Proof of Theorem fvcosymgeq
| Step | Hyp | Ref
| Expression |
| 1 | | gsmsymgrfix.s |
. . . . . . 7
⊢ 𝑆 = (SymGrp‘𝑁) |
| 2 | | gsmsymgrfix.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝑆) |
| 3 | 1, 2 | symgbasf 19366 |
. . . . . 6
⊢ (𝐺 ∈ 𝐵 → 𝐺:𝑁⟶𝑁) |
| 4 | 3 | ffnd 6718 |
. . . . 5
⊢ (𝐺 ∈ 𝐵 → 𝐺 Fn 𝑁) |
| 5 | | gsmsymgreq.z |
. . . . . . 7
⊢ 𝑍 = (SymGrp‘𝑀) |
| 6 | | gsmsymgreq.p |
. . . . . . 7
⊢ 𝑃 = (Base‘𝑍) |
| 7 | 5, 6 | symgbasf 19366 |
. . . . . 6
⊢ (𝐾 ∈ 𝑃 → 𝐾:𝑀⟶𝑀) |
| 8 | 7 | ffnd 6718 |
. . . . 5
⊢ (𝐾 ∈ 𝑃 → 𝐾 Fn 𝑀) |
| 9 | 4, 8 | anim12i 613 |
. . . 4
⊢ ((𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃) → (𝐺 Fn 𝑁 ∧ 𝐾 Fn 𝑀)) |
| 10 | 9 | adantr 480 |
. . 3
⊢ (((𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃) ∧ (𝑋 ∈ 𝐼 ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑛 ∈ 𝐼 (𝐹‘𝑛) = (𝐻‘𝑛))) → (𝐺 Fn 𝑁 ∧ 𝐾 Fn 𝑀)) |
| 11 | | gsmsymgreq.i |
. . . . . . . 8
⊢ 𝐼 = (𝑁 ∩ 𝑀) |
| 12 | 11 | eleq2i 2825 |
. . . . . . 7
⊢ (𝑋 ∈ 𝐼 ↔ 𝑋 ∈ (𝑁 ∩ 𝑀)) |
| 13 | 12 | biimpi 216 |
. . . . . 6
⊢ (𝑋 ∈ 𝐼 → 𝑋 ∈ (𝑁 ∩ 𝑀)) |
| 14 | 13 | 3ad2ant1 1133 |
. . . . 5
⊢ ((𝑋 ∈ 𝐼 ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑛 ∈ 𝐼 (𝐹‘𝑛) = (𝐻‘𝑛)) → 𝑋 ∈ (𝑁 ∩ 𝑀)) |
| 15 | 14 | adantl 481 |
. . . 4
⊢ (((𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃) ∧ (𝑋 ∈ 𝐼 ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑛 ∈ 𝐼 (𝐹‘𝑛) = (𝐻‘𝑛))) → 𝑋 ∈ (𝑁 ∩ 𝑀)) |
| 16 | | simpr2 1195 |
. . . 4
⊢ (((𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃) ∧ (𝑋 ∈ 𝐼 ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑛 ∈ 𝐼 (𝐹‘𝑛) = (𝐻‘𝑛))) → (𝐺‘𝑋) = (𝐾‘𝑋)) |
| 17 | 1, 2 | symgbasf1o 19365 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ 𝐵 → 𝐺:𝑁–1-1-onto→𝑁) |
| 18 | | dff1o5 6838 |
. . . . . . . . . . . 12
⊢ (𝐺:𝑁–1-1-onto→𝑁 ↔ (𝐺:𝑁–1-1→𝑁 ∧ ran 𝐺 = 𝑁)) |
| 19 | | eqcom 2741 |
. . . . . . . . . . . . 13
⊢ (ran
𝐺 = 𝑁 ↔ 𝑁 = ran 𝐺) |
| 20 | 19 | biimpi 216 |
. . . . . . . . . . . 12
⊢ (ran
𝐺 = 𝑁 → 𝑁 = ran 𝐺) |
| 21 | 18, 20 | simplbiim 504 |
. . . . . . . . . . 11
⊢ (𝐺:𝑁–1-1-onto→𝑁 → 𝑁 = ran 𝐺) |
| 22 | 17, 21 | syl 17 |
. . . . . . . . . 10
⊢ (𝐺 ∈ 𝐵 → 𝑁 = ran 𝐺) |
| 23 | 5, 6 | symgbasf1o 19365 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ 𝑃 → 𝐾:𝑀–1-1-onto→𝑀) |
| 24 | | dff1o5 6838 |
. . . . . . . . . . . 12
⊢ (𝐾:𝑀–1-1-onto→𝑀 ↔ (𝐾:𝑀–1-1→𝑀 ∧ ran 𝐾 = 𝑀)) |
| 25 | | eqcom 2741 |
. . . . . . . . . . . . 13
⊢ (ran
𝐾 = 𝑀 ↔ 𝑀 = ran 𝐾) |
| 26 | 25 | biimpi 216 |
. . . . . . . . . . . 12
⊢ (ran
𝐾 = 𝑀 → 𝑀 = ran 𝐾) |
| 27 | 24, 26 | simplbiim 504 |
. . . . . . . . . . 11
⊢ (𝐾:𝑀–1-1-onto→𝑀 → 𝑀 = ran 𝐾) |
| 28 | 23, 27 | syl 17 |
. . . . . . . . . 10
⊢ (𝐾 ∈ 𝑃 → 𝑀 = ran 𝐾) |
| 29 | 22, 28 | ineqan12d 4204 |
. . . . . . . . 9
⊢ ((𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃) → (𝑁 ∩ 𝑀) = (ran 𝐺 ∩ ran 𝐾)) |
| 30 | 11, 29 | eqtrid 2781 |
. . . . . . . 8
⊢ ((𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃) → 𝐼 = (ran 𝐺 ∩ ran 𝐾)) |
| 31 | 30 | raleqdv 3310 |
. . . . . . 7
⊢ ((𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃) → (∀𝑛 ∈ 𝐼 (𝐹‘𝑛) = (𝐻‘𝑛) ↔ ∀𝑛 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹‘𝑛) = (𝐻‘𝑛))) |
| 32 | 31 | biimpcd 249 |
. . . . . 6
⊢
(∀𝑛 ∈
𝐼 (𝐹‘𝑛) = (𝐻‘𝑛) → ((𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃) → ∀𝑛 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹‘𝑛) = (𝐻‘𝑛))) |
| 33 | 32 | 3ad2ant3 1135 |
. . . . 5
⊢ ((𝑋 ∈ 𝐼 ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑛 ∈ 𝐼 (𝐹‘𝑛) = (𝐻‘𝑛)) → ((𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃) → ∀𝑛 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹‘𝑛) = (𝐻‘𝑛))) |
| 34 | 33 | impcom 407 |
. . . 4
⊢ (((𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃) ∧ (𝑋 ∈ 𝐼 ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑛 ∈ 𝐼 (𝐹‘𝑛) = (𝐻‘𝑛))) → ∀𝑛 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹‘𝑛) = (𝐻‘𝑛)) |
| 35 | 15, 16, 34 | 3jca 1128 |
. . 3
⊢ (((𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃) ∧ (𝑋 ∈ 𝐼 ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑛 ∈ 𝐼 (𝐹‘𝑛) = (𝐻‘𝑛))) → (𝑋 ∈ (𝑁 ∩ 𝑀) ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑛 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹‘𝑛) = (𝐻‘𝑛))) |
| 36 | | fvcofneq 7094 |
. . 3
⊢ ((𝐺 Fn 𝑁 ∧ 𝐾 Fn 𝑀) → ((𝑋 ∈ (𝑁 ∩ 𝑀) ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑛 ∈ (ran 𝐺 ∩ ran 𝐾)(𝐹‘𝑛) = (𝐻‘𝑛)) → ((𝐹 ∘ 𝐺)‘𝑋) = ((𝐻 ∘ 𝐾)‘𝑋))) |
| 37 | 10, 35, 36 | sylc 65 |
. 2
⊢ (((𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃) ∧ (𝑋 ∈ 𝐼 ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑛 ∈ 𝐼 (𝐹‘𝑛) = (𝐻‘𝑛))) → ((𝐹 ∘ 𝐺)‘𝑋) = ((𝐻 ∘ 𝐾)‘𝑋)) |
| 38 | 37 | ex 412 |
1
⊢ ((𝐺 ∈ 𝐵 ∧ 𝐾 ∈ 𝑃) → ((𝑋 ∈ 𝐼 ∧ (𝐺‘𝑋) = (𝐾‘𝑋) ∧ ∀𝑛 ∈ 𝐼 (𝐹‘𝑛) = (𝐻‘𝑛)) → ((𝐹 ∘ 𝐺)‘𝑋) = ((𝐻 ∘ 𝐾)‘𝑋))) |