MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1 Structured version   Visualization version   GIF version

Theorem ackbij1 10235
Description: The Ackermann bijection, part 1: each natural number can be uniquely coded in binary as a finite set of natural numbers and conversely. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Hypothesis
Ref Expression
ackbij.f 𝐹 = (π‘₯ ∈ (𝒫 Ο‰ ∩ Fin) ↦ (cardβ€˜βˆͺ 𝑦 ∈ π‘₯ ({𝑦} Γ— 𝒫 𝑦)))
Assertion
Ref Expression
ackbij1 𝐹:(𝒫 Ο‰ ∩ Fin)–1-1-ontoβ†’Ο‰
Distinct variable group:   π‘₯,𝐹,𝑦

Proof of Theorem ackbij1
Dummy variables π‘Ž 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ackbij.f . . 3 𝐹 = (π‘₯ ∈ (𝒫 Ο‰ ∩ Fin) ↦ (cardβ€˜βˆͺ 𝑦 ∈ π‘₯ ({𝑦} Γ— 𝒫 𝑦)))
21ackbij1lem17 10233 . 2 𝐹:(𝒫 Ο‰ ∩ Fin)–1-1β†’Ο‰
3 f1f 6786 . . . 4 (𝐹:(𝒫 Ο‰ ∩ Fin)–1-1β†’Ο‰ β†’ 𝐹:(𝒫 Ο‰ ∩ Fin)βŸΆΟ‰)
4 frn 6723 . . . 4 (𝐹:(𝒫 Ο‰ ∩ Fin)βŸΆΟ‰ β†’ ran 𝐹 βŠ† Ο‰)
52, 3, 4mp2b 10 . . 3 ran 𝐹 βŠ† Ο‰
6 eleq1 2819 . . . . 5 (𝑏 = βˆ… β†’ (𝑏 ∈ ran 𝐹 ↔ βˆ… ∈ ran 𝐹))
7 eleq1 2819 . . . . 5 (𝑏 = π‘Ž β†’ (𝑏 ∈ ran 𝐹 ↔ π‘Ž ∈ ran 𝐹))
8 eleq1 2819 . . . . 5 (𝑏 = suc π‘Ž β†’ (𝑏 ∈ ran 𝐹 ↔ suc π‘Ž ∈ ran 𝐹))
9 peano1 7881 . . . . . . . 8 βˆ… ∈ Ο‰
10 ackbij1lem3 10219 . . . . . . . 8 (βˆ… ∈ Ο‰ β†’ βˆ… ∈ (𝒫 Ο‰ ∩ Fin))
119, 10ax-mp 5 . . . . . . 7 βˆ… ∈ (𝒫 Ο‰ ∩ Fin)
121ackbij1lem13 10229 . . . . . . 7 (πΉβ€˜βˆ…) = βˆ…
13 fveqeq2 6899 . . . . . . . 8 (π‘Ž = βˆ… β†’ ((πΉβ€˜π‘Ž) = βˆ… ↔ (πΉβ€˜βˆ…) = βˆ…))
1413rspcev 3611 . . . . . . 7 ((βˆ… ∈ (𝒫 Ο‰ ∩ Fin) ∧ (πΉβ€˜βˆ…) = βˆ…) β†’ βˆƒπ‘Ž ∈ (𝒫 Ο‰ ∩ Fin)(πΉβ€˜π‘Ž) = βˆ…)
1511, 12, 14mp2an 688 . . . . . 6 βˆƒπ‘Ž ∈ (𝒫 Ο‰ ∩ Fin)(πΉβ€˜π‘Ž) = βˆ…
16 f1fn 6787 . . . . . . . 8 (𝐹:(𝒫 Ο‰ ∩ Fin)–1-1β†’Ο‰ β†’ 𝐹 Fn (𝒫 Ο‰ ∩ Fin))
172, 16ax-mp 5 . . . . . . 7 𝐹 Fn (𝒫 Ο‰ ∩ Fin)
18 fvelrnb 6951 . . . . . . 7 (𝐹 Fn (𝒫 Ο‰ ∩ Fin) β†’ (βˆ… ∈ ran 𝐹 ↔ βˆƒπ‘Ž ∈ (𝒫 Ο‰ ∩ Fin)(πΉβ€˜π‘Ž) = βˆ…))
1917, 18ax-mp 5 . . . . . 6 (βˆ… ∈ ran 𝐹 ↔ βˆƒπ‘Ž ∈ (𝒫 Ο‰ ∩ Fin)(πΉβ€˜π‘Ž) = βˆ…)
2015, 19mpbir 230 . . . . 5 βˆ… ∈ ran 𝐹
211ackbij1lem18 10234 . . . . . . . . 9 (𝑐 ∈ (𝒫 Ο‰ ∩ Fin) β†’ βˆƒπ‘ ∈ (𝒫 Ο‰ ∩ Fin)(πΉβ€˜π‘) = suc (πΉβ€˜π‘))
2221adantl 480 . . . . . . . 8 ((π‘Ž ∈ Ο‰ ∧ 𝑐 ∈ (𝒫 Ο‰ ∩ Fin)) β†’ βˆƒπ‘ ∈ (𝒫 Ο‰ ∩ Fin)(πΉβ€˜π‘) = suc (πΉβ€˜π‘))
23 suceq 6429 . . . . . . . . . 10 ((πΉβ€˜π‘) = π‘Ž β†’ suc (πΉβ€˜π‘) = suc π‘Ž)
2423eqeq2d 2741 . . . . . . . . 9 ((πΉβ€˜π‘) = π‘Ž β†’ ((πΉβ€˜π‘) = suc (πΉβ€˜π‘) ↔ (πΉβ€˜π‘) = suc π‘Ž))
2524rexbidv 3176 . . . . . . . 8 ((πΉβ€˜π‘) = π‘Ž β†’ (βˆƒπ‘ ∈ (𝒫 Ο‰ ∩ Fin)(πΉβ€˜π‘) = suc (πΉβ€˜π‘) ↔ βˆƒπ‘ ∈ (𝒫 Ο‰ ∩ Fin)(πΉβ€˜π‘) = suc π‘Ž))
2622, 25syl5ibcom 244 . . . . . . 7 ((π‘Ž ∈ Ο‰ ∧ 𝑐 ∈ (𝒫 Ο‰ ∩ Fin)) β†’ ((πΉβ€˜π‘) = π‘Ž β†’ βˆƒπ‘ ∈ (𝒫 Ο‰ ∩ Fin)(πΉβ€˜π‘) = suc π‘Ž))
2726rexlimdva 3153 . . . . . 6 (π‘Ž ∈ Ο‰ β†’ (βˆƒπ‘ ∈ (𝒫 Ο‰ ∩ Fin)(πΉβ€˜π‘) = π‘Ž β†’ βˆƒπ‘ ∈ (𝒫 Ο‰ ∩ Fin)(πΉβ€˜π‘) = suc π‘Ž))
28 fvelrnb 6951 . . . . . . 7 (𝐹 Fn (𝒫 Ο‰ ∩ Fin) β†’ (π‘Ž ∈ ran 𝐹 ↔ βˆƒπ‘ ∈ (𝒫 Ο‰ ∩ Fin)(πΉβ€˜π‘) = π‘Ž))
2917, 28ax-mp 5 . . . . . 6 (π‘Ž ∈ ran 𝐹 ↔ βˆƒπ‘ ∈ (𝒫 Ο‰ ∩ Fin)(πΉβ€˜π‘) = π‘Ž)
30 fvelrnb 6951 . . . . . . 7 (𝐹 Fn (𝒫 Ο‰ ∩ Fin) β†’ (suc π‘Ž ∈ ran 𝐹 ↔ βˆƒπ‘ ∈ (𝒫 Ο‰ ∩ Fin)(πΉβ€˜π‘) = suc π‘Ž))
3117, 30ax-mp 5 . . . . . 6 (suc π‘Ž ∈ ran 𝐹 ↔ βˆƒπ‘ ∈ (𝒫 Ο‰ ∩ Fin)(πΉβ€˜π‘) = suc π‘Ž)
3227, 29, 313imtr4g 295 . . . . 5 (π‘Ž ∈ Ο‰ β†’ (π‘Ž ∈ ran 𝐹 β†’ suc π‘Ž ∈ ran 𝐹))
336, 7, 8, 7, 20, 32finds 7891 . . . 4 (π‘Ž ∈ Ο‰ β†’ π‘Ž ∈ ran 𝐹)
3433ssriv 3985 . . 3 Ο‰ βŠ† ran 𝐹
355, 34eqssi 3997 . 2 ran 𝐹 = Ο‰
36 dff1o5 6841 . 2 (𝐹:(𝒫 Ο‰ ∩ Fin)–1-1-ontoβ†’Ο‰ ↔ (𝐹:(𝒫 Ο‰ ∩ Fin)–1-1β†’Ο‰ ∧ ran 𝐹 = Ο‰))
372, 35, 36mpbir2an 707 1 𝐹:(𝒫 Ο‰ ∩ Fin)–1-1-ontoβ†’Ο‰
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 394   = wceq 1539   ∈ wcel 2104  βˆƒwrex 3068   ∩ cin 3946   βŠ† wss 3947  βˆ…c0 4321  π’« cpw 4601  {csn 4627  βˆͺ ciun 4996   ↦ cmpt 5230   Γ— cxp 5673  ran crn 5676  suc csuc 6365   Fn wfn 6537  βŸΆwf 6538  β€“1-1β†’wf1 6539  β€“1-1-ontoβ†’wf1o 6541  β€˜cfv 6542  Ο‰com 7857  Fincfn 8941  cardccrd 9932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-2o 8469  df-oadd 8472  df-er 8705  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-dju 9898  df-card 9936
This theorem is referenced by:  fictb  10242  ackbijnn  15778
  Copyright terms: Public domain W3C validator