| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dff1o4 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of one-to-one onto function. (Contributed by NM, 25-Mar-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| dff1o4 | ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ◡𝐹 Fn 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dff1o2 6852 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ Fun ◡𝐹 ∧ ran 𝐹 = 𝐵)) | |
| 2 | 3anass 1094 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ Fun ◡𝐹 ∧ ran 𝐹 = 𝐵) ↔ (𝐹 Fn 𝐴 ∧ (Fun ◡𝐹 ∧ ran 𝐹 = 𝐵))) | |
| 3 | df-rn 5695 | . . . . . 6 ⊢ ran 𝐹 = dom ◡𝐹 | |
| 4 | 3 | eqeq1i 2741 | . . . . 5 ⊢ (ran 𝐹 = 𝐵 ↔ dom ◡𝐹 = 𝐵) |
| 5 | 4 | anbi2i 623 | . . . 4 ⊢ ((Fun ◡𝐹 ∧ ran 𝐹 = 𝐵) ↔ (Fun ◡𝐹 ∧ dom ◡𝐹 = 𝐵)) |
| 6 | df-fn 6563 | . . . 4 ⊢ (◡𝐹 Fn 𝐵 ↔ (Fun ◡𝐹 ∧ dom ◡𝐹 = 𝐵)) | |
| 7 | 5, 6 | bitr4i 278 | . . 3 ⊢ ((Fun ◡𝐹 ∧ ran 𝐹 = 𝐵) ↔ ◡𝐹 Fn 𝐵) |
| 8 | 7 | anbi2i 623 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ (Fun ◡𝐹 ∧ ran 𝐹 = 𝐵)) ↔ (𝐹 Fn 𝐴 ∧ ◡𝐹 Fn 𝐵)) |
| 9 | 1, 2, 8 | 3bitri 297 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ◡𝐹 Fn 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ◡ccnv 5683 dom cdm 5684 ran crn 5685 Fun wfun 6554 Fn wfn 6555 –1-1-onto→wf1o 6559 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-9 2117 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-ex 1779 df-cleq 2728 df-ss 3967 df-rn 5695 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 |
| This theorem is referenced by: f1ocnv 6859 f1oun 6866 f1o00 6882 f1oi 6885 f1osn 6887 f1oprswap 6891 f1ompt 7130 f1ofveu 7426 f1ocnvd 7685 curry1 8130 curry2 8133 mapsnf1o2 8935 omxpenlem 9114 sbthlem9 9132 compssiso 10415 mptfzshft 15815 invf1o 17814 mgmhmf1o 18714 mhmf1o 18810 grpinvf1o 19028 ghmf1o 19267 rnghmf1o 20453 rhmf1o 20492 srngf1o 20850 lmhmf1o 21046 hmeof1o2 23772 axcontlem2 28981 f1o3d 32638 padct 32732 f1od2 32733 cdleme51finvN 40559 fsovf1od 44034 gricushgr 47891 |
| Copyright terms: Public domain | W3C validator |