| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > usgrexmpledg | Structured version Visualization version GIF version | ||
| Description: The edges {0, 1}, {1, 2}, {2, 0}, {0, 3} of the graph 𝐺 = 〈𝑉, 𝐸〉. (Contributed by AV, 12-Jan-2020.) (Revised by AV, 21-Oct-2020.) |
| Ref | Expression |
|---|---|
| usgrexmpl.v | ⊢ 𝑉 = (0...4) |
| usgrexmpl.e | ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 0} {0, 3}”〉 |
| usgrexmpl.g | ⊢ 𝐺 = 〈𝑉, 𝐸〉 |
| Ref | Expression |
|---|---|
| usgrexmpledg | ⊢ (Edg‘𝐺) = ({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | edgval 28976 | . 2 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
| 2 | usgrexmpl.v | . . . . 5 ⊢ 𝑉 = (0...4) | |
| 3 | usgrexmpl.e | . . . . 5 ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 0} {0, 3}”〉 | |
| 4 | usgrexmpl.g | . . . . 5 ⊢ 𝐺 = 〈𝑉, 𝐸〉 | |
| 5 | 2, 3, 4 | usgrexmpllem 29187 | . . . 4 ⊢ ((Vtx‘𝐺) = 𝑉 ∧ (iEdg‘𝐺) = 𝐸) |
| 6 | 5 | simpri 485 | . . 3 ⊢ (iEdg‘𝐺) = 𝐸 |
| 7 | 6 | rneqi 5901 | . 2 ⊢ ran (iEdg‘𝐺) = ran 𝐸 |
| 8 | prex 5392 | . . . . . . 7 ⊢ {0, 1} ∈ V | |
| 9 | prex 5392 | . . . . . . 7 ⊢ {1, 2} ∈ V | |
| 10 | 8, 9 | pm3.2i 470 | . . . . . 6 ⊢ ({0, 1} ∈ V ∧ {1, 2} ∈ V) |
| 11 | prex 5392 | . . . . . . 7 ⊢ {2, 0} ∈ V | |
| 12 | prex 5392 | . . . . . . 7 ⊢ {0, 3} ∈ V | |
| 13 | 11, 12 | pm3.2i 470 | . . . . . 6 ⊢ ({2, 0} ∈ V ∧ {0, 3} ∈ V) |
| 14 | 10, 13 | pm3.2i 470 | . . . . 5 ⊢ (({0, 1} ∈ V ∧ {1, 2} ∈ V) ∧ ({2, 0} ∈ V ∧ {0, 3} ∈ V)) |
| 15 | usgrexmpldifpr 29185 | . . . . 5 ⊢ (({0, 1} ≠ {1, 2} ∧ {0, 1} ≠ {2, 0} ∧ {0, 1} ≠ {0, 3}) ∧ ({1, 2} ≠ {2, 0} ∧ {1, 2} ≠ {0, 3} ∧ {2, 0} ≠ {0, 3})) | |
| 16 | 14, 15 | pm3.2i 470 | . . . 4 ⊢ ((({0, 1} ∈ V ∧ {1, 2} ∈ V) ∧ ({2, 0} ∈ V ∧ {0, 3} ∈ V)) ∧ (({0, 1} ≠ {1, 2} ∧ {0, 1} ≠ {2, 0} ∧ {0, 1} ≠ {0, 3}) ∧ ({1, 2} ≠ {2, 0} ∧ {1, 2} ≠ {0, 3} ∧ {2, 0} ≠ {0, 3}))) |
| 17 | 16, 3 | pm3.2i 470 | . . 3 ⊢ (((({0, 1} ∈ V ∧ {1, 2} ∈ V) ∧ ({2, 0} ∈ V ∧ {0, 3} ∈ V)) ∧ (({0, 1} ≠ {1, 2} ∧ {0, 1} ≠ {2, 0} ∧ {0, 1} ≠ {0, 3}) ∧ ({1, 2} ≠ {2, 0} ∧ {1, 2} ≠ {0, 3} ∧ {2, 0} ≠ {0, 3}))) ∧ 𝐸 = 〈“{0, 1} {1, 2} {2, 0} {0, 3}”〉) |
| 18 | s4f1o 14884 | . . . 4 ⊢ ((({0, 1} ∈ V ∧ {1, 2} ∈ V) ∧ ({2, 0} ∈ V ∧ {0, 3} ∈ V)) → ((({0, 1} ≠ {1, 2} ∧ {0, 1} ≠ {2, 0} ∧ {0, 1} ≠ {0, 3}) ∧ ({1, 2} ≠ {2, 0} ∧ {1, 2} ≠ {0, 3} ∧ {2, 0} ≠ {0, 3})) → (𝐸 = 〈“{0, 1} {1, 2} {2, 0} {0, 3}”〉 → 𝐸:dom 𝐸–1-1-onto→({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}})))) | |
| 19 | 18 | imp31 417 | . . 3 ⊢ ((((({0, 1} ∈ V ∧ {1, 2} ∈ V) ∧ ({2, 0} ∈ V ∧ {0, 3} ∈ V)) ∧ (({0, 1} ≠ {1, 2} ∧ {0, 1} ≠ {2, 0} ∧ {0, 1} ≠ {0, 3}) ∧ ({1, 2} ≠ {2, 0} ∧ {1, 2} ≠ {0, 3} ∧ {2, 0} ≠ {0, 3}))) ∧ 𝐸 = 〈“{0, 1} {1, 2} {2, 0} {0, 3}”〉) → 𝐸:dom 𝐸–1-1-onto→({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}})) |
| 20 | dff1o5 6809 | . . . 4 ⊢ (𝐸:dom 𝐸–1-1-onto→({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}) ↔ (𝐸:dom 𝐸–1-1→({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}) ∧ ran 𝐸 = ({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}))) | |
| 21 | 20 | simprbi 496 | . . 3 ⊢ (𝐸:dom 𝐸–1-1-onto→({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}) → ran 𝐸 = ({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}})) |
| 22 | 17, 19, 21 | mp2b 10 | . 2 ⊢ ran 𝐸 = ({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}) |
| 23 | 1, 7, 22 | 3eqtri 2756 | 1 ⊢ (Edg‘𝐺) = ({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3447 ∪ cun 3912 {cpr 4591 〈cop 4595 dom cdm 5638 ran crn 5639 –1-1→wf1 6508 –1-1-onto→wf1o 6510 ‘cfv 6511 (class class class)co 7387 0cc0 11068 1c1 11069 2c2 12241 3c3 12242 4c4 12243 ...cfz 13468 〈“cs4 14809 Vtxcvtx 28923 iEdgciedg 28924 Edgcedg 28974 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-fzo 13616 df-hash 14296 df-word 14479 df-concat 14536 df-s1 14561 df-s2 14814 df-s3 14815 df-s4 14816 df-vtx 28925 df-iedg 28926 df-edg 28975 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |