Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme50f1o Structured version   Visualization version   GIF version

Theorem cdleme50f1o 38560
Description: Part of proof of Lemma D in [Crawley] p. 113. TODO: fix comment. (Contributed by NM, 9-Apr-2013.)
Hypotheses
Ref Expression
cdlemef50.b 𝐵 = (Base‘𝐾)
cdlemef50.l = (le‘𝐾)
cdlemef50.j = (join‘𝐾)
cdlemef50.m = (meet‘𝐾)
cdlemef50.a 𝐴 = (Atoms‘𝐾)
cdlemef50.h 𝐻 = (LHyp‘𝐾)
cdlemef50.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdlemef50.d 𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
cdlemefs50.e 𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))
cdlemef50.f 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))
Assertion
Ref Expression
cdleme50f1o (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐹:𝐵1-1-onto𝐵)
Distinct variable groups:   𝑡,𝑠,𝑥,𝑦,𝑧,   ,𝑠,𝑡,𝑥,𝑦,𝑧   ,𝑠,𝑡,𝑥,𝑦,𝑧   𝐴,𝑠,𝑡,𝑥,𝑦,𝑧   𝐵,𝑠,𝑡,𝑥,𝑦,𝑧   𝐷,𝑠,𝑥,𝑦,𝑧   𝑥,𝐸,𝑦,𝑧   𝐻,𝑠,𝑡,𝑥,𝑦,𝑧   𝐾,𝑠,𝑡,𝑥,𝑦,𝑧   𝑃,𝑠,𝑡,𝑥,𝑦,𝑧   𝑄,𝑠,𝑡,𝑥,𝑦,𝑧   𝑈,𝑠,𝑡,𝑥,𝑦,𝑧   𝑊,𝑠,𝑡,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐷(𝑡)   𝐸(𝑡,𝑠)   𝐹(𝑥,𝑦,𝑧,𝑡,𝑠)

Proof of Theorem cdleme50f1o
StepHypRef Expression
1 cdlemef50.b . . 3 𝐵 = (Base‘𝐾)
2 cdlemef50.l . . 3 = (le‘𝐾)
3 cdlemef50.j . . 3 = (join‘𝐾)
4 cdlemef50.m . . 3 = (meet‘𝐾)
5 cdlemef50.a . . 3 𝐴 = (Atoms‘𝐾)
6 cdlemef50.h . . 3 𝐻 = (LHyp‘𝐾)
7 cdlemef50.u . . 3 𝑈 = ((𝑃 𝑄) 𝑊)
8 cdlemef50.d . . 3 𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
9 cdlemefs50.e . . 3 𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))
10 cdlemef50.f . . 3 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))
111, 2, 3, 4, 5, 6, 7, 8, 9, 10cdleme50f1 38557 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐹:𝐵1-1𝐵)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10cdleme50rn 38559 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ran 𝐹 = 𝐵)
13 dff1o5 6725 . 2 (𝐹:𝐵1-1-onto𝐵 ↔ (𝐹:𝐵1-1𝐵 ∧ ran 𝐹 = 𝐵))
1411, 12, 13sylanbrc 583 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐹:𝐵1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  csb 3832  ifcif 4459   class class class wbr 5074  cmpt 5157  ran crn 5590  1-1wf1 6430  1-1-ontowf1o 6432  cfv 6433  crio 7231  (class class class)co 7275  Basecbs 16912  lecple 16969  joincjn 18029  meetcmee 18030  Atomscatm 37277  HLchlt 37364  LHypclh 37998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-riotaBAD 36967
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-undef 8089  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-p1 18144  df-lat 18150  df-clat 18217  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365  df-llines 37512  df-lplanes 37513  df-lvols 37514  df-lines 37515  df-psubsp 37517  df-pmap 37518  df-padd 37810  df-lhyp 38002
This theorem is referenced by:  cdleme50laut  38561  cdleme51finvfvN  38569  cdleme51finvN  38570
  Copyright terms: Public domain W3C validator