MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvcosymgeq Structured version   Visualization version   GIF version

Theorem fvcosymgeq 18549
Description: The values of two compositions of permutations are equal if the values of the composed permutations are pairwise equal. (Contributed by AV, 26-Jan-2019.)
Hypotheses
Ref Expression
gsmsymgrfix.s 𝑆 = (SymGrp‘𝑁)
gsmsymgrfix.b 𝐵 = (Base‘𝑆)
gsmsymgreq.z 𝑍 = (SymGrp‘𝑀)
gsmsymgreq.p 𝑃 = (Base‘𝑍)
gsmsymgreq.i 𝐼 = (𝑁𝑀)
Assertion
Ref Expression
fvcosymgeq ((𝐺𝐵𝐾𝑃) → ((𝑋𝐼 ∧ (𝐺𝑋) = (𝐾𝑋) ∧ ∀𝑛𝐼 (𝐹𝑛) = (𝐻𝑛)) → ((𝐹𝐺)‘𝑋) = ((𝐻𝐾)‘𝑋)))
Distinct variable groups:   𝑛,𝐹   𝑛,𝐺   𝑛,𝐻   𝑛,𝐼   𝑛,𝐾   𝑛,𝑋
Allowed substitution hints:   𝐵(𝑛)   𝑃(𝑛)   𝑆(𝑛)   𝑀(𝑛)   𝑁(𝑛)   𝑍(𝑛)

Proof of Theorem fvcosymgeq
StepHypRef Expression
1 gsmsymgrfix.s . . . . . . 7 𝑆 = (SymGrp‘𝑁)
2 gsmsymgrfix.b . . . . . . 7 𝐵 = (Base‘𝑆)
31, 2symgbasf 18496 . . . . . 6 (𝐺𝐵𝐺:𝑁𝑁)
43ffnd 6488 . . . . 5 (𝐺𝐵𝐺 Fn 𝑁)
5 gsmsymgreq.z . . . . . . 7 𝑍 = (SymGrp‘𝑀)
6 gsmsymgreq.p . . . . . . 7 𝑃 = (Base‘𝑍)
75, 6symgbasf 18496 . . . . . 6 (𝐾𝑃𝐾:𝑀𝑀)
87ffnd 6488 . . . . 5 (𝐾𝑃𝐾 Fn 𝑀)
94, 8anim12i 615 . . . 4 ((𝐺𝐵𝐾𝑃) → (𝐺 Fn 𝑁𝐾 Fn 𝑀))
109adantr 484 . . 3 (((𝐺𝐵𝐾𝑃) ∧ (𝑋𝐼 ∧ (𝐺𝑋) = (𝐾𝑋) ∧ ∀𝑛𝐼 (𝐹𝑛) = (𝐻𝑛))) → (𝐺 Fn 𝑁𝐾 Fn 𝑀))
11 gsmsymgreq.i . . . . . . . 8 𝐼 = (𝑁𝑀)
1211eleq2i 2881 . . . . . . 7 (𝑋𝐼𝑋 ∈ (𝑁𝑀))
1312biimpi 219 . . . . . 6 (𝑋𝐼𝑋 ∈ (𝑁𝑀))
14133ad2ant1 1130 . . . . 5 ((𝑋𝐼 ∧ (𝐺𝑋) = (𝐾𝑋) ∧ ∀𝑛𝐼 (𝐹𝑛) = (𝐻𝑛)) → 𝑋 ∈ (𝑁𝑀))
1514adantl 485 . . . 4 (((𝐺𝐵𝐾𝑃) ∧ (𝑋𝐼 ∧ (𝐺𝑋) = (𝐾𝑋) ∧ ∀𝑛𝐼 (𝐹𝑛) = (𝐻𝑛))) → 𝑋 ∈ (𝑁𝑀))
16 simpr2 1192 . . . 4 (((𝐺𝐵𝐾𝑃) ∧ (𝑋𝐼 ∧ (𝐺𝑋) = (𝐾𝑋) ∧ ∀𝑛𝐼 (𝐹𝑛) = (𝐻𝑛))) → (𝐺𝑋) = (𝐾𝑋))
171, 2symgbasf1o 18495 . . . . . . . . . . 11 (𝐺𝐵𝐺:𝑁1-1-onto𝑁)
18 dff1o5 6599 . . . . . . . . . . . 12 (𝐺:𝑁1-1-onto𝑁 ↔ (𝐺:𝑁1-1𝑁 ∧ ran 𝐺 = 𝑁))
19 eqcom 2805 . . . . . . . . . . . . 13 (ran 𝐺 = 𝑁𝑁 = ran 𝐺)
2019biimpi 219 . . . . . . . . . . . 12 (ran 𝐺 = 𝑁𝑁 = ran 𝐺)
2118, 20simplbiim 508 . . . . . . . . . . 11 (𝐺:𝑁1-1-onto𝑁𝑁 = ran 𝐺)
2217, 21syl 17 . . . . . . . . . 10 (𝐺𝐵𝑁 = ran 𝐺)
235, 6symgbasf1o 18495 . . . . . . . . . . 11 (𝐾𝑃𝐾:𝑀1-1-onto𝑀)
24 dff1o5 6599 . . . . . . . . . . . 12 (𝐾:𝑀1-1-onto𝑀 ↔ (𝐾:𝑀1-1𝑀 ∧ ran 𝐾 = 𝑀))
25 eqcom 2805 . . . . . . . . . . . . 13 (ran 𝐾 = 𝑀𝑀 = ran 𝐾)
2625biimpi 219 . . . . . . . . . . . 12 (ran 𝐾 = 𝑀𝑀 = ran 𝐾)
2724, 26simplbiim 508 . . . . . . . . . . 11 (𝐾:𝑀1-1-onto𝑀𝑀 = ran 𝐾)
2823, 27syl 17 . . . . . . . . . 10 (𝐾𝑃𝑀 = ran 𝐾)
2922, 28ineqan12d 4141 . . . . . . . . 9 ((𝐺𝐵𝐾𝑃) → (𝑁𝑀) = (ran 𝐺 ∩ ran 𝐾))
3011, 29syl5eq 2845 . . . . . . . 8 ((𝐺𝐵𝐾𝑃) → 𝐼 = (ran 𝐺 ∩ ran 𝐾))
3130raleqdv 3364 . . . . . . 7 ((𝐺𝐵𝐾𝑃) → (∀𝑛𝐼 (𝐹𝑛) = (𝐻𝑛) ↔ ∀𝑛 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹𝑛) = (𝐻𝑛)))
3231biimpcd 252 . . . . . 6 (∀𝑛𝐼 (𝐹𝑛) = (𝐻𝑛) → ((𝐺𝐵𝐾𝑃) → ∀𝑛 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹𝑛) = (𝐻𝑛)))
33323ad2ant3 1132 . . . . 5 ((𝑋𝐼 ∧ (𝐺𝑋) = (𝐾𝑋) ∧ ∀𝑛𝐼 (𝐹𝑛) = (𝐻𝑛)) → ((𝐺𝐵𝐾𝑃) → ∀𝑛 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹𝑛) = (𝐻𝑛)))
3433impcom 411 . . . 4 (((𝐺𝐵𝐾𝑃) ∧ (𝑋𝐼 ∧ (𝐺𝑋) = (𝐾𝑋) ∧ ∀𝑛𝐼 (𝐹𝑛) = (𝐻𝑛))) → ∀𝑛 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹𝑛) = (𝐻𝑛))
3515, 16, 343jca 1125 . . 3 (((𝐺𝐵𝐾𝑃) ∧ (𝑋𝐼 ∧ (𝐺𝑋) = (𝐾𝑋) ∧ ∀𝑛𝐼 (𝐹𝑛) = (𝐻𝑛))) → (𝑋 ∈ (𝑁𝑀) ∧ (𝐺𝑋) = (𝐾𝑋) ∧ ∀𝑛 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹𝑛) = (𝐻𝑛)))
36 fvcofneq 6836 . . 3 ((𝐺 Fn 𝑁𝐾 Fn 𝑀) → ((𝑋 ∈ (𝑁𝑀) ∧ (𝐺𝑋) = (𝐾𝑋) ∧ ∀𝑛 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹𝑛) = (𝐻𝑛)) → ((𝐹𝐺)‘𝑋) = ((𝐻𝐾)‘𝑋)))
3710, 35, 36sylc 65 . 2 (((𝐺𝐵𝐾𝑃) ∧ (𝑋𝐼 ∧ (𝐺𝑋) = (𝐾𝑋) ∧ ∀𝑛𝐼 (𝐹𝑛) = (𝐻𝑛))) → ((𝐹𝐺)‘𝑋) = ((𝐻𝐾)‘𝑋))
3837ex 416 1 ((𝐺𝐵𝐾𝑃) → ((𝑋𝐼 ∧ (𝐺𝑋) = (𝐾𝑋) ∧ ∀𝑛𝐼 (𝐹𝑛) = (𝐻𝑛)) → ((𝐹𝐺)‘𝑋) = ((𝐻𝐾)‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  cin 3880  ran crn 5520  ccom 5523   Fn wfn 6319  1-1wf1 6321  1-1-ontowf1o 6323  cfv 6324  Basecbs 16475  SymGrpcsymg 18487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-tset 16576  df-efmnd 18026  df-symg 18488
This theorem is referenced by:  gsmsymgreqlem1  18550
  Copyright terms: Public domain W3C validator