MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvcosymgeq Structured version   Visualization version   GIF version

Theorem fvcosymgeq 19211
Description: The values of two compositions of permutations are equal if the values of the composed permutations are pairwise equal. (Contributed by AV, 26-Jan-2019.)
Hypotheses
Ref Expression
gsmsymgrfix.s 𝑆 = (SymGrp‘𝑁)
gsmsymgrfix.b 𝐵 = (Base‘𝑆)
gsmsymgreq.z 𝑍 = (SymGrp‘𝑀)
gsmsymgreq.p 𝑃 = (Base‘𝑍)
gsmsymgreq.i 𝐼 = (𝑁𝑀)
Assertion
Ref Expression
fvcosymgeq ((𝐺𝐵𝐾𝑃) → ((𝑋𝐼 ∧ (𝐺𝑋) = (𝐾𝑋) ∧ ∀𝑛𝐼 (𝐹𝑛) = (𝐻𝑛)) → ((𝐹𝐺)‘𝑋) = ((𝐻𝐾)‘𝑋)))
Distinct variable groups:   𝑛,𝐹   𝑛,𝐺   𝑛,𝐻   𝑛,𝐼   𝑛,𝐾   𝑛,𝑋
Allowed substitution hints:   𝐵(𝑛)   𝑃(𝑛)   𝑆(𝑛)   𝑀(𝑛)   𝑁(𝑛)   𝑍(𝑛)

Proof of Theorem fvcosymgeq
StepHypRef Expression
1 gsmsymgrfix.s . . . . . . 7 𝑆 = (SymGrp‘𝑁)
2 gsmsymgrfix.b . . . . . . 7 𝐵 = (Base‘𝑆)
31, 2symgbasf 19157 . . . . . 6 (𝐺𝐵𝐺:𝑁𝑁)
43ffnd 6669 . . . . 5 (𝐺𝐵𝐺 Fn 𝑁)
5 gsmsymgreq.z . . . . . . 7 𝑍 = (SymGrp‘𝑀)
6 gsmsymgreq.p . . . . . . 7 𝑃 = (Base‘𝑍)
75, 6symgbasf 19157 . . . . . 6 (𝐾𝑃𝐾:𝑀𝑀)
87ffnd 6669 . . . . 5 (𝐾𝑃𝐾 Fn 𝑀)
94, 8anim12i 613 . . . 4 ((𝐺𝐵𝐾𝑃) → (𝐺 Fn 𝑁𝐾 Fn 𝑀))
109adantr 481 . . 3 (((𝐺𝐵𝐾𝑃) ∧ (𝑋𝐼 ∧ (𝐺𝑋) = (𝐾𝑋) ∧ ∀𝑛𝐼 (𝐹𝑛) = (𝐻𝑛))) → (𝐺 Fn 𝑁𝐾 Fn 𝑀))
11 gsmsymgreq.i . . . . . . . 8 𝐼 = (𝑁𝑀)
1211eleq2i 2829 . . . . . . 7 (𝑋𝐼𝑋 ∈ (𝑁𝑀))
1312biimpi 215 . . . . . 6 (𝑋𝐼𝑋 ∈ (𝑁𝑀))
14133ad2ant1 1133 . . . . 5 ((𝑋𝐼 ∧ (𝐺𝑋) = (𝐾𝑋) ∧ ∀𝑛𝐼 (𝐹𝑛) = (𝐻𝑛)) → 𝑋 ∈ (𝑁𝑀))
1514adantl 482 . . . 4 (((𝐺𝐵𝐾𝑃) ∧ (𝑋𝐼 ∧ (𝐺𝑋) = (𝐾𝑋) ∧ ∀𝑛𝐼 (𝐹𝑛) = (𝐻𝑛))) → 𝑋 ∈ (𝑁𝑀))
16 simpr2 1195 . . . 4 (((𝐺𝐵𝐾𝑃) ∧ (𝑋𝐼 ∧ (𝐺𝑋) = (𝐾𝑋) ∧ ∀𝑛𝐼 (𝐹𝑛) = (𝐻𝑛))) → (𝐺𝑋) = (𝐾𝑋))
171, 2symgbasf1o 19156 . . . . . . . . . . 11 (𝐺𝐵𝐺:𝑁1-1-onto𝑁)
18 dff1o5 6793 . . . . . . . . . . . 12 (𝐺:𝑁1-1-onto𝑁 ↔ (𝐺:𝑁1-1𝑁 ∧ ran 𝐺 = 𝑁))
19 eqcom 2743 . . . . . . . . . . . . 13 (ran 𝐺 = 𝑁𝑁 = ran 𝐺)
2019biimpi 215 . . . . . . . . . . . 12 (ran 𝐺 = 𝑁𝑁 = ran 𝐺)
2118, 20simplbiim 505 . . . . . . . . . . 11 (𝐺:𝑁1-1-onto𝑁𝑁 = ran 𝐺)
2217, 21syl 17 . . . . . . . . . 10 (𝐺𝐵𝑁 = ran 𝐺)
235, 6symgbasf1o 19156 . . . . . . . . . . 11 (𝐾𝑃𝐾:𝑀1-1-onto𝑀)
24 dff1o5 6793 . . . . . . . . . . . 12 (𝐾:𝑀1-1-onto𝑀 ↔ (𝐾:𝑀1-1𝑀 ∧ ran 𝐾 = 𝑀))
25 eqcom 2743 . . . . . . . . . . . . 13 (ran 𝐾 = 𝑀𝑀 = ran 𝐾)
2625biimpi 215 . . . . . . . . . . . 12 (ran 𝐾 = 𝑀𝑀 = ran 𝐾)
2724, 26simplbiim 505 . . . . . . . . . . 11 (𝐾:𝑀1-1-onto𝑀𝑀 = ran 𝐾)
2823, 27syl 17 . . . . . . . . . 10 (𝐾𝑃𝑀 = ran 𝐾)
2922, 28ineqan12d 4174 . . . . . . . . 9 ((𝐺𝐵𝐾𝑃) → (𝑁𝑀) = (ran 𝐺 ∩ ran 𝐾))
3011, 29eqtrid 2788 . . . . . . . 8 ((𝐺𝐵𝐾𝑃) → 𝐼 = (ran 𝐺 ∩ ran 𝐾))
3130raleqdv 3313 . . . . . . 7 ((𝐺𝐵𝐾𝑃) → (∀𝑛𝐼 (𝐹𝑛) = (𝐻𝑛) ↔ ∀𝑛 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹𝑛) = (𝐻𝑛)))
3231biimpcd 248 . . . . . 6 (∀𝑛𝐼 (𝐹𝑛) = (𝐻𝑛) → ((𝐺𝐵𝐾𝑃) → ∀𝑛 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹𝑛) = (𝐻𝑛)))
33323ad2ant3 1135 . . . . 5 ((𝑋𝐼 ∧ (𝐺𝑋) = (𝐾𝑋) ∧ ∀𝑛𝐼 (𝐹𝑛) = (𝐻𝑛)) → ((𝐺𝐵𝐾𝑃) → ∀𝑛 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹𝑛) = (𝐻𝑛)))
3433impcom 408 . . . 4 (((𝐺𝐵𝐾𝑃) ∧ (𝑋𝐼 ∧ (𝐺𝑋) = (𝐾𝑋) ∧ ∀𝑛𝐼 (𝐹𝑛) = (𝐻𝑛))) → ∀𝑛 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹𝑛) = (𝐻𝑛))
3515, 16, 343jca 1128 . . 3 (((𝐺𝐵𝐾𝑃) ∧ (𝑋𝐼 ∧ (𝐺𝑋) = (𝐾𝑋) ∧ ∀𝑛𝐼 (𝐹𝑛) = (𝐻𝑛))) → (𝑋 ∈ (𝑁𝑀) ∧ (𝐺𝑋) = (𝐾𝑋) ∧ ∀𝑛 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹𝑛) = (𝐻𝑛)))
36 fvcofneq 7043 . . 3 ((𝐺 Fn 𝑁𝐾 Fn 𝑀) → ((𝑋 ∈ (𝑁𝑀) ∧ (𝐺𝑋) = (𝐾𝑋) ∧ ∀𝑛 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹𝑛) = (𝐻𝑛)) → ((𝐹𝐺)‘𝑋) = ((𝐻𝐾)‘𝑋)))
3710, 35, 36sylc 65 . 2 (((𝐺𝐵𝐾𝑃) ∧ (𝑋𝐼 ∧ (𝐺𝑋) = (𝐾𝑋) ∧ ∀𝑛𝐼 (𝐹𝑛) = (𝐻𝑛))) → ((𝐹𝐺)‘𝑋) = ((𝐻𝐾)‘𝑋))
3837ex 413 1 ((𝐺𝐵𝐾𝑃) → ((𝑋𝐼 ∧ (𝐺𝑋) = (𝐾𝑋) ∧ ∀𝑛𝐼 (𝐹𝑛) = (𝐻𝑛)) → ((𝐹𝐺)‘𝑋) = ((𝐻𝐾)‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  cin 3909  ran crn 5634  ccom 5637   Fn wfn 6491  1-1wf1 6493  1-1-ontowf1o 6495  cfv 6496  Basecbs 17083  SymGrpcsymg 19148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-tset 17152  df-efmnd 18679  df-symg 19149
This theorem is referenced by:  gsmsymgreqlem1  19212
  Copyright terms: Public domain W3C validator