MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dff1o4 Structured version   Visualization version   GIF version

Theorem dff1o4 6870
Description: Alternate definition of one-to-one onto function. (Contributed by NM, 25-Mar-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
dff1o4 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹 Fn 𝐴𝐹 Fn 𝐵))

Proof of Theorem dff1o4
StepHypRef Expression
1 dff1o2 6867 . 2 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝐵))
2 3anass 1095 . 2 ((𝐹 Fn 𝐴 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝐵) ↔ (𝐹 Fn 𝐴 ∧ (Fun 𝐹 ∧ ran 𝐹 = 𝐵)))
3 df-rn 5711 . . . . . 6 ran 𝐹 = dom 𝐹
43eqeq1i 2745 . . . . 5 (ran 𝐹 = 𝐵 ↔ dom 𝐹 = 𝐵)
54anbi2i 622 . . . 4 ((Fun 𝐹 ∧ ran 𝐹 = 𝐵) ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐵))
6 df-fn 6576 . . . 4 (𝐹 Fn 𝐵 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐵))
75, 6bitr4i 278 . . 3 ((Fun 𝐹 ∧ ran 𝐹 = 𝐵) ↔ 𝐹 Fn 𝐵)
87anbi2i 622 . 2 ((𝐹 Fn 𝐴 ∧ (Fun 𝐹 ∧ ran 𝐹 = 𝐵)) ↔ (𝐹 Fn 𝐴𝐹 Fn 𝐵))
91, 2, 83bitri 297 1 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹 Fn 𝐴𝐹 Fn 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1087   = wceq 1537  ccnv 5699  dom cdm 5700  ran crn 5701  Fun wfun 6567   Fn wfn 6568  1-1-ontowf1o 6572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089  df-ex 1778  df-cleq 2732  df-ss 3993  df-rn 5711  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580
This theorem is referenced by:  f1ocnv  6874  f1oun  6881  f1o00  6897  f1oi  6900  f1osn  6902  f1oprswap  6906  f1ompt  7145  f1ofveu  7442  f1ocnvd  7701  curry1  8145  curry2  8148  mapsnf1o2  8952  omxpenlem  9139  sbthlem9  9157  compssiso  10443  mptfzshft  15826  invf1o  17830  mgmhmf1o  18738  mhmf1o  18831  grpinvf1o  19049  ghmf1o  19288  rnghmf1o  20478  rhmf1o  20517  srngf1o  20871  lmhmf1o  21068  hmeof1o2  23792  axcontlem2  28998  f1o3d  32646  padct  32733  f1od2  32735  cdleme51finvN  40513  fsovf1od  43978  gricushgr  47770
  Copyright terms: Public domain W3C validator