MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dff1o4 Structured version   Visualization version   GIF version

Theorem dff1o4 6831
Description: Alternate definition of one-to-one onto function. (Contributed by NM, 25-Mar-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
dff1o4 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹 Fn 𝐴𝐹 Fn 𝐵))

Proof of Theorem dff1o4
StepHypRef Expression
1 dff1o2 6828 . 2 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝐵))
2 3anass 1094 . 2 ((𝐹 Fn 𝐴 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝐵) ↔ (𝐹 Fn 𝐴 ∧ (Fun 𝐹 ∧ ran 𝐹 = 𝐵)))
3 df-rn 5670 . . . . . 6 ran 𝐹 = dom 𝐹
43eqeq1i 2741 . . . . 5 (ran 𝐹 = 𝐵 ↔ dom 𝐹 = 𝐵)
54anbi2i 623 . . . 4 ((Fun 𝐹 ∧ ran 𝐹 = 𝐵) ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐵))
6 df-fn 6539 . . . 4 (𝐹 Fn 𝐵 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐵))
75, 6bitr4i 278 . . 3 ((Fun 𝐹 ∧ ran 𝐹 = 𝐵) ↔ 𝐹 Fn 𝐵)
87anbi2i 623 . 2 ((𝐹 Fn 𝐴 ∧ (Fun 𝐹 ∧ ran 𝐹 = 𝐵)) ↔ (𝐹 Fn 𝐴𝐹 Fn 𝐵))
91, 2, 83bitri 297 1 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹 Fn 𝐴𝐹 Fn 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  ccnv 5658  dom cdm 5659  ran crn 5660  Fun wfun 6530   Fn wfn 6531  1-1-ontowf1o 6535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-ex 1780  df-cleq 2728  df-ss 3948  df-rn 5670  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543
This theorem is referenced by:  f1ocnv  6835  f1oun  6842  f1o00  6858  f1oi  6861  f1osn  6863  f1oprswap  6867  f1ompt  7106  f1ofveu  7404  f1ocnvd  7663  curry1  8108  curry2  8111  mapsnf1o2  8913  omxpenlem  9092  sbthlem9  9110  compssiso  10393  mptfzshft  15799  invf1o  17787  mgmhmf1o  18683  mhmf1o  18779  grpinvf1o  18997  ghmf1o  19236  rnghmf1o  20417  rhmf1o  20456  srngf1o  20813  lmhmf1o  21009  hmeof1o2  23706  axcontlem2  28949  f1o3d  32610  padct  32702  f1od2  32703  cdleme51finvN  40580  fsovf1od  44007  gricushgr  47897  imaf1homlem  49033
  Copyright terms: Public domain W3C validator