Proof of Theorem fvcosymgeq
Step | Hyp | Ref
| Expression |
1 | | gsmsymgrfix.s |
. . . . . . 7
⊢ 𝑆 = (SymGrp‘𝑁) |
2 | | gsmsymgrfix.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝑆) |
3 | 1, 2 | symgbasf 18116 |
. . . . . 6
⊢ (𝐺 ∈ 𝐵 → 𝐺:𝑁⟶𝑁) |
4 | 3 | ffnd 6257 |
. . . . 5
⊢ (𝐺 ∈ 𝐵 → 𝐺 Fn 𝑁) |
5 | | gsmsymgreq.z |
. . . . . . 7
⊢ 𝑍 = (SymGrp‘𝑀) |
6 | | gsmsymgreq.p |
. . . . . . 7
⊢ 𝑃 = (Base‘𝑍) |
7 | 5, 6 | symgbasf 18116 |
. . . . . 6
⊢ (𝐾 ∈ 𝑃 → 𝐾:𝑀⟶𝑀) |
8 | 7 | ffnd 6257 |
. . . . 5
⊢ (𝐾 ∈ 𝑃 → 𝐾 Fn 𝑀) |
9 | 4, 8 | anim12i 607 |
. . . 4
⊢ ((𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃) → (𝐺 Fn 𝑁 ∧ 𝐾 Fn 𝑀)) |
10 | 9 | adantr 473 |
. . 3
⊢ (((𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃) ∧ (𝑋 ∈ 𝐼 ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑛 ∈ 𝐼 (𝐹‘𝑛) = (𝐻‘𝑛))) → (𝐺 Fn 𝑁 ∧ 𝐾 Fn 𝑀)) |
11 | | gsmsymgreq.i |
. . . . . . . 8
⊢ 𝐼 = (𝑁 ∩ 𝑀) |
12 | 11 | eleq2i 2870 |
. . . . . . 7
⊢ (𝑋 ∈ 𝐼 ↔ 𝑋 ∈ (𝑁 ∩ 𝑀)) |
13 | 12 | biimpi 208 |
. . . . . 6
⊢ (𝑋 ∈ 𝐼 → 𝑋 ∈ (𝑁 ∩ 𝑀)) |
14 | 13 | 3ad2ant1 1164 |
. . . . 5
⊢ ((𝑋 ∈ 𝐼 ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑛 ∈ 𝐼 (𝐹‘𝑛) = (𝐻‘𝑛)) → 𝑋 ∈ (𝑁 ∩ 𝑀)) |
15 | 14 | adantl 474 |
. . . 4
⊢ (((𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃) ∧ (𝑋 ∈ 𝐼 ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑛 ∈ 𝐼 (𝐹‘𝑛) = (𝐻‘𝑛))) → 𝑋 ∈ (𝑁 ∩ 𝑀)) |
16 | | simpr2 1251 |
. . . 4
⊢ (((𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃) ∧ (𝑋 ∈ 𝐼 ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑛 ∈ 𝐼 (𝐹‘𝑛) = (𝐻‘𝑛))) → (𝐺‘𝑋) = (𝐾‘𝑋)) |
17 | 1, 2 | symgbasf1o 18115 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ 𝐵 → 𝐺:𝑁–1-1-onto→𝑁) |
18 | | dff1o5 6365 |
. . . . . . . . . . . 12
⊢ (𝐺:𝑁–1-1-onto→𝑁 ↔ (𝐺:𝑁–1-1→𝑁 ∧ ran 𝐺 = 𝑁)) |
19 | | eqcom 2806 |
. . . . . . . . . . . . . 14
⊢ (ran
𝐺 = 𝑁 ↔ 𝑁 = ran 𝐺) |
20 | 19 | biimpi 208 |
. . . . . . . . . . . . 13
⊢ (ran
𝐺 = 𝑁 → 𝑁 = ran 𝐺) |
21 | 20 | adantl 474 |
. . . . . . . . . . . 12
⊢ ((𝐺:𝑁–1-1→𝑁 ∧ ran 𝐺 = 𝑁) → 𝑁 = ran 𝐺) |
22 | 18, 21 | sylbi 209 |
. . . . . . . . . . 11
⊢ (𝐺:𝑁–1-1-onto→𝑁 → 𝑁 = ran 𝐺) |
23 | 17, 22 | syl 17 |
. . . . . . . . . 10
⊢ (𝐺 ∈ 𝐵 → 𝑁 = ran 𝐺) |
24 | 5, 6 | symgbasf1o 18115 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ 𝑃 → 𝐾:𝑀–1-1-onto→𝑀) |
25 | | dff1o5 6365 |
. . . . . . . . . . . 12
⊢ (𝐾:𝑀–1-1-onto→𝑀 ↔ (𝐾:𝑀–1-1→𝑀 ∧ ran 𝐾 = 𝑀)) |
26 | | eqcom 2806 |
. . . . . . . . . . . . . 14
⊢ (ran
𝐾 = 𝑀 ↔ 𝑀 = ran 𝐾) |
27 | 26 | biimpi 208 |
. . . . . . . . . . . . 13
⊢ (ran
𝐾 = 𝑀 → 𝑀 = ran 𝐾) |
28 | 27 | adantl 474 |
. . . . . . . . . . . 12
⊢ ((𝐾:𝑀–1-1→𝑀 ∧ ran 𝐾 = 𝑀) → 𝑀 = ran 𝐾) |
29 | 25, 28 | sylbi 209 |
. . . . . . . . . . 11
⊢ (𝐾:𝑀–1-1-onto→𝑀 → 𝑀 = ran 𝐾) |
30 | 24, 29 | syl 17 |
. . . . . . . . . 10
⊢ (𝐾 ∈ 𝑃 → 𝑀 = ran 𝐾) |
31 | 23, 30 | ineqan12d 4014 |
. . . . . . . . 9
⊢ ((𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃) → (𝑁 ∩ 𝑀) = (ran 𝐺 ∩ ran 𝐾)) |
32 | 11, 31 | syl5eq 2845 |
. . . . . . . 8
⊢ ((𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃) → 𝐼 = (ran 𝐺 ∩ ran 𝐾)) |
33 | 32 | raleqdv 3327 |
. . . . . . 7
⊢ ((𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃) → (∀𝑛 ∈ 𝐼 (𝐹‘𝑛) = (𝐻‘𝑛) ↔ ∀𝑛 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹‘𝑛) = (𝐻‘𝑛))) |
34 | 33 | biimpcd 241 |
. . . . . 6
⊢
(∀𝑛 ∈
𝐼 (𝐹‘𝑛) = (𝐻‘𝑛) → ((𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃) → ∀𝑛 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹‘𝑛) = (𝐻‘𝑛))) |
35 | 34 | 3ad2ant3 1166 |
. . . . 5
⊢ ((𝑋 ∈ 𝐼 ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑛 ∈ 𝐼 (𝐹‘𝑛) = (𝐻‘𝑛)) → ((𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃) → ∀𝑛 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹‘𝑛) = (𝐻‘𝑛))) |
36 | 35 | impcom 397 |
. . . 4
⊢ (((𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃) ∧ (𝑋 ∈ 𝐼 ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑛 ∈ 𝐼 (𝐹‘𝑛) = (𝐻‘𝑛))) → ∀𝑛 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹‘𝑛) = (𝐻‘𝑛)) |
37 | 15, 16, 36 | 3jca 1159 |
. . 3
⊢ (((𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃) ∧ (𝑋 ∈ 𝐼 ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑛 ∈ 𝐼 (𝐹‘𝑛) = (𝐻‘𝑛))) → (𝑋 ∈ (𝑁 ∩ 𝑀) ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑛 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹‘𝑛) = (𝐻‘𝑛))) |
38 | | fvcofneq 6593 |
. . 3
⊢ ((𝐺 Fn 𝑁 ∧ 𝐾 Fn 𝑀) → ((𝑋 ∈ (𝑁 ∩ 𝑀) ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑛 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹‘𝑛) = (𝐻‘𝑛)) → ((𝐹 ∘ 𝐺)‘𝑋) = ((𝐻 ∘ 𝐾)‘𝑋))) |
39 | 10, 37, 38 | sylc 65 |
. 2
⊢ (((𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃) ∧ (𝑋 ∈ 𝐼 ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑛 ∈ 𝐼 (𝐹‘𝑛) = (𝐻‘𝑛))) → ((𝐹 ∘ 𝐺)‘𝑋) = ((𝐻 ∘ 𝐾)‘𝑋)) |
40 | 39 | ex 402 |
1
⊢ ((𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃) → ((𝑋 ∈ 𝐼 ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑛 ∈ 𝐼 (𝐹‘𝑛) = (𝐻‘𝑛)) → ((𝐹 ∘ 𝐺)‘𝑋) = ((𝐻 ∘ 𝐾)‘𝑋))) |