| Step | Hyp | Ref
| Expression |
| 1 | | ackbij.f |
. . 3
⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦
(card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) |
| 2 | 1 | ackbij1lem17 10254 |
. 2
⊢ 𝐹:(𝒫 ω ∩
Fin)–1-1→ω |
| 3 | | f1f 6779 |
. . . 4
⊢ (𝐹:(𝒫 ω ∩
Fin)–1-1→ω → 𝐹:(𝒫 ω ∩
Fin)⟶ω) |
| 4 | | frn 6718 |
. . . 4
⊢ (𝐹:(𝒫 ω ∩
Fin)⟶ω → ran 𝐹 ⊆ ω) |
| 5 | 2, 3, 4 | mp2b 10 |
. . 3
⊢ ran 𝐹 ⊆
ω |
| 6 | | eleq1 2823 |
. . . . 5
⊢ (𝑏 = ∅ → (𝑏 ∈ ran 𝐹 ↔ ∅ ∈ ran 𝐹)) |
| 7 | | eleq1 2823 |
. . . . 5
⊢ (𝑏 = 𝑎 → (𝑏 ∈ ran 𝐹 ↔ 𝑎 ∈ ran 𝐹)) |
| 8 | | eleq1 2823 |
. . . . 5
⊢ (𝑏 = suc 𝑎 → (𝑏 ∈ ran 𝐹 ↔ suc 𝑎 ∈ ran 𝐹)) |
| 9 | | peano1 7889 |
. . . . . . . 8
⊢ ∅
∈ ω |
| 10 | | ackbij1lem3 10240 |
. . . . . . . 8
⊢ (∅
∈ ω → ∅ ∈ (𝒫 ω ∩
Fin)) |
| 11 | 9, 10 | ax-mp 5 |
. . . . . . 7
⊢ ∅
∈ (𝒫 ω ∩ Fin) |
| 12 | 1 | ackbij1lem13 10250 |
. . . . . . 7
⊢ (𝐹‘∅) =
∅ |
| 13 | | fveqeq2 6890 |
. . . . . . . 8
⊢ (𝑎 = ∅ → ((𝐹‘𝑎) = ∅ ↔ (𝐹‘∅) = ∅)) |
| 14 | 13 | rspcev 3606 |
. . . . . . 7
⊢ ((∅
∈ (𝒫 ω ∩ Fin) ∧ (𝐹‘∅) = ∅) →
∃𝑎 ∈ (𝒫
ω ∩ Fin)(𝐹‘𝑎) = ∅) |
| 15 | 11, 12, 14 | mp2an 692 |
. . . . . 6
⊢
∃𝑎 ∈
(𝒫 ω ∩ Fin)(𝐹‘𝑎) = ∅ |
| 16 | | f1fn 6780 |
. . . . . . . 8
⊢ (𝐹:(𝒫 ω ∩
Fin)–1-1→ω → 𝐹 Fn (𝒫 ω ∩
Fin)) |
| 17 | 2, 16 | ax-mp 5 |
. . . . . . 7
⊢ 𝐹 Fn (𝒫 ω ∩
Fin) |
| 18 | | fvelrnb 6944 |
. . . . . . 7
⊢ (𝐹 Fn (𝒫 ω ∩
Fin) → (∅ ∈ ran 𝐹 ↔ ∃𝑎 ∈ (𝒫 ω ∩ Fin)(𝐹‘𝑎) = ∅)) |
| 19 | 17, 18 | ax-mp 5 |
. . . . . 6
⊢ (∅
∈ ran 𝐹 ↔
∃𝑎 ∈ (𝒫
ω ∩ Fin)(𝐹‘𝑎) = ∅) |
| 20 | 15, 19 | mpbir 231 |
. . . . 5
⊢ ∅
∈ ran 𝐹 |
| 21 | 1 | ackbij1lem18 10255 |
. . . . . . . . 9
⊢ (𝑐 ∈ (𝒫 ω ∩
Fin) → ∃𝑏 ∈
(𝒫 ω ∩ Fin)(𝐹‘𝑏) = suc (𝐹‘𝑐)) |
| 22 | 21 | adantl 481 |
. . . . . . . 8
⊢ ((𝑎 ∈ ω ∧ 𝑐 ∈ (𝒫 ω ∩
Fin)) → ∃𝑏
∈ (𝒫 ω ∩ Fin)(𝐹‘𝑏) = suc (𝐹‘𝑐)) |
| 23 | | suceq 6424 |
. . . . . . . . . 10
⊢ ((𝐹‘𝑐) = 𝑎 → suc (𝐹‘𝑐) = suc 𝑎) |
| 24 | 23 | eqeq2d 2747 |
. . . . . . . . 9
⊢ ((𝐹‘𝑐) = 𝑎 → ((𝐹‘𝑏) = suc (𝐹‘𝑐) ↔ (𝐹‘𝑏) = suc 𝑎)) |
| 25 | 24 | rexbidv 3165 |
. . . . . . . 8
⊢ ((𝐹‘𝑐) = 𝑎 → (∃𝑏 ∈ (𝒫 ω ∩ Fin)(𝐹‘𝑏) = suc (𝐹‘𝑐) ↔ ∃𝑏 ∈ (𝒫 ω ∩ Fin)(𝐹‘𝑏) = suc 𝑎)) |
| 26 | 22, 25 | syl5ibcom 245 |
. . . . . . 7
⊢ ((𝑎 ∈ ω ∧ 𝑐 ∈ (𝒫 ω ∩
Fin)) → ((𝐹‘𝑐) = 𝑎 → ∃𝑏 ∈ (𝒫 ω ∩ Fin)(𝐹‘𝑏) = suc 𝑎)) |
| 27 | 26 | rexlimdva 3142 |
. . . . . 6
⊢ (𝑎 ∈ ω →
(∃𝑐 ∈ (𝒫
ω ∩ Fin)(𝐹‘𝑐) = 𝑎 → ∃𝑏 ∈ (𝒫 ω ∩ Fin)(𝐹‘𝑏) = suc 𝑎)) |
| 28 | | fvelrnb 6944 |
. . . . . . 7
⊢ (𝐹 Fn (𝒫 ω ∩
Fin) → (𝑎 ∈ ran
𝐹 ↔ ∃𝑐 ∈ (𝒫 ω ∩
Fin)(𝐹‘𝑐) = 𝑎)) |
| 29 | 17, 28 | ax-mp 5 |
. . . . . 6
⊢ (𝑎 ∈ ran 𝐹 ↔ ∃𝑐 ∈ (𝒫 ω ∩ Fin)(𝐹‘𝑐) = 𝑎) |
| 30 | | fvelrnb 6944 |
. . . . . . 7
⊢ (𝐹 Fn (𝒫 ω ∩
Fin) → (suc 𝑎 ∈
ran 𝐹 ↔ ∃𝑏 ∈ (𝒫 ω ∩
Fin)(𝐹‘𝑏) = suc 𝑎)) |
| 31 | 17, 30 | ax-mp 5 |
. . . . . 6
⊢ (suc
𝑎 ∈ ran 𝐹 ↔ ∃𝑏 ∈ (𝒫 ω ∩
Fin)(𝐹‘𝑏) = suc 𝑎) |
| 32 | 27, 29, 31 | 3imtr4g 296 |
. . . . 5
⊢ (𝑎 ∈ ω → (𝑎 ∈ ran 𝐹 → suc 𝑎 ∈ ran 𝐹)) |
| 33 | 6, 7, 8, 7, 20, 32 | finds 7897 |
. . . 4
⊢ (𝑎 ∈ ω → 𝑎 ∈ ran 𝐹) |
| 34 | 33 | ssriv 3967 |
. . 3
⊢ ω
⊆ ran 𝐹 |
| 35 | 5, 34 | eqssi 3980 |
. 2
⊢ ran 𝐹 = ω |
| 36 | | dff1o5 6832 |
. 2
⊢ (𝐹:(𝒫 ω ∩
Fin)–1-1-onto→ω ↔ (𝐹:(𝒫 ω ∩ Fin)–1-1→ω ∧ ran 𝐹 = ω)) |
| 37 | 2, 35, 36 | mpbir2an 711 |
1
⊢ 𝐹:(𝒫 ω ∩
Fin)–1-1-onto→ω |