MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvcosymgeq Structured version   Visualization version   GIF version

Theorem fvcosymgeq 19296
Description: The values of two compositions of permutations are equal if the values of the composed permutations are pairwise equal. (Contributed by AV, 26-Jan-2019.)
Hypotheses
Ref Expression
gsmsymgrfix.s 𝑆 = (SymGrp‘𝑁)
gsmsymgrfix.b 𝐵 = (Base‘𝑆)
gsmsymgreq.z 𝑍 = (SymGrp‘𝑀)
gsmsymgreq.p 𝑃 = (Base‘𝑍)
gsmsymgreq.i 𝐼 = (𝑁𝑀)
Assertion
Ref Expression
fvcosymgeq ((𝐺𝐵𝐾𝑃) → ((𝑋𝐼 ∧ (𝐺𝑋) = (𝐾𝑋) ∧ ∀𝑛𝐼 (𝐹𝑛) = (𝐻𝑛)) → ((𝐹𝐺)‘𝑋) = ((𝐻𝐾)‘𝑋)))
Distinct variable groups:   𝑛,𝐹   𝑛,𝐺   𝑛,𝐻   𝑛,𝐼   𝑛,𝐾   𝑛,𝑋
Allowed substitution hints:   𝐵(𝑛)   𝑃(𝑛)   𝑆(𝑛)   𝑀(𝑛)   𝑁(𝑛)   𝑍(𝑛)

Proof of Theorem fvcosymgeq
StepHypRef Expression
1 gsmsymgrfix.s . . . . . . 7 𝑆 = (SymGrp‘𝑁)
2 gsmsymgrfix.b . . . . . . 7 𝐵 = (Base‘𝑆)
31, 2symgbasf 19242 . . . . . 6 (𝐺𝐵𝐺:𝑁𝑁)
43ffnd 6718 . . . . 5 (𝐺𝐵𝐺 Fn 𝑁)
5 gsmsymgreq.z . . . . . . 7 𝑍 = (SymGrp‘𝑀)
6 gsmsymgreq.p . . . . . . 7 𝑃 = (Base‘𝑍)
75, 6symgbasf 19242 . . . . . 6 (𝐾𝑃𝐾:𝑀𝑀)
87ffnd 6718 . . . . 5 (𝐾𝑃𝐾 Fn 𝑀)
94, 8anim12i 613 . . . 4 ((𝐺𝐵𝐾𝑃) → (𝐺 Fn 𝑁𝐾 Fn 𝑀))
109adantr 481 . . 3 (((𝐺𝐵𝐾𝑃) ∧ (𝑋𝐼 ∧ (𝐺𝑋) = (𝐾𝑋) ∧ ∀𝑛𝐼 (𝐹𝑛) = (𝐻𝑛))) → (𝐺 Fn 𝑁𝐾 Fn 𝑀))
11 gsmsymgreq.i . . . . . . . 8 𝐼 = (𝑁𝑀)
1211eleq2i 2825 . . . . . . 7 (𝑋𝐼𝑋 ∈ (𝑁𝑀))
1312biimpi 215 . . . . . 6 (𝑋𝐼𝑋 ∈ (𝑁𝑀))
14133ad2ant1 1133 . . . . 5 ((𝑋𝐼 ∧ (𝐺𝑋) = (𝐾𝑋) ∧ ∀𝑛𝐼 (𝐹𝑛) = (𝐻𝑛)) → 𝑋 ∈ (𝑁𝑀))
1514adantl 482 . . . 4 (((𝐺𝐵𝐾𝑃) ∧ (𝑋𝐼 ∧ (𝐺𝑋) = (𝐾𝑋) ∧ ∀𝑛𝐼 (𝐹𝑛) = (𝐻𝑛))) → 𝑋 ∈ (𝑁𝑀))
16 simpr2 1195 . . . 4 (((𝐺𝐵𝐾𝑃) ∧ (𝑋𝐼 ∧ (𝐺𝑋) = (𝐾𝑋) ∧ ∀𝑛𝐼 (𝐹𝑛) = (𝐻𝑛))) → (𝐺𝑋) = (𝐾𝑋))
171, 2symgbasf1o 19241 . . . . . . . . . . 11 (𝐺𝐵𝐺:𝑁1-1-onto𝑁)
18 dff1o5 6842 . . . . . . . . . . . 12 (𝐺:𝑁1-1-onto𝑁 ↔ (𝐺:𝑁1-1𝑁 ∧ ran 𝐺 = 𝑁))
19 eqcom 2739 . . . . . . . . . . . . 13 (ran 𝐺 = 𝑁𝑁 = ran 𝐺)
2019biimpi 215 . . . . . . . . . . . 12 (ran 𝐺 = 𝑁𝑁 = ran 𝐺)
2118, 20simplbiim 505 . . . . . . . . . . 11 (𝐺:𝑁1-1-onto𝑁𝑁 = ran 𝐺)
2217, 21syl 17 . . . . . . . . . 10 (𝐺𝐵𝑁 = ran 𝐺)
235, 6symgbasf1o 19241 . . . . . . . . . . 11 (𝐾𝑃𝐾:𝑀1-1-onto𝑀)
24 dff1o5 6842 . . . . . . . . . . . 12 (𝐾:𝑀1-1-onto𝑀 ↔ (𝐾:𝑀1-1𝑀 ∧ ran 𝐾 = 𝑀))
25 eqcom 2739 . . . . . . . . . . . . 13 (ran 𝐾 = 𝑀𝑀 = ran 𝐾)
2625biimpi 215 . . . . . . . . . . . 12 (ran 𝐾 = 𝑀𝑀 = ran 𝐾)
2724, 26simplbiim 505 . . . . . . . . . . 11 (𝐾:𝑀1-1-onto𝑀𝑀 = ran 𝐾)
2823, 27syl 17 . . . . . . . . . 10 (𝐾𝑃𝑀 = ran 𝐾)
2922, 28ineqan12d 4214 . . . . . . . . 9 ((𝐺𝐵𝐾𝑃) → (𝑁𝑀) = (ran 𝐺 ∩ ran 𝐾))
3011, 29eqtrid 2784 . . . . . . . 8 ((𝐺𝐵𝐾𝑃) → 𝐼 = (ran 𝐺 ∩ ran 𝐾))
3130raleqdv 3325 . . . . . . 7 ((𝐺𝐵𝐾𝑃) → (∀𝑛𝐼 (𝐹𝑛) = (𝐻𝑛) ↔ ∀𝑛 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹𝑛) = (𝐻𝑛)))
3231biimpcd 248 . . . . . 6 (∀𝑛𝐼 (𝐹𝑛) = (𝐻𝑛) → ((𝐺𝐵𝐾𝑃) → ∀𝑛 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹𝑛) = (𝐻𝑛)))
33323ad2ant3 1135 . . . . 5 ((𝑋𝐼 ∧ (𝐺𝑋) = (𝐾𝑋) ∧ ∀𝑛𝐼 (𝐹𝑛) = (𝐻𝑛)) → ((𝐺𝐵𝐾𝑃) → ∀𝑛 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹𝑛) = (𝐻𝑛)))
3433impcom 408 . . . 4 (((𝐺𝐵𝐾𝑃) ∧ (𝑋𝐼 ∧ (𝐺𝑋) = (𝐾𝑋) ∧ ∀𝑛𝐼 (𝐹𝑛) = (𝐻𝑛))) → ∀𝑛 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹𝑛) = (𝐻𝑛))
3515, 16, 343jca 1128 . . 3 (((𝐺𝐵𝐾𝑃) ∧ (𝑋𝐼 ∧ (𝐺𝑋) = (𝐾𝑋) ∧ ∀𝑛𝐼 (𝐹𝑛) = (𝐻𝑛))) → (𝑋 ∈ (𝑁𝑀) ∧ (𝐺𝑋) = (𝐾𝑋) ∧ ∀𝑛 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹𝑛) = (𝐻𝑛)))
36 fvcofneq 7094 . . 3 ((𝐺 Fn 𝑁𝐾 Fn 𝑀) → ((𝑋 ∈ (𝑁𝑀) ∧ (𝐺𝑋) = (𝐾𝑋) ∧ ∀𝑛 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹𝑛) = (𝐻𝑛)) → ((𝐹𝐺)‘𝑋) = ((𝐻𝐾)‘𝑋)))
3710, 35, 36sylc 65 . 2 (((𝐺𝐵𝐾𝑃) ∧ (𝑋𝐼 ∧ (𝐺𝑋) = (𝐾𝑋) ∧ ∀𝑛𝐼 (𝐹𝑛) = (𝐻𝑛))) → ((𝐹𝐺)‘𝑋) = ((𝐻𝐾)‘𝑋))
3837ex 413 1 ((𝐺𝐵𝐾𝑃) → ((𝑋𝐼 ∧ (𝐺𝑋) = (𝐾𝑋) ∧ ∀𝑛𝐼 (𝐹𝑛) = (𝐻𝑛)) → ((𝐹𝐺)‘𝑋) = ((𝐻𝐾)‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3061  cin 3947  ran crn 5677  ccom 5680   Fn wfn 6538  1-1wf1 6540  1-1-ontowf1o 6542  cfv 6543  Basecbs 17143  SymGrpcsymg 19233
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-er 8702  df-map 8821  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-2 12274  df-3 12275  df-4 12276  df-5 12277  df-6 12278  df-7 12279  df-8 12280  df-9 12281  df-n0 12472  df-z 12558  df-uz 12822  df-fz 13484  df-struct 17079  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-ress 17173  df-plusg 17209  df-tset 17215  df-efmnd 18749  df-symg 19234
This theorem is referenced by:  gsmsymgreqlem1  19297
  Copyright terms: Public domain W3C validator