MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1 Structured version   Visualization version   GIF version

Theorem ackbij1 10166
Description: The Ackermann bijection, part 1: each natural number can be uniquely coded in binary as a finite set of natural numbers and conversely. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Hypothesis
Ref Expression
ackbij.f 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
Assertion
Ref Expression
ackbij1 𝐹:(𝒫 ω ∩ Fin)–1-1-onto→ω
Distinct variable group:   𝑥,𝐹,𝑦

Proof of Theorem ackbij1
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ackbij.f . . 3 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
21ackbij1lem17 10164 . 2 𝐹:(𝒫 ω ∩ Fin)–1-1→ω
3 f1f 6738 . . . 4 (𝐹:(𝒫 ω ∩ Fin)–1-1→ω → 𝐹:(𝒫 ω ∩ Fin)⟶ω)
4 frn 6677 . . . 4 (𝐹:(𝒫 ω ∩ Fin)⟶ω → ran 𝐹 ⊆ ω)
52, 3, 4mp2b 10 . . 3 ran 𝐹 ⊆ ω
6 eleq1 2816 . . . . 5 (𝑏 = ∅ → (𝑏 ∈ ran 𝐹 ↔ ∅ ∈ ran 𝐹))
7 eleq1 2816 . . . . 5 (𝑏 = 𝑎 → (𝑏 ∈ ran 𝐹𝑎 ∈ ran 𝐹))
8 eleq1 2816 . . . . 5 (𝑏 = suc 𝑎 → (𝑏 ∈ ran 𝐹 ↔ suc 𝑎 ∈ ran 𝐹))
9 peano1 7845 . . . . . . . 8 ∅ ∈ ω
10 ackbij1lem3 10150 . . . . . . . 8 (∅ ∈ ω → ∅ ∈ (𝒫 ω ∩ Fin))
119, 10ax-mp 5 . . . . . . 7 ∅ ∈ (𝒫 ω ∩ Fin)
121ackbij1lem13 10160 . . . . . . 7 (𝐹‘∅) = ∅
13 fveqeq2 6849 . . . . . . . 8 (𝑎 = ∅ → ((𝐹𝑎) = ∅ ↔ (𝐹‘∅) = ∅))
1413rspcev 3585 . . . . . . 7 ((∅ ∈ (𝒫 ω ∩ Fin) ∧ (𝐹‘∅) = ∅) → ∃𝑎 ∈ (𝒫 ω ∩ Fin)(𝐹𝑎) = ∅)
1511, 12, 14mp2an 692 . . . . . 6 𝑎 ∈ (𝒫 ω ∩ Fin)(𝐹𝑎) = ∅
16 f1fn 6739 . . . . . . . 8 (𝐹:(𝒫 ω ∩ Fin)–1-1→ω → 𝐹 Fn (𝒫 ω ∩ Fin))
172, 16ax-mp 5 . . . . . . 7 𝐹 Fn (𝒫 ω ∩ Fin)
18 fvelrnb 6903 . . . . . . 7 (𝐹 Fn (𝒫 ω ∩ Fin) → (∅ ∈ ran 𝐹 ↔ ∃𝑎 ∈ (𝒫 ω ∩ Fin)(𝐹𝑎) = ∅))
1917, 18ax-mp 5 . . . . . 6 (∅ ∈ ran 𝐹 ↔ ∃𝑎 ∈ (𝒫 ω ∩ Fin)(𝐹𝑎) = ∅)
2015, 19mpbir 231 . . . . 5 ∅ ∈ ran 𝐹
211ackbij1lem18 10165 . . . . . . . . 9 (𝑐 ∈ (𝒫 ω ∩ Fin) → ∃𝑏 ∈ (𝒫 ω ∩ Fin)(𝐹𝑏) = suc (𝐹𝑐))
2221adantl 481 . . . . . . . 8 ((𝑎 ∈ ω ∧ 𝑐 ∈ (𝒫 ω ∩ Fin)) → ∃𝑏 ∈ (𝒫 ω ∩ Fin)(𝐹𝑏) = suc (𝐹𝑐))
23 suceq 6388 . . . . . . . . . 10 ((𝐹𝑐) = 𝑎 → suc (𝐹𝑐) = suc 𝑎)
2423eqeq2d 2740 . . . . . . . . 9 ((𝐹𝑐) = 𝑎 → ((𝐹𝑏) = suc (𝐹𝑐) ↔ (𝐹𝑏) = suc 𝑎))
2524rexbidv 3157 . . . . . . . 8 ((𝐹𝑐) = 𝑎 → (∃𝑏 ∈ (𝒫 ω ∩ Fin)(𝐹𝑏) = suc (𝐹𝑐) ↔ ∃𝑏 ∈ (𝒫 ω ∩ Fin)(𝐹𝑏) = suc 𝑎))
2622, 25syl5ibcom 245 . . . . . . 7 ((𝑎 ∈ ω ∧ 𝑐 ∈ (𝒫 ω ∩ Fin)) → ((𝐹𝑐) = 𝑎 → ∃𝑏 ∈ (𝒫 ω ∩ Fin)(𝐹𝑏) = suc 𝑎))
2726rexlimdva 3134 . . . . . 6 (𝑎 ∈ ω → (∃𝑐 ∈ (𝒫 ω ∩ Fin)(𝐹𝑐) = 𝑎 → ∃𝑏 ∈ (𝒫 ω ∩ Fin)(𝐹𝑏) = suc 𝑎))
28 fvelrnb 6903 . . . . . . 7 (𝐹 Fn (𝒫 ω ∩ Fin) → (𝑎 ∈ ran 𝐹 ↔ ∃𝑐 ∈ (𝒫 ω ∩ Fin)(𝐹𝑐) = 𝑎))
2917, 28ax-mp 5 . . . . . 6 (𝑎 ∈ ran 𝐹 ↔ ∃𝑐 ∈ (𝒫 ω ∩ Fin)(𝐹𝑐) = 𝑎)
30 fvelrnb 6903 . . . . . . 7 (𝐹 Fn (𝒫 ω ∩ Fin) → (suc 𝑎 ∈ ran 𝐹 ↔ ∃𝑏 ∈ (𝒫 ω ∩ Fin)(𝐹𝑏) = suc 𝑎))
3117, 30ax-mp 5 . . . . . 6 (suc 𝑎 ∈ ran 𝐹 ↔ ∃𝑏 ∈ (𝒫 ω ∩ Fin)(𝐹𝑏) = suc 𝑎)
3227, 29, 313imtr4g 296 . . . . 5 (𝑎 ∈ ω → (𝑎 ∈ ran 𝐹 → suc 𝑎 ∈ ran 𝐹))
336, 7, 8, 7, 20, 32finds 7852 . . . 4 (𝑎 ∈ ω → 𝑎 ∈ ran 𝐹)
3433ssriv 3947 . . 3 ω ⊆ ran 𝐹
355, 34eqssi 3960 . 2 ran 𝐹 = ω
36 dff1o5 6791 . 2 (𝐹:(𝒫 ω ∩ Fin)–1-1-onto→ω ↔ (𝐹:(𝒫 ω ∩ Fin)–1-1→ω ∧ ran 𝐹 = ω))
372, 35, 36mpbir2an 711 1 𝐹:(𝒫 ω ∩ Fin)–1-1-onto→ω
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  cin 3910  wss 3911  c0 4292  𝒫 cpw 4559  {csn 4585   ciun 4951  cmpt 5183   × cxp 5629  ran crn 5632  suc csuc 6322   Fn wfn 6494  wf 6495  1-1wf1 6496  1-1-ontowf1o 6498  cfv 6499  ωcom 7822  Fincfn 8895  cardccrd 9864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-dju 9830  df-card 9868
This theorem is referenced by:  fictb  10173  ackbijnn  15770
  Copyright terms: Public domain W3C validator