![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvcosymgeq | Structured version Visualization version GIF version |
Description: The values of two compositions of permutations are equal if the values of the composed permutations are pairwise equal. (Contributed by AV, 26-Jan-2019.) |
Ref | Expression |
---|---|
gsmsymgrfix.s | ⊢ 𝑆 = (SymGrp‘𝑁) |
gsmsymgrfix.b | ⊢ 𝐵 = (Base‘𝑆) |
gsmsymgreq.z | ⊢ 𝑍 = (SymGrp‘𝑀) |
gsmsymgreq.p | ⊢ 𝑃 = (Base‘𝑍) |
gsmsymgreq.i | ⊢ 𝐼 = (𝑁 ∩ 𝑀) |
Ref | Expression |
---|---|
fvcosymgeq | ⊢ ((𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃) → ((𝑋 ∈ 𝐼 ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑛 ∈ 𝐼 (𝐹‘𝑛) = (𝐻‘𝑛)) → ((𝐹 ∘ 𝐺)‘𝑋) = ((𝐻 ∘ 𝐾)‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsmsymgrfix.s | . . . . . . 7 ⊢ 𝑆 = (SymGrp‘𝑁) | |
2 | gsmsymgrfix.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑆) | |
3 | 1, 2 | symgbasf 19165 | . . . . . 6 ⊢ (𝐺 ∈ 𝐵 → 𝐺:𝑁⟶𝑁) |
4 | 3 | ffnd 6673 | . . . . 5 ⊢ (𝐺 ∈ 𝐵 → 𝐺 Fn 𝑁) |
5 | gsmsymgreq.z | . . . . . . 7 ⊢ 𝑍 = (SymGrp‘𝑀) | |
6 | gsmsymgreq.p | . . . . . . 7 ⊢ 𝑃 = (Base‘𝑍) | |
7 | 5, 6 | symgbasf 19165 | . . . . . 6 ⊢ (𝐾 ∈ 𝑃 → 𝐾:𝑀⟶𝑀) |
8 | 7 | ffnd 6673 | . . . . 5 ⊢ (𝐾 ∈ 𝑃 → 𝐾 Fn 𝑀) |
9 | 4, 8 | anim12i 614 | . . . 4 ⊢ ((𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃) → (𝐺 Fn 𝑁 ∧ 𝐾 Fn 𝑀)) |
10 | 9 | adantr 482 | . . 3 ⊢ (((𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃) ∧ (𝑋 ∈ 𝐼 ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑛 ∈ 𝐼 (𝐹‘𝑛) = (𝐻‘𝑛))) → (𝐺 Fn 𝑁 ∧ 𝐾 Fn 𝑀)) |
11 | gsmsymgreq.i | . . . . . . . 8 ⊢ 𝐼 = (𝑁 ∩ 𝑀) | |
12 | 11 | eleq2i 2826 | . . . . . . 7 ⊢ (𝑋 ∈ 𝐼 ↔ 𝑋 ∈ (𝑁 ∩ 𝑀)) |
13 | 12 | biimpi 215 | . . . . . 6 ⊢ (𝑋 ∈ 𝐼 → 𝑋 ∈ (𝑁 ∩ 𝑀)) |
14 | 13 | 3ad2ant1 1134 | . . . . 5 ⊢ ((𝑋 ∈ 𝐼 ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑛 ∈ 𝐼 (𝐹‘𝑛) = (𝐻‘𝑛)) → 𝑋 ∈ (𝑁 ∩ 𝑀)) |
15 | 14 | adantl 483 | . . . 4 ⊢ (((𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃) ∧ (𝑋 ∈ 𝐼 ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑛 ∈ 𝐼 (𝐹‘𝑛) = (𝐻‘𝑛))) → 𝑋 ∈ (𝑁 ∩ 𝑀)) |
16 | simpr2 1196 | . . . 4 ⊢ (((𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃) ∧ (𝑋 ∈ 𝐼 ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑛 ∈ 𝐼 (𝐹‘𝑛) = (𝐻‘𝑛))) → (𝐺‘𝑋) = (𝐾‘𝑋)) | |
17 | 1, 2 | symgbasf1o 19164 | . . . . . . . . . . 11 ⊢ (𝐺 ∈ 𝐵 → 𝐺:𝑁–1-1-onto→𝑁) |
18 | dff1o5 6797 | . . . . . . . . . . . 12 ⊢ (𝐺:𝑁–1-1-onto→𝑁 ↔ (𝐺:𝑁–1-1→𝑁 ∧ ran 𝐺 = 𝑁)) | |
19 | eqcom 2740 | . . . . . . . . . . . . 13 ⊢ (ran 𝐺 = 𝑁 ↔ 𝑁 = ran 𝐺) | |
20 | 19 | biimpi 215 | . . . . . . . . . . . 12 ⊢ (ran 𝐺 = 𝑁 → 𝑁 = ran 𝐺) |
21 | 18, 20 | simplbiim 506 | . . . . . . . . . . 11 ⊢ (𝐺:𝑁–1-1-onto→𝑁 → 𝑁 = ran 𝐺) |
22 | 17, 21 | syl 17 | . . . . . . . . . 10 ⊢ (𝐺 ∈ 𝐵 → 𝑁 = ran 𝐺) |
23 | 5, 6 | symgbasf1o 19164 | . . . . . . . . . . 11 ⊢ (𝐾 ∈ 𝑃 → 𝐾:𝑀–1-1-onto→𝑀) |
24 | dff1o5 6797 | . . . . . . . . . . . 12 ⊢ (𝐾:𝑀–1-1-onto→𝑀 ↔ (𝐾:𝑀–1-1→𝑀 ∧ ran 𝐾 = 𝑀)) | |
25 | eqcom 2740 | . . . . . . . . . . . . 13 ⊢ (ran 𝐾 = 𝑀 ↔ 𝑀 = ran 𝐾) | |
26 | 25 | biimpi 215 | . . . . . . . . . . . 12 ⊢ (ran 𝐾 = 𝑀 → 𝑀 = ran 𝐾) |
27 | 24, 26 | simplbiim 506 | . . . . . . . . . . 11 ⊢ (𝐾:𝑀–1-1-onto→𝑀 → 𝑀 = ran 𝐾) |
28 | 23, 27 | syl 17 | . . . . . . . . . 10 ⊢ (𝐾 ∈ 𝑃 → 𝑀 = ran 𝐾) |
29 | 22, 28 | ineqan12d 4178 | . . . . . . . . 9 ⊢ ((𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃) → (𝑁 ∩ 𝑀) = (ran 𝐺 ∩ ran 𝐾)) |
30 | 11, 29 | eqtrid 2785 | . . . . . . . 8 ⊢ ((𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃) → 𝐼 = (ran 𝐺 ∩ ran 𝐾)) |
31 | 30 | raleqdv 3312 | . . . . . . 7 ⊢ ((𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃) → (∀𝑛 ∈ 𝐼 (𝐹‘𝑛) = (𝐻‘𝑛) ↔ ∀𝑛 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹‘𝑛) = (𝐻‘𝑛))) |
32 | 31 | biimpcd 249 | . . . . . 6 ⊢ (∀𝑛 ∈ 𝐼 (𝐹‘𝑛) = (𝐻‘𝑛) → ((𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃) → ∀𝑛 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹‘𝑛) = (𝐻‘𝑛))) |
33 | 32 | 3ad2ant3 1136 | . . . . 5 ⊢ ((𝑋 ∈ 𝐼 ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑛 ∈ 𝐼 (𝐹‘𝑛) = (𝐻‘𝑛)) → ((𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃) → ∀𝑛 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹‘𝑛) = (𝐻‘𝑛))) |
34 | 33 | impcom 409 | . . . 4 ⊢ (((𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃) ∧ (𝑋 ∈ 𝐼 ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑛 ∈ 𝐼 (𝐹‘𝑛) = (𝐻‘𝑛))) → ∀𝑛 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹‘𝑛) = (𝐻‘𝑛)) |
35 | 15, 16, 34 | 3jca 1129 | . . 3 ⊢ (((𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃) ∧ (𝑋 ∈ 𝐼 ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑛 ∈ 𝐼 (𝐹‘𝑛) = (𝐻‘𝑛))) → (𝑋 ∈ (𝑁 ∩ 𝑀) ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑛 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹‘𝑛) = (𝐻‘𝑛))) |
36 | fvcofneq 7047 | . . 3 ⊢ ((𝐺 Fn 𝑁 ∧ 𝐾 Fn 𝑀) → ((𝑋 ∈ (𝑁 ∩ 𝑀) ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑛 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹‘𝑛) = (𝐻‘𝑛)) → ((𝐹 ∘ 𝐺)‘𝑋) = ((𝐻 ∘ 𝐾)‘𝑋))) | |
37 | 10, 35, 36 | sylc 65 | . 2 ⊢ (((𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃) ∧ (𝑋 ∈ 𝐼 ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑛 ∈ 𝐼 (𝐹‘𝑛) = (𝐻‘𝑛))) → ((𝐹 ∘ 𝐺)‘𝑋) = ((𝐻 ∘ 𝐾)‘𝑋)) |
38 | 37 | ex 414 | 1 ⊢ ((𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃) → ((𝑋 ∈ 𝐼 ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑛 ∈ 𝐼 (𝐹‘𝑛) = (𝐻‘𝑛)) → ((𝐹 ∘ 𝐺)‘𝑋) = ((𝐻 ∘ 𝐾)‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ∀wral 3061 ∩ cin 3913 ran crn 5638 ∘ ccom 5641 Fn wfn 6495 –1-1→wf1 6497 –1-1-onto→wf1o 6499 ‘cfv 6500 Basecbs 17091 SymGrpcsymg 19156 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 ax-cnex 11115 ax-resscn 11116 ax-1cn 11117 ax-icn 11118 ax-addcl 11119 ax-addrcl 11120 ax-mulcl 11121 ax-mulrcl 11122 ax-mulcom 11123 ax-addass 11124 ax-mulass 11125 ax-distr 11126 ax-i2m1 11127 ax-1ne0 11128 ax-1rid 11129 ax-rnegex 11130 ax-rrecex 11131 ax-cnre 11132 ax-pre-lttri 11133 ax-pre-lttrn 11134 ax-pre-ltadd 11135 ax-pre-mulgt0 11136 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3933 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-tp 4595 df-op 4597 df-uni 4870 df-iun 4960 df-br 5110 df-opab 5172 df-mpt 5193 df-tr 5227 df-id 5535 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5592 df-we 5594 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-pred 6257 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-riota 7317 df-ov 7364 df-oprab 7365 df-mpo 7366 df-om 7807 df-1st 7925 df-2nd 7926 df-frecs 8216 df-wrecs 8247 df-recs 8321 df-rdg 8360 df-1o 8416 df-er 8654 df-map 8773 df-en 8890 df-dom 8891 df-sdom 8892 df-fin 8893 df-pnf 11199 df-mnf 11200 df-xr 11201 df-ltxr 11202 df-le 11203 df-sub 11395 df-neg 11396 df-nn 12162 df-2 12224 df-3 12225 df-4 12226 df-5 12227 df-6 12228 df-7 12229 df-8 12230 df-9 12231 df-n0 12422 df-z 12508 df-uz 12772 df-fz 13434 df-struct 17027 df-sets 17044 df-slot 17062 df-ndx 17074 df-base 17092 df-ress 17121 df-plusg 17154 df-tset 17160 df-efmnd 18687 df-symg 19157 |
This theorem is referenced by: gsmsymgreqlem1 19220 |
Copyright terms: Public domain | W3C validator |