Step | Hyp | Ref
| Expression |
1 | | ackbij.f |
. . 3
β’ πΉ = (π₯ β (π« Ο β© Fin) β¦
(cardββͺ π¦ β π₯ ({π¦} Γ π« π¦))) |
2 | 1 | ackbij1lem17 10233 |
. 2
β’ πΉ:(π« Ο β©
Fin)β1-1βΟ |
3 | | f1f 6786 |
. . . 4
β’ (πΉ:(π« Ο β©
Fin)β1-1βΟ β πΉ:(π« Ο β©
Fin)βΆΟ) |
4 | | frn 6723 |
. . . 4
β’ (πΉ:(π« Ο β©
Fin)βΆΟ β ran πΉ β Ο) |
5 | 2, 3, 4 | mp2b 10 |
. . 3
β’ ran πΉ β
Ο |
6 | | eleq1 2819 |
. . . . 5
β’ (π = β
β (π β ran πΉ β β
β ran πΉ)) |
7 | | eleq1 2819 |
. . . . 5
β’ (π = π β (π β ran πΉ β π β ran πΉ)) |
8 | | eleq1 2819 |
. . . . 5
β’ (π = suc π β (π β ran πΉ β suc π β ran πΉ)) |
9 | | peano1 7881 |
. . . . . . . 8
β’ β
β Ο |
10 | | ackbij1lem3 10219 |
. . . . . . . 8
β’ (β
β Ο β β
β (π« Ο β©
Fin)) |
11 | 9, 10 | ax-mp 5 |
. . . . . . 7
β’ β
β (π« Ο β© Fin) |
12 | 1 | ackbij1lem13 10229 |
. . . . . . 7
β’ (πΉββ
) =
β
|
13 | | fveqeq2 6899 |
. . . . . . . 8
β’ (π = β
β ((πΉβπ) = β
β (πΉββ
) = β
)) |
14 | 13 | rspcev 3611 |
. . . . . . 7
β’ ((β
β (π« Ο β© Fin) β§ (πΉββ
) = β
) β
βπ β (π«
Ο β© Fin)(πΉβπ) = β
) |
15 | 11, 12, 14 | mp2an 688 |
. . . . . 6
β’
βπ β
(π« Ο β© Fin)(πΉβπ) = β
|
16 | | f1fn 6787 |
. . . . . . . 8
β’ (πΉ:(π« Ο β©
Fin)β1-1βΟ β πΉ Fn (π« Ο β©
Fin)) |
17 | 2, 16 | ax-mp 5 |
. . . . . . 7
β’ πΉ Fn (π« Ο β©
Fin) |
18 | | fvelrnb 6951 |
. . . . . . 7
β’ (πΉ Fn (π« Ο β©
Fin) β (β
β ran πΉ β βπ β (π« Ο β© Fin)(πΉβπ) = β
)) |
19 | 17, 18 | ax-mp 5 |
. . . . . 6
β’ (β
β ran πΉ β
βπ β (π«
Ο β© Fin)(πΉβπ) = β
) |
20 | 15, 19 | mpbir 230 |
. . . . 5
β’ β
β ran πΉ |
21 | 1 | ackbij1lem18 10234 |
. . . . . . . . 9
β’ (π β (π« Ο β©
Fin) β βπ β
(π« Ο β© Fin)(πΉβπ) = suc (πΉβπ)) |
22 | 21 | adantl 480 |
. . . . . . . 8
β’ ((π β Ο β§ π β (π« Ο β©
Fin)) β βπ
β (π« Ο β© Fin)(πΉβπ) = suc (πΉβπ)) |
23 | | suceq 6429 |
. . . . . . . . . 10
β’ ((πΉβπ) = π β suc (πΉβπ) = suc π) |
24 | 23 | eqeq2d 2741 |
. . . . . . . . 9
β’ ((πΉβπ) = π β ((πΉβπ) = suc (πΉβπ) β (πΉβπ) = suc π)) |
25 | 24 | rexbidv 3176 |
. . . . . . . 8
β’ ((πΉβπ) = π β (βπ β (π« Ο β© Fin)(πΉβπ) = suc (πΉβπ) β βπ β (π« Ο β© Fin)(πΉβπ) = suc π)) |
26 | 22, 25 | syl5ibcom 244 |
. . . . . . 7
β’ ((π β Ο β§ π β (π« Ο β©
Fin)) β ((πΉβπ) = π β βπ β (π« Ο β© Fin)(πΉβπ) = suc π)) |
27 | 26 | rexlimdva 3153 |
. . . . . 6
β’ (π β Ο β
(βπ β (π«
Ο β© Fin)(πΉβπ) = π β βπ β (π« Ο β© Fin)(πΉβπ) = suc π)) |
28 | | fvelrnb 6951 |
. . . . . . 7
β’ (πΉ Fn (π« Ο β©
Fin) β (π β ran
πΉ β βπ β (π« Ο β©
Fin)(πΉβπ) = π)) |
29 | 17, 28 | ax-mp 5 |
. . . . . 6
β’ (π β ran πΉ β βπ β (π« Ο β© Fin)(πΉβπ) = π) |
30 | | fvelrnb 6951 |
. . . . . . 7
β’ (πΉ Fn (π« Ο β©
Fin) β (suc π β
ran πΉ β βπ β (π« Ο β©
Fin)(πΉβπ) = suc π)) |
31 | 17, 30 | ax-mp 5 |
. . . . . 6
β’ (suc
π β ran πΉ β βπ β (π« Ο β©
Fin)(πΉβπ) = suc π) |
32 | 27, 29, 31 | 3imtr4g 295 |
. . . . 5
β’ (π β Ο β (π β ran πΉ β suc π β ran πΉ)) |
33 | 6, 7, 8, 7, 20, 32 | finds 7891 |
. . . 4
β’ (π β Ο β π β ran πΉ) |
34 | 33 | ssriv 3985 |
. . 3
β’ Ο
β ran πΉ |
35 | 5, 34 | eqssi 3997 |
. 2
β’ ran πΉ = Ο |
36 | | dff1o5 6841 |
. 2
β’ (πΉ:(π« Ο β©
Fin)β1-1-ontoβΟ β (πΉ:(π« Ο β© Fin)β1-1βΟ β§ ran πΉ = Ο)) |
37 | 2, 35, 36 | mpbir2an 707 |
1
β’ πΉ:(π« Ο β©
Fin)β1-1-ontoβΟ |