| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > usgrexmpledg | Structured version Visualization version GIF version | ||
| Description: The edges {0, 1}, {1, 2}, {2, 0}, {0, 3} of the graph 𝐺 = 〈𝑉, 𝐸〉. (Contributed by AV, 12-Jan-2020.) (Revised by AV, 21-Oct-2020.) |
| Ref | Expression |
|---|---|
| usgrexmpl.v | ⊢ 𝑉 = (0...4) |
| usgrexmpl.e | ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 0} {0, 3}”〉 |
| usgrexmpl.g | ⊢ 𝐺 = 〈𝑉, 𝐸〉 |
| Ref | Expression |
|---|---|
| usgrexmpledg | ⊢ (Edg‘𝐺) = ({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | edgval 29029 | . 2 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
| 2 | usgrexmpl.v | . . . . 5 ⊢ 𝑉 = (0...4) | |
| 3 | usgrexmpl.e | . . . . 5 ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 0} {0, 3}”〉 | |
| 4 | usgrexmpl.g | . . . . 5 ⊢ 𝐺 = 〈𝑉, 𝐸〉 | |
| 5 | 2, 3, 4 | usgrexmpllem 29240 | . . . 4 ⊢ ((Vtx‘𝐺) = 𝑉 ∧ (iEdg‘𝐺) = 𝐸) |
| 6 | 5 | simpri 485 | . . 3 ⊢ (iEdg‘𝐺) = 𝐸 |
| 7 | 6 | rneqi 5890 | . 2 ⊢ ran (iEdg‘𝐺) = ran 𝐸 |
| 8 | prex 5387 | . . . . . . 7 ⊢ {0, 1} ∈ V | |
| 9 | prex 5387 | . . . . . . 7 ⊢ {1, 2} ∈ V | |
| 10 | 8, 9 | pm3.2i 470 | . . . . . 6 ⊢ ({0, 1} ∈ V ∧ {1, 2} ∈ V) |
| 11 | prex 5387 | . . . . . . 7 ⊢ {2, 0} ∈ V | |
| 12 | prex 5387 | . . . . . . 7 ⊢ {0, 3} ∈ V | |
| 13 | 11, 12 | pm3.2i 470 | . . . . . 6 ⊢ ({2, 0} ∈ V ∧ {0, 3} ∈ V) |
| 14 | 10, 13 | pm3.2i 470 | . . . . 5 ⊢ (({0, 1} ∈ V ∧ {1, 2} ∈ V) ∧ ({2, 0} ∈ V ∧ {0, 3} ∈ V)) |
| 15 | usgrexmpldifpr 29238 | . . . . 5 ⊢ (({0, 1} ≠ {1, 2} ∧ {0, 1} ≠ {2, 0} ∧ {0, 1} ≠ {0, 3}) ∧ ({1, 2} ≠ {2, 0} ∧ {1, 2} ≠ {0, 3} ∧ {2, 0} ≠ {0, 3})) | |
| 16 | 14, 15 | pm3.2i 470 | . . . 4 ⊢ ((({0, 1} ∈ V ∧ {1, 2} ∈ V) ∧ ({2, 0} ∈ V ∧ {0, 3} ∈ V)) ∧ (({0, 1} ≠ {1, 2} ∧ {0, 1} ≠ {2, 0} ∧ {0, 1} ≠ {0, 3}) ∧ ({1, 2} ≠ {2, 0} ∧ {1, 2} ≠ {0, 3} ∧ {2, 0} ≠ {0, 3}))) |
| 17 | 16, 3 | pm3.2i 470 | . . 3 ⊢ (((({0, 1} ∈ V ∧ {1, 2} ∈ V) ∧ ({2, 0} ∈ V ∧ {0, 3} ∈ V)) ∧ (({0, 1} ≠ {1, 2} ∧ {0, 1} ≠ {2, 0} ∧ {0, 1} ≠ {0, 3}) ∧ ({1, 2} ≠ {2, 0} ∧ {1, 2} ≠ {0, 3} ∧ {2, 0} ≠ {0, 3}))) ∧ 𝐸 = 〈“{0, 1} {1, 2} {2, 0} {0, 3}”〉) |
| 18 | s4f1o 14860 | . . . 4 ⊢ ((({0, 1} ∈ V ∧ {1, 2} ∈ V) ∧ ({2, 0} ∈ V ∧ {0, 3} ∈ V)) → ((({0, 1} ≠ {1, 2} ∧ {0, 1} ≠ {2, 0} ∧ {0, 1} ≠ {0, 3}) ∧ ({1, 2} ≠ {2, 0} ∧ {1, 2} ≠ {0, 3} ∧ {2, 0} ≠ {0, 3})) → (𝐸 = 〈“{0, 1} {1, 2} {2, 0} {0, 3}”〉 → 𝐸:dom 𝐸–1-1-onto→({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}})))) | |
| 19 | 18 | imp31 417 | . . 3 ⊢ ((((({0, 1} ∈ V ∧ {1, 2} ∈ V) ∧ ({2, 0} ∈ V ∧ {0, 3} ∈ V)) ∧ (({0, 1} ≠ {1, 2} ∧ {0, 1} ≠ {2, 0} ∧ {0, 1} ≠ {0, 3}) ∧ ({1, 2} ≠ {2, 0} ∧ {1, 2} ≠ {0, 3} ∧ {2, 0} ≠ {0, 3}))) ∧ 𝐸 = 〈“{0, 1} {1, 2} {2, 0} {0, 3}”〉) → 𝐸:dom 𝐸–1-1-onto→({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}})) |
| 20 | dff1o5 6791 | . . . 4 ⊢ (𝐸:dom 𝐸–1-1-onto→({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}) ↔ (𝐸:dom 𝐸–1-1→({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}) ∧ ran 𝐸 = ({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}))) | |
| 21 | 20 | simprbi 496 | . . 3 ⊢ (𝐸:dom 𝐸–1-1-onto→({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}) → ran 𝐸 = ({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}})) |
| 22 | 17, 19, 21 | mp2b 10 | . 2 ⊢ ran 𝐸 = ({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}) |
| 23 | 1, 7, 22 | 3eqtri 2756 | 1 ⊢ (Edg‘𝐺) = ({{0, 1}, {1, 2}} ∪ {{2, 0}, {0, 3}}) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3444 ∪ cun 3909 {cpr 4587 〈cop 4591 dom cdm 5631 ran crn 5632 –1-1→wf1 6496 –1-1-onto→wf1o 6498 ‘cfv 6499 (class class class)co 7369 0cc0 11044 1c1 11045 2c2 12217 3c3 12218 4c4 12219 ...cfz 13444 〈“cs4 14785 Vtxcvtx 28976 iEdgciedg 28977 Edgcedg 29027 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 df-uz 12770 df-fz 13445 df-fzo 13592 df-hash 14272 df-word 14455 df-concat 14512 df-s1 14537 df-s2 14790 df-s3 14791 df-s4 14792 df-vtx 28978 df-iedg 28979 df-edg 29028 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |