MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dff1o4 Structured version   Visualization version   GIF version

Theorem dff1o4 6855
Description: Alternate definition of one-to-one onto function. (Contributed by NM, 25-Mar-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
dff1o4 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹 Fn 𝐴𝐹 Fn 𝐵))

Proof of Theorem dff1o4
StepHypRef Expression
1 dff1o2 6852 . 2 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝐵))
2 3anass 1094 . 2 ((𝐹 Fn 𝐴 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝐵) ↔ (𝐹 Fn 𝐴 ∧ (Fun 𝐹 ∧ ran 𝐹 = 𝐵)))
3 df-rn 5695 . . . . . 6 ran 𝐹 = dom 𝐹
43eqeq1i 2741 . . . . 5 (ran 𝐹 = 𝐵 ↔ dom 𝐹 = 𝐵)
54anbi2i 623 . . . 4 ((Fun 𝐹 ∧ ran 𝐹 = 𝐵) ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐵))
6 df-fn 6563 . . . 4 (𝐹 Fn 𝐵 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐵))
75, 6bitr4i 278 . . 3 ((Fun 𝐹 ∧ ran 𝐹 = 𝐵) ↔ 𝐹 Fn 𝐵)
87anbi2i 623 . 2 ((𝐹 Fn 𝐴 ∧ (Fun 𝐹 ∧ ran 𝐹 = 𝐵)) ↔ (𝐹 Fn 𝐴𝐹 Fn 𝐵))
91, 2, 83bitri 297 1 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹 Fn 𝐴𝐹 Fn 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1539  ccnv 5683  dom cdm 5684  ran crn 5685  Fun wfun 6554   Fn wfn 6555  1-1-ontowf1o 6559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-9 2117  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-ex 1779  df-cleq 2728  df-ss 3967  df-rn 5695  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567
This theorem is referenced by:  f1ocnv  6859  f1oun  6866  f1o00  6882  f1oi  6885  f1osn  6887  f1oprswap  6891  f1ompt  7130  f1ofveu  7426  f1ocnvd  7685  curry1  8130  curry2  8133  mapsnf1o2  8935  omxpenlem  9114  sbthlem9  9132  compssiso  10415  mptfzshft  15815  invf1o  17814  mgmhmf1o  18714  mhmf1o  18810  grpinvf1o  19028  ghmf1o  19267  rnghmf1o  20453  rhmf1o  20492  srngf1o  20850  lmhmf1o  21046  hmeof1o2  23772  axcontlem2  28981  f1o3d  32638  padct  32732  f1od2  32733  cdleme51finvN  40559  fsovf1od  44034  gricushgr  47891
  Copyright terms: Public domain W3C validator