|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > usgrexmpledg | Structured version Visualization version GIF version | ||
| Description: The edges {0, 1}, {1, 2}, {2, 0}, {0, 3} of the graph 𝐺 = 〈𝑉, 𝐸〉. (Contributed by AV, 12-Jan-2020.) (Revised by AV, 21-Oct-2020.) | 
| Ref | Expression | 
|---|---|
| usgrexmpl.v | ⊢ 𝑉 = (0...4) | 
| usgrexmpl.e | ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 0} {0, 3}”〉 | 
| usgrexmpl.g | ⊢ 𝐺 = 〈𝑉, 𝐸〉 | 
| Ref | Expression | 
|---|---|
| usgrexmpledg | ⊢ (Edg‘𝐺) = ({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | edgval 29066 | . 2 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
| 2 | usgrexmpl.v | . . . . 5 ⊢ 𝑉 = (0...4) | |
| 3 | usgrexmpl.e | . . . . 5 ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 0} {0, 3}”〉 | |
| 4 | usgrexmpl.g | . . . . 5 ⊢ 𝐺 = 〈𝑉, 𝐸〉 | |
| 5 | 2, 3, 4 | usgrexmpllem 29277 | . . . 4 ⊢ ((Vtx‘𝐺) = 𝑉 ∧ (iEdg‘𝐺) = 𝐸) | 
| 6 | 5 | simpri 485 | . . 3 ⊢ (iEdg‘𝐺) = 𝐸 | 
| 7 | 6 | rneqi 5948 | . 2 ⊢ ran (iEdg‘𝐺) = ran 𝐸 | 
| 8 | prex 5437 | . . . . . . 7 ⊢ {0, 1} ∈ V | |
| 9 | prex 5437 | . . . . . . 7 ⊢ {1, 2} ∈ V | |
| 10 | 8, 9 | pm3.2i 470 | . . . . . 6 ⊢ ({0, 1} ∈ V ∧ {1, 2} ∈ V) | 
| 11 | prex 5437 | . . . . . . 7 ⊢ {2, 0} ∈ V | |
| 12 | prex 5437 | . . . . . . 7 ⊢ {0, 3} ∈ V | |
| 13 | 11, 12 | pm3.2i 470 | . . . . . 6 ⊢ ({2, 0} ∈ V ∧ {0, 3} ∈ V) | 
| 14 | 10, 13 | pm3.2i 470 | . . . . 5 ⊢ (({0, 1} ∈ V ∧ {1, 2} ∈ V) ∧ ({2, 0} ∈ V ∧ {0, 3} ∈ V)) | 
| 15 | usgrexmpldifpr 29275 | . . . . 5 ⊢ (({0, 1} ≠ {1, 2} ∧ {0, 1} ≠ {2, 0} ∧ {0, 1} ≠ {0, 3}) ∧ ({1, 2} ≠ {2, 0} ∧ {1, 2} ≠ {0, 3} ∧ {2, 0} ≠ {0, 3})) | |
| 16 | 14, 15 | pm3.2i 470 | . . . 4 ⊢ ((({0, 1} ∈ V ∧ {1, 2} ∈ V) ∧ ({2, 0} ∈ V ∧ {0, 3} ∈ V)) ∧ (({0, 1} ≠ {1, 2} ∧ {0, 1} ≠ {2, 0} ∧ {0, 1} ≠ {0, 3}) ∧ ({1, 2} ≠ {2, 0} ∧ {1, 2} ≠ {0, 3} ∧ {2, 0} ≠ {0, 3}))) | 
| 17 | 16, 3 | pm3.2i 470 | . . 3 ⊢ (((({0, 1} ∈ V ∧ {1, 2} ∈ V) ∧ ({2, 0} ∈ V ∧ {0, 3} ∈ V)) ∧ (({0, 1} ≠ {1, 2} ∧ {0, 1} ≠ {2, 0} ∧ {0, 1} ≠ {0, 3}) ∧ ({1, 2} ≠ {2, 0} ∧ {1, 2} ≠ {0, 3} ∧ {2, 0} ≠ {0, 3}))) ∧ 𝐸 = 〈“{0, 1} {1, 2} {2, 0} {0, 3}”〉) | 
| 18 | s4f1o 14957 | . . . 4 ⊢ ((({0, 1} ∈ V ∧ {1, 2} ∈ V) ∧ ({2, 0} ∈ V ∧ {0, 3} ∈ V)) → ((({0, 1} ≠ {1, 2} ∧ {0, 1} ≠ {2, 0} ∧ {0, 1} ≠ {0, 3}) ∧ ({1, 2} ≠ {2, 0} ∧ {1, 2} ≠ {0, 3} ∧ {2, 0} ≠ {0, 3})) → (𝐸 = 〈“{0, 1} {1, 2} {2, 0} {0, 3}”〉 → 𝐸:dom 𝐸–1-1-onto→({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}})))) | |
| 19 | 18 | imp31 417 | . . 3 ⊢ ((((({0, 1} ∈ V ∧ {1, 2} ∈ V) ∧ ({2, 0} ∈ V ∧ {0, 3} ∈ V)) ∧ (({0, 1} ≠ {1, 2} ∧ {0, 1} ≠ {2, 0} ∧ {0, 1} ≠ {0, 3}) ∧ ({1, 2} ≠ {2, 0} ∧ {1, 2} ≠ {0, 3} ∧ {2, 0} ≠ {0, 3}))) ∧ 𝐸 = 〈“{0, 1} {1, 2} {2, 0} {0, 3}”〉) → 𝐸:dom 𝐸–1-1-onto→({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}})) | 
| 20 | dff1o5 6857 | . . . 4 ⊢ (𝐸:dom 𝐸–1-1-onto→({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}) ↔ (𝐸:dom 𝐸–1-1→({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}) ∧ ran 𝐸 = ({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}))) | |
| 21 | 20 | simprbi 496 | . . 3 ⊢ (𝐸:dom 𝐸–1-1-onto→({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}) → ran 𝐸 = ({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}})) | 
| 22 | 17, 19, 21 | mp2b 10 | . 2 ⊢ ran 𝐸 = ({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}) | 
| 23 | 1, 7, 22 | 3eqtri 2769 | 1 ⊢ (Edg‘𝐺) = ({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 Vcvv 3480 ∪ cun 3949 {cpr 4628 〈cop 4632 dom cdm 5685 ran crn 5686 –1-1→wf1 6558 –1-1-onto→wf1o 6560 ‘cfv 6561 (class class class)co 7431 0cc0 11155 1c1 11156 2c2 12321 3c3 12322 4c4 12323 ...cfz 13547 〈“cs4 14882 Vtxcvtx 29013 iEdgciedg 29014 Edgcedg 29064 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-n0 12527 df-z 12614 df-uz 12879 df-fz 13548 df-fzo 13695 df-hash 14370 df-word 14553 df-concat 14609 df-s1 14634 df-s2 14887 df-s3 14888 df-s4 14889 df-vtx 29015 df-iedg 29016 df-edg 29065 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |