| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dff1o4 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of one-to-one onto function. (Contributed by NM, 25-Mar-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| dff1o4 | ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ◡𝐹 Fn 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dff1o2 6773 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ Fun ◡𝐹 ∧ ran 𝐹 = 𝐵)) | |
| 2 | 3anass 1094 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ Fun ◡𝐹 ∧ ran 𝐹 = 𝐵) ↔ (𝐹 Fn 𝐴 ∧ (Fun ◡𝐹 ∧ ran 𝐹 = 𝐵))) | |
| 3 | df-rn 5630 | . . . . . 6 ⊢ ran 𝐹 = dom ◡𝐹 | |
| 4 | 3 | eqeq1i 2738 | . . . . 5 ⊢ (ran 𝐹 = 𝐵 ↔ dom ◡𝐹 = 𝐵) |
| 5 | 4 | anbi2i 623 | . . . 4 ⊢ ((Fun ◡𝐹 ∧ ran 𝐹 = 𝐵) ↔ (Fun ◡𝐹 ∧ dom ◡𝐹 = 𝐵)) |
| 6 | df-fn 6489 | . . . 4 ⊢ (◡𝐹 Fn 𝐵 ↔ (Fun ◡𝐹 ∧ dom ◡𝐹 = 𝐵)) | |
| 7 | 5, 6 | bitr4i 278 | . . 3 ⊢ ((Fun ◡𝐹 ∧ ran 𝐹 = 𝐵) ↔ ◡𝐹 Fn 𝐵) |
| 8 | 7 | anbi2i 623 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ (Fun ◡𝐹 ∧ ran 𝐹 = 𝐵)) ↔ (𝐹 Fn 𝐴 ∧ ◡𝐹 Fn 𝐵)) |
| 9 | 1, 2, 8 | 3bitri 297 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ◡𝐹 Fn 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ◡ccnv 5618 dom cdm 5619 ran crn 5620 Fun wfun 6480 Fn wfn 6481 –1-1-onto→wf1o 6485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-ex 1781 df-cleq 2725 df-ss 3915 df-rn 5630 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 |
| This theorem is referenced by: f1ocnv 6780 f1oun 6787 f1o00 6803 f1oiOLD 6807 f1osn 6809 f1oprswap 6813 f1ompt 7050 f1ofveu 7346 f1ocnvd 7603 curry1 8040 curry2 8043 mapsnf1o2 8824 omxpenlem 8998 sbthlem9 9015 compssiso 10272 mptfzshft 15687 invf1o 17678 mgmhmf1o 18610 mhmf1o 18706 grpinvf1o 18924 ghmf1o 19162 rnghmf1o 20372 rhmf1o 20410 srngf1o 20765 lmhmf1o 20982 hmeof1o2 23679 axcontlem2 28945 f1o3d 32610 padct 32705 f1od2 32706 cdleme51finvN 40675 fsovf1od 44133 gricushgr 48041 imaf1homlem 49232 idemb 49284 |
| Copyright terms: Public domain | W3C validator |