![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dff1o4 | Structured version Visualization version GIF version |
Description: Alternate definition of one-to-one onto function. (Contributed by NM, 25-Mar-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
dff1o4 | ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ◡𝐹 Fn 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dff1o2 6867 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ Fun ◡𝐹 ∧ ran 𝐹 = 𝐵)) | |
2 | 3anass 1095 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ Fun ◡𝐹 ∧ ran 𝐹 = 𝐵) ↔ (𝐹 Fn 𝐴 ∧ (Fun ◡𝐹 ∧ ran 𝐹 = 𝐵))) | |
3 | df-rn 5711 | . . . . . 6 ⊢ ran 𝐹 = dom ◡𝐹 | |
4 | 3 | eqeq1i 2745 | . . . . 5 ⊢ (ran 𝐹 = 𝐵 ↔ dom ◡𝐹 = 𝐵) |
5 | 4 | anbi2i 622 | . . . 4 ⊢ ((Fun ◡𝐹 ∧ ran 𝐹 = 𝐵) ↔ (Fun ◡𝐹 ∧ dom ◡𝐹 = 𝐵)) |
6 | df-fn 6576 | . . . 4 ⊢ (◡𝐹 Fn 𝐵 ↔ (Fun ◡𝐹 ∧ dom ◡𝐹 = 𝐵)) | |
7 | 5, 6 | bitr4i 278 | . . 3 ⊢ ((Fun ◡𝐹 ∧ ran 𝐹 = 𝐵) ↔ ◡𝐹 Fn 𝐵) |
8 | 7 | anbi2i 622 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ (Fun ◡𝐹 ∧ ran 𝐹 = 𝐵)) ↔ (𝐹 Fn 𝐴 ∧ ◡𝐹 Fn 𝐵)) |
9 | 1, 2, 8 | 3bitri 297 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ◡𝐹 Fn 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ◡ccnv 5699 dom cdm 5700 ran crn 5701 Fun wfun 6567 Fn wfn 6568 –1-1-onto→wf1o 6572 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-ex 1778 df-cleq 2732 df-ss 3993 df-rn 5711 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 |
This theorem is referenced by: f1ocnv 6874 f1oun 6881 f1o00 6897 f1oi 6900 f1osn 6902 f1oprswap 6906 f1ompt 7145 f1ofveu 7442 f1ocnvd 7701 curry1 8145 curry2 8148 mapsnf1o2 8952 omxpenlem 9139 sbthlem9 9157 compssiso 10443 mptfzshft 15826 invf1o 17830 mgmhmf1o 18738 mhmf1o 18831 grpinvf1o 19049 ghmf1o 19288 rnghmf1o 20478 rhmf1o 20517 srngf1o 20871 lmhmf1o 21068 hmeof1o2 23792 axcontlem2 28998 f1o3d 32646 padct 32733 f1od2 32735 cdleme51finvN 40513 fsovf1od 43978 gricushgr 47770 |
Copyright terms: Public domain | W3C validator |