![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvcosymgeq | Structured version Visualization version GIF version |
Description: The values of two compositions of permutations are equal if the values of the composed permutations are pairwise equal. (Contributed by AV, 26-Jan-2019.) |
Ref | Expression |
---|---|
gsmsymgrfix.s | ⊢ 𝑆 = (SymGrp‘𝑁) |
gsmsymgrfix.b | ⊢ 𝐵 = (Base‘𝑆) |
gsmsymgreq.z | ⊢ 𝑍 = (SymGrp‘𝑀) |
gsmsymgreq.p | ⊢ 𝑃 = (Base‘𝑍) |
gsmsymgreq.i | ⊢ 𝐼 = (𝑁 ∩ 𝑀) |
Ref | Expression |
---|---|
fvcosymgeq | ⊢ ((𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃) → ((𝑋 ∈ 𝐼 ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑛 ∈ 𝐼 (𝐹‘𝑛) = (𝐻‘𝑛)) → ((𝐹 ∘ 𝐺)‘𝑋) = ((𝐻 ∘ 𝐾)‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsmsymgrfix.s | . . . . . . 7 ⊢ 𝑆 = (SymGrp‘𝑁) | |
2 | gsmsymgrfix.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑆) | |
3 | 1, 2 | symgbasf 19242 | . . . . . 6 ⊢ (𝐺 ∈ 𝐵 → 𝐺:𝑁⟶𝑁) |
4 | 3 | ffnd 6718 | . . . . 5 ⊢ (𝐺 ∈ 𝐵 → 𝐺 Fn 𝑁) |
5 | gsmsymgreq.z | . . . . . . 7 ⊢ 𝑍 = (SymGrp‘𝑀) | |
6 | gsmsymgreq.p | . . . . . . 7 ⊢ 𝑃 = (Base‘𝑍) | |
7 | 5, 6 | symgbasf 19242 | . . . . . 6 ⊢ (𝐾 ∈ 𝑃 → 𝐾:𝑀⟶𝑀) |
8 | 7 | ffnd 6718 | . . . . 5 ⊢ (𝐾 ∈ 𝑃 → 𝐾 Fn 𝑀) |
9 | 4, 8 | anim12i 613 | . . . 4 ⊢ ((𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃) → (𝐺 Fn 𝑁 ∧ 𝐾 Fn 𝑀)) |
10 | 9 | adantr 481 | . . 3 ⊢ (((𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃) ∧ (𝑋 ∈ 𝐼 ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑛 ∈ 𝐼 (𝐹‘𝑛) = (𝐻‘𝑛))) → (𝐺 Fn 𝑁 ∧ 𝐾 Fn 𝑀)) |
11 | gsmsymgreq.i | . . . . . . . 8 ⊢ 𝐼 = (𝑁 ∩ 𝑀) | |
12 | 11 | eleq2i 2825 | . . . . . . 7 ⊢ (𝑋 ∈ 𝐼 ↔ 𝑋 ∈ (𝑁 ∩ 𝑀)) |
13 | 12 | biimpi 215 | . . . . . 6 ⊢ (𝑋 ∈ 𝐼 → 𝑋 ∈ (𝑁 ∩ 𝑀)) |
14 | 13 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝑋 ∈ 𝐼 ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑛 ∈ 𝐼 (𝐹‘𝑛) = (𝐻‘𝑛)) → 𝑋 ∈ (𝑁 ∩ 𝑀)) |
15 | 14 | adantl 482 | . . . 4 ⊢ (((𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃) ∧ (𝑋 ∈ 𝐼 ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑛 ∈ 𝐼 (𝐹‘𝑛) = (𝐻‘𝑛))) → 𝑋 ∈ (𝑁 ∩ 𝑀)) |
16 | simpr2 1195 | . . . 4 ⊢ (((𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃) ∧ (𝑋 ∈ 𝐼 ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑛 ∈ 𝐼 (𝐹‘𝑛) = (𝐻‘𝑛))) → (𝐺‘𝑋) = (𝐾‘𝑋)) | |
17 | 1, 2 | symgbasf1o 19241 | . . . . . . . . . . 11 ⊢ (𝐺 ∈ 𝐵 → 𝐺:𝑁–1-1-onto→𝑁) |
18 | dff1o5 6842 | . . . . . . . . . . . 12 ⊢ (𝐺:𝑁–1-1-onto→𝑁 ↔ (𝐺:𝑁–1-1→𝑁 ∧ ran 𝐺 = 𝑁)) | |
19 | eqcom 2739 | . . . . . . . . . . . . 13 ⊢ (ran 𝐺 = 𝑁 ↔ 𝑁 = ran 𝐺) | |
20 | 19 | biimpi 215 | . . . . . . . . . . . 12 ⊢ (ran 𝐺 = 𝑁 → 𝑁 = ran 𝐺) |
21 | 18, 20 | simplbiim 505 | . . . . . . . . . . 11 ⊢ (𝐺:𝑁–1-1-onto→𝑁 → 𝑁 = ran 𝐺) |
22 | 17, 21 | syl 17 | . . . . . . . . . 10 ⊢ (𝐺 ∈ 𝐵 → 𝑁 = ran 𝐺) |
23 | 5, 6 | symgbasf1o 19241 | . . . . . . . . . . 11 ⊢ (𝐾 ∈ 𝑃 → 𝐾:𝑀–1-1-onto→𝑀) |
24 | dff1o5 6842 | . . . . . . . . . . . 12 ⊢ (𝐾:𝑀–1-1-onto→𝑀 ↔ (𝐾:𝑀–1-1→𝑀 ∧ ran 𝐾 = 𝑀)) | |
25 | eqcom 2739 | . . . . . . . . . . . . 13 ⊢ (ran 𝐾 = 𝑀 ↔ 𝑀 = ran 𝐾) | |
26 | 25 | biimpi 215 | . . . . . . . . . . . 12 ⊢ (ran 𝐾 = 𝑀 → 𝑀 = ran 𝐾) |
27 | 24, 26 | simplbiim 505 | . . . . . . . . . . 11 ⊢ (𝐾:𝑀–1-1-onto→𝑀 → 𝑀 = ran 𝐾) |
28 | 23, 27 | syl 17 | . . . . . . . . . 10 ⊢ (𝐾 ∈ 𝑃 → 𝑀 = ran 𝐾) |
29 | 22, 28 | ineqan12d 4214 | . . . . . . . . 9 ⊢ ((𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃) → (𝑁 ∩ 𝑀) = (ran 𝐺 ∩ ran 𝐾)) |
30 | 11, 29 | eqtrid 2784 | . . . . . . . 8 ⊢ ((𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃) → 𝐼 = (ran 𝐺 ∩ ran 𝐾)) |
31 | 30 | raleqdv 3325 | . . . . . . 7 ⊢ ((𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃) → (∀𝑛 ∈ 𝐼 (𝐹‘𝑛) = (𝐻‘𝑛) ↔ ∀𝑛 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹‘𝑛) = (𝐻‘𝑛))) |
32 | 31 | biimpcd 248 | . . . . . 6 ⊢ (∀𝑛 ∈ 𝐼 (𝐹‘𝑛) = (𝐻‘𝑛) → ((𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃) → ∀𝑛 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹‘𝑛) = (𝐻‘𝑛))) |
33 | 32 | 3ad2ant3 1135 | . . . . 5 ⊢ ((𝑋 ∈ 𝐼 ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑛 ∈ 𝐼 (𝐹‘𝑛) = (𝐻‘𝑛)) → ((𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃) → ∀𝑛 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹‘𝑛) = (𝐻‘𝑛))) |
34 | 33 | impcom 408 | . . . 4 ⊢ (((𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃) ∧ (𝑋 ∈ 𝐼 ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑛 ∈ 𝐼 (𝐹‘𝑛) = (𝐻‘𝑛))) → ∀𝑛 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹‘𝑛) = (𝐻‘𝑛)) |
35 | 15, 16, 34 | 3jca 1128 | . . 3 ⊢ (((𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃) ∧ (𝑋 ∈ 𝐼 ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑛 ∈ 𝐼 (𝐹‘𝑛) = (𝐻‘𝑛))) → (𝑋 ∈ (𝑁 ∩ 𝑀) ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑛 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹‘𝑛) = (𝐻‘𝑛))) |
36 | fvcofneq 7094 | . . 3 ⊢ ((𝐺 Fn 𝑁 ∧ 𝐾 Fn 𝑀) → ((𝑋 ∈ (𝑁 ∩ 𝑀) ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑛 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹‘𝑛) = (𝐻‘𝑛)) → ((𝐹 ∘ 𝐺)‘𝑋) = ((𝐻 ∘ 𝐾)‘𝑋))) | |
37 | 10, 35, 36 | sylc 65 | . 2 ⊢ (((𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃) ∧ (𝑋 ∈ 𝐼 ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑛 ∈ 𝐼 (𝐹‘𝑛) = (𝐻‘𝑛))) → ((𝐹 ∘ 𝐺)‘𝑋) = ((𝐻 ∘ 𝐾)‘𝑋)) |
38 | 37 | ex 413 | 1 ⊢ ((𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃) → ((𝑋 ∈ 𝐼 ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑛 ∈ 𝐼 (𝐹‘𝑛) = (𝐻‘𝑛)) → ((𝐹 ∘ 𝐺)‘𝑋) = ((𝐻 ∘ 𝐾)‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∀wral 3061 ∩ cin 3947 ran crn 5677 ∘ ccom 5680 Fn wfn 6538 –1-1→wf1 6540 –1-1-onto→wf1o 6542 ‘cfv 6543 Basecbs 17143 SymGrpcsymg 19233 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-uz 12822 df-fz 13484 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-tset 17215 df-efmnd 18749 df-symg 19234 |
This theorem is referenced by: gsmsymgreqlem1 19297 |
Copyright terms: Public domain | W3C validator |