MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvcosymgeq Structured version   Visualization version   GIF version

Theorem fvcosymgeq 19343
Description: The values of two compositions of permutations are equal if the values of the composed permutations are pairwise equal. (Contributed by AV, 26-Jan-2019.)
Hypotheses
Ref Expression
gsmsymgrfix.s 𝑆 = (SymGrp‘𝑁)
gsmsymgrfix.b 𝐵 = (Base‘𝑆)
gsmsymgreq.z 𝑍 = (SymGrp‘𝑀)
gsmsymgreq.p 𝑃 = (Base‘𝑍)
gsmsymgreq.i 𝐼 = (𝑁𝑀)
Assertion
Ref Expression
fvcosymgeq ((𝐺𝐵𝐾𝑃) → ((𝑋𝐼 ∧ (𝐺𝑋) = (𝐾𝑋) ∧ ∀𝑛𝐼 (𝐹𝑛) = (𝐻𝑛)) → ((𝐹𝐺)‘𝑋) = ((𝐻𝐾)‘𝑋)))
Distinct variable groups:   𝑛,𝐹   𝑛,𝐺   𝑛,𝐻   𝑛,𝐼   𝑛,𝐾   𝑛,𝑋
Allowed substitution hints:   𝐵(𝑛)   𝑃(𝑛)   𝑆(𝑛)   𝑀(𝑛)   𝑁(𝑛)   𝑍(𝑛)

Proof of Theorem fvcosymgeq
StepHypRef Expression
1 gsmsymgrfix.s . . . . . . 7 𝑆 = (SymGrp‘𝑁)
2 gsmsymgrfix.b . . . . . . 7 𝐵 = (Base‘𝑆)
31, 2symgbasf 19290 . . . . . 6 (𝐺𝐵𝐺:𝑁𝑁)
43ffnd 6671 . . . . 5 (𝐺𝐵𝐺 Fn 𝑁)
5 gsmsymgreq.z . . . . . . 7 𝑍 = (SymGrp‘𝑀)
6 gsmsymgreq.p . . . . . . 7 𝑃 = (Base‘𝑍)
75, 6symgbasf 19290 . . . . . 6 (𝐾𝑃𝐾:𝑀𝑀)
87ffnd 6671 . . . . 5 (𝐾𝑃𝐾 Fn 𝑀)
94, 8anim12i 613 . . . 4 ((𝐺𝐵𝐾𝑃) → (𝐺 Fn 𝑁𝐾 Fn 𝑀))
109adantr 480 . . 3 (((𝐺𝐵𝐾𝑃) ∧ (𝑋𝐼 ∧ (𝐺𝑋) = (𝐾𝑋) ∧ ∀𝑛𝐼 (𝐹𝑛) = (𝐻𝑛))) → (𝐺 Fn 𝑁𝐾 Fn 𝑀))
11 gsmsymgreq.i . . . . . . . 8 𝐼 = (𝑁𝑀)
1211eleq2i 2820 . . . . . . 7 (𝑋𝐼𝑋 ∈ (𝑁𝑀))
1312biimpi 216 . . . . . 6 (𝑋𝐼𝑋 ∈ (𝑁𝑀))
14133ad2ant1 1133 . . . . 5 ((𝑋𝐼 ∧ (𝐺𝑋) = (𝐾𝑋) ∧ ∀𝑛𝐼 (𝐹𝑛) = (𝐻𝑛)) → 𝑋 ∈ (𝑁𝑀))
1514adantl 481 . . . 4 (((𝐺𝐵𝐾𝑃) ∧ (𝑋𝐼 ∧ (𝐺𝑋) = (𝐾𝑋) ∧ ∀𝑛𝐼 (𝐹𝑛) = (𝐻𝑛))) → 𝑋 ∈ (𝑁𝑀))
16 simpr2 1196 . . . 4 (((𝐺𝐵𝐾𝑃) ∧ (𝑋𝐼 ∧ (𝐺𝑋) = (𝐾𝑋) ∧ ∀𝑛𝐼 (𝐹𝑛) = (𝐻𝑛))) → (𝐺𝑋) = (𝐾𝑋))
171, 2symgbasf1o 19289 . . . . . . . . . . 11 (𝐺𝐵𝐺:𝑁1-1-onto𝑁)
18 dff1o5 6791 . . . . . . . . . . . 12 (𝐺:𝑁1-1-onto𝑁 ↔ (𝐺:𝑁1-1𝑁 ∧ ran 𝐺 = 𝑁))
19 eqcom 2736 . . . . . . . . . . . . 13 (ran 𝐺 = 𝑁𝑁 = ran 𝐺)
2019biimpi 216 . . . . . . . . . . . 12 (ran 𝐺 = 𝑁𝑁 = ran 𝐺)
2118, 20simplbiim 504 . . . . . . . . . . 11 (𝐺:𝑁1-1-onto𝑁𝑁 = ran 𝐺)
2217, 21syl 17 . . . . . . . . . 10 (𝐺𝐵𝑁 = ran 𝐺)
235, 6symgbasf1o 19289 . . . . . . . . . . 11 (𝐾𝑃𝐾:𝑀1-1-onto𝑀)
24 dff1o5 6791 . . . . . . . . . . . 12 (𝐾:𝑀1-1-onto𝑀 ↔ (𝐾:𝑀1-1𝑀 ∧ ran 𝐾 = 𝑀))
25 eqcom 2736 . . . . . . . . . . . . 13 (ran 𝐾 = 𝑀𝑀 = ran 𝐾)
2625biimpi 216 . . . . . . . . . . . 12 (ran 𝐾 = 𝑀𝑀 = ran 𝐾)
2724, 26simplbiim 504 . . . . . . . . . . 11 (𝐾:𝑀1-1-onto𝑀𝑀 = ran 𝐾)
2823, 27syl 17 . . . . . . . . . 10 (𝐾𝑃𝑀 = ran 𝐾)
2922, 28ineqan12d 4181 . . . . . . . . 9 ((𝐺𝐵𝐾𝑃) → (𝑁𝑀) = (ran 𝐺 ∩ ran 𝐾))
3011, 29eqtrid 2776 . . . . . . . 8 ((𝐺𝐵𝐾𝑃) → 𝐼 = (ran 𝐺 ∩ ran 𝐾))
3130raleqdv 3296 . . . . . . 7 ((𝐺𝐵𝐾𝑃) → (∀𝑛𝐼 (𝐹𝑛) = (𝐻𝑛) ↔ ∀𝑛 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹𝑛) = (𝐻𝑛)))
3231biimpcd 249 . . . . . 6 (∀𝑛𝐼 (𝐹𝑛) = (𝐻𝑛) → ((𝐺𝐵𝐾𝑃) → ∀𝑛 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹𝑛) = (𝐻𝑛)))
33323ad2ant3 1135 . . . . 5 ((𝑋𝐼 ∧ (𝐺𝑋) = (𝐾𝑋) ∧ ∀𝑛𝐼 (𝐹𝑛) = (𝐻𝑛)) → ((𝐺𝐵𝐾𝑃) → ∀𝑛 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹𝑛) = (𝐻𝑛)))
3433impcom 407 . . . 4 (((𝐺𝐵𝐾𝑃) ∧ (𝑋𝐼 ∧ (𝐺𝑋) = (𝐾𝑋) ∧ ∀𝑛𝐼 (𝐹𝑛) = (𝐻𝑛))) → ∀𝑛 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹𝑛) = (𝐻𝑛))
3515, 16, 343jca 1128 . . 3 (((𝐺𝐵𝐾𝑃) ∧ (𝑋𝐼 ∧ (𝐺𝑋) = (𝐾𝑋) ∧ ∀𝑛𝐼 (𝐹𝑛) = (𝐻𝑛))) → (𝑋 ∈ (𝑁𝑀) ∧ (𝐺𝑋) = (𝐾𝑋) ∧ ∀𝑛 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹𝑛) = (𝐻𝑛)))
36 fvcofneq 7047 . . 3 ((𝐺 Fn 𝑁𝐾 Fn 𝑀) → ((𝑋 ∈ (𝑁𝑀) ∧ (𝐺𝑋) = (𝐾𝑋) ∧ ∀𝑛 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹𝑛) = (𝐻𝑛)) → ((𝐹𝐺)‘𝑋) = ((𝐻𝐾)‘𝑋)))
3710, 35, 36sylc 65 . 2 (((𝐺𝐵𝐾𝑃) ∧ (𝑋𝐼 ∧ (𝐺𝑋) = (𝐾𝑋) ∧ ∀𝑛𝐼 (𝐹𝑛) = (𝐻𝑛))) → ((𝐹𝐺)‘𝑋) = ((𝐻𝐾)‘𝑋))
3837ex 412 1 ((𝐺𝐵𝐾𝑃) → ((𝑋𝐼 ∧ (𝐺𝑋) = (𝐾𝑋) ∧ ∀𝑛𝐼 (𝐹𝑛) = (𝐻𝑛)) → ((𝐹𝐺)‘𝑋) = ((𝐻𝐾)‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  cin 3910  ran crn 5632  ccom 5635   Fn wfn 6494  1-1wf1 6496  1-1-ontowf1o 6498  cfv 6499  Basecbs 17155  SymGrpcsymg 19283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-tset 17215  df-efmnd 18778  df-symg 19284
This theorem is referenced by:  gsmsymgreqlem1  19344
  Copyright terms: Public domain W3C validator