn wfn 6481 –1-1-onto→wf1o 6485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-ex 1780 df-cleq 2721 df-ss 3922 df-rn 5634 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 |
| This theorem is referenced by: f1ocnv 6780 f1oun 6787 f1o00 6803 f1oi 6806 f1osn 6808 f1oprswap 6812 f1ompt 7049 f1ofveu 7347 f1ocnvd 7604 curry1 8044 curry2 8047 mapsnf1o2 8828 omxpenlem 9002 sbthlem9 9019 compssiso 10287 mptfzshft 15703 invf1o 17694 mgmhmf1o 18592 mhmf1o 18688 grpinvf1o 18906 ghmf1o 19145 rnghmf1o 20355 rhmf1o 20394 srngf1o 20751 lmhmf1o 20968 hmeof1o2 23666 axcontlem2 28928 f1o3d 32584 padct 32676 f1od2 32677 cdleme51finvN 40535 fsovf1od 43989 gricushgr 47902 imaf1homlem 49093 idemb 49145 |
| Copyright terms: Public domain | W3C validator |