MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sucdom2 Structured version   Visualization version   GIF version

Theorem sucdom2 8989
Description: Strict dominance of a set over another set implies dominance over its successor. (Contributed by Mario Carneiro, 12-Jan-2013.) (Proof shortened by Mario Carneiro, 27-Apr-2015.) Avoid ax-pow 5288. (Revised by BTernaryTau, 4-Dec-2024.)
Assertion
Ref Expression
sucdom2 (𝐴𝐵 → suc 𝐴𝐵)

Proof of Theorem sucdom2
Dummy variables 𝑓 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sdomdom 8768 . . 3 (𝐴𝐵𝐴𝐵)
2 brdomi 8748 . . 3 (𝐴𝐵 → ∃𝑓 𝑓:𝐴1-1𝐵)
31, 2syl 17 . 2 (𝐴𝐵 → ∃𝑓 𝑓:𝐴1-1𝐵)
4 vex 3436 . . . . 5 𝑓 ∈ V
54rnex 7759 . . . . 5 ran 𝑓 ∈ V
6 f1f1orn 6727 . . . . . . 7 (𝑓:𝐴1-1𝐵𝑓:𝐴1-1-onto→ran 𝑓)
76adantl 482 . . . . . 6 ((𝐴𝐵𝑓:𝐴1-1𝐵) → 𝑓:𝐴1-1-onto→ran 𝑓)
8 f1of1 6715 . . . . . 6 (𝑓:𝐴1-1-onto→ran 𝑓𝑓:𝐴1-1→ran 𝑓)
97, 8syl 17 . . . . 5 ((𝐴𝐵𝑓:𝐴1-1𝐵) → 𝑓:𝐴1-1→ran 𝑓)
10 f1dom3g 8755 . . . . 5 ((𝑓 ∈ V ∧ ran 𝑓 ∈ V ∧ 𝑓:𝐴1-1→ran 𝑓) → 𝐴 ≼ ran 𝑓)
114, 5, 9, 10mp3an12i 1464 . . . 4 ((𝐴𝐵𝑓:𝐴1-1𝐵) → 𝐴 ≼ ran 𝑓)
12 sdomnen 8769 . . . . . . . 8 (𝐴𝐵 → ¬ 𝐴𝐵)
1312adantr 481 . . . . . . 7 ((𝐴𝐵𝑓:𝐴1-1𝐵) → ¬ 𝐴𝐵)
14 ssdif0 4297 . . . . . . . 8 (𝐵 ⊆ ran 𝑓 ↔ (𝐵 ∖ ran 𝑓) = ∅)
15 simplr 766 . . . . . . . . . . 11 (((𝐴𝐵𝑓:𝐴1-1𝐵) ∧ 𝐵 ⊆ ran 𝑓) → 𝑓:𝐴1-1𝐵)
16 f1f 6670 . . . . . . . . . . . . . 14 (𝑓:𝐴1-1𝐵𝑓:𝐴𝐵)
1716frnd 6608 . . . . . . . . . . . . 13 (𝑓:𝐴1-1𝐵 → ran 𝑓𝐵)
1815, 17syl 17 . . . . . . . . . . . 12 (((𝐴𝐵𝑓:𝐴1-1𝐵) ∧ 𝐵 ⊆ ran 𝑓) → ran 𝑓𝐵)
19 simpr 485 . . . . . . . . . . . 12 (((𝐴𝐵𝑓:𝐴1-1𝐵) ∧ 𝐵 ⊆ ran 𝑓) → 𝐵 ⊆ ran 𝑓)
2018, 19eqssd 3938 . . . . . . . . . . 11 (((𝐴𝐵𝑓:𝐴1-1𝐵) ∧ 𝐵 ⊆ ran 𝑓) → ran 𝑓 = 𝐵)
21 dff1o5 6725 . . . . . . . . . . 11 (𝑓:𝐴1-1-onto𝐵 ↔ (𝑓:𝐴1-1𝐵 ∧ ran 𝑓 = 𝐵))
2215, 20, 21sylanbrc 583 . . . . . . . . . 10 (((𝐴𝐵𝑓:𝐴1-1𝐵) ∧ 𝐵 ⊆ ran 𝑓) → 𝑓:𝐴1-1-onto𝐵)
23 f1oen3g 8754 . . . . . . . . . 10 ((𝑓 ∈ V ∧ 𝑓:𝐴1-1-onto𝐵) → 𝐴𝐵)
244, 22, 23sylancr 587 . . . . . . . . 9 (((𝐴𝐵𝑓:𝐴1-1𝐵) ∧ 𝐵 ⊆ ran 𝑓) → 𝐴𝐵)
2524ex 413 . . . . . . . 8 ((𝐴𝐵𝑓:𝐴1-1𝐵) → (𝐵 ⊆ ran 𝑓𝐴𝐵))
2614, 25syl5bir 242 . . . . . . 7 ((𝐴𝐵𝑓:𝐴1-1𝐵) → ((𝐵 ∖ ran 𝑓) = ∅ → 𝐴𝐵))
2713, 26mtod 197 . . . . . 6 ((𝐴𝐵𝑓:𝐴1-1𝐵) → ¬ (𝐵 ∖ ran 𝑓) = ∅)
28 neq0 4279 . . . . . 6 (¬ (𝐵 ∖ ran 𝑓) = ∅ ↔ ∃𝑤 𝑤 ∈ (𝐵 ∖ ran 𝑓))
2927, 28sylib 217 . . . . 5 ((𝐴𝐵𝑓:𝐴1-1𝐵) → ∃𝑤 𝑤 ∈ (𝐵 ∖ ran 𝑓))
30 snssi 4741 . . . . . . 7 (𝑤 ∈ (𝐵 ∖ ran 𝑓) → {𝑤} ⊆ (𝐵 ∖ ran 𝑓))
31 relsdom 8740 . . . . . . . . . . 11 Rel ≺
3231brrelex1i 5643 . . . . . . . . . 10 (𝐴𝐵𝐴 ∈ V)
3332adantr 481 . . . . . . . . 9 ((𝐴𝐵𝑓:𝐴1-1𝐵) → 𝐴 ∈ V)
34 vex 3436 . . . . . . . . 9 𝑤 ∈ V
35 en2sn 8831 . . . . . . . . 9 ((𝐴 ∈ V ∧ 𝑤 ∈ V) → {𝐴} ≈ {𝑤})
3633, 34, 35sylancl 586 . . . . . . . 8 ((𝐴𝐵𝑓:𝐴1-1𝐵) → {𝐴} ≈ {𝑤})
3731brrelex2i 5644 . . . . . . . . . 10 (𝐴𝐵𝐵 ∈ V)
3837adantr 481 . . . . . . . . 9 ((𝐴𝐵𝑓:𝐴1-1𝐵) → 𝐵 ∈ V)
39 difexg 5251 . . . . . . . . 9 (𝐵 ∈ V → (𝐵 ∖ ran 𝑓) ∈ V)
40 snfi 8834 . . . . . . . . . . 11 {𝑤} ∈ Fin
41 ssdomfi2 8983 . . . . . . . . . . 11 (({𝑤} ∈ Fin ∧ (𝐵 ∖ ran 𝑓) ∈ V ∧ {𝑤} ⊆ (𝐵 ∖ ran 𝑓)) → {𝑤} ≼ (𝐵 ∖ ran 𝑓))
4240, 41mp3an1 1447 . . . . . . . . . 10 (((𝐵 ∖ ran 𝑓) ∈ V ∧ {𝑤} ⊆ (𝐵 ∖ ran 𝑓)) → {𝑤} ≼ (𝐵 ∖ ran 𝑓))
4342ex 413 . . . . . . . . 9 ((𝐵 ∖ ran 𝑓) ∈ V → ({𝑤} ⊆ (𝐵 ∖ ran 𝑓) → {𝑤} ≼ (𝐵 ∖ ran 𝑓)))
4438, 39, 433syl 18 . . . . . . . 8 ((𝐴𝐵𝑓:𝐴1-1𝐵) → ({𝑤} ⊆ (𝐵 ∖ ran 𝑓) → {𝑤} ≼ (𝐵 ∖ ran 𝑓)))
45 endom 8767 . . . . . . . . 9 ({𝐴} ≈ {𝑤} → {𝐴} ≼ {𝑤})
46 domtrfi 8979 . . . . . . . . . 10 (({𝑤} ∈ Fin ∧ {𝐴} ≼ {𝑤} ∧ {𝑤} ≼ (𝐵 ∖ ran 𝑓)) → {𝐴} ≼ (𝐵 ∖ ran 𝑓))
4740, 46mp3an1 1447 . . . . . . . . 9 (({𝐴} ≼ {𝑤} ∧ {𝑤} ≼ (𝐵 ∖ ran 𝑓)) → {𝐴} ≼ (𝐵 ∖ ran 𝑓))
4845, 47sylan 580 . . . . . . . 8 (({𝐴} ≈ {𝑤} ∧ {𝑤} ≼ (𝐵 ∖ ran 𝑓)) → {𝐴} ≼ (𝐵 ∖ ran 𝑓))
4936, 44, 48syl6an 681 . . . . . . 7 ((𝐴𝐵𝑓:𝐴1-1𝐵) → ({𝑤} ⊆ (𝐵 ∖ ran 𝑓) → {𝐴} ≼ (𝐵 ∖ ran 𝑓)))
5030, 49syl5 34 . . . . . 6 ((𝐴𝐵𝑓:𝐴1-1𝐵) → (𝑤 ∈ (𝐵 ∖ ran 𝑓) → {𝐴} ≼ (𝐵 ∖ ran 𝑓)))
5150exlimdv 1936 . . . . 5 ((𝐴𝐵𝑓:𝐴1-1𝐵) → (∃𝑤 𝑤 ∈ (𝐵 ∖ ran 𝑓) → {𝐴} ≼ (𝐵 ∖ ran 𝑓)))
5229, 51mpd 15 . . . 4 ((𝐴𝐵𝑓:𝐴1-1𝐵) → {𝐴} ≼ (𝐵 ∖ ran 𝑓))
53 disjdif 4405 . . . . 5 (ran 𝑓 ∩ (𝐵 ∖ ran 𝑓)) = ∅
5453a1i 11 . . . 4 ((𝐴𝐵𝑓:𝐴1-1𝐵) → (ran 𝑓 ∩ (𝐵 ∖ ran 𝑓)) = ∅)
55 undom 8846 . . . 4 (((𝐴 ≼ ran 𝑓 ∧ {𝐴} ≼ (𝐵 ∖ ran 𝑓)) ∧ (ran 𝑓 ∩ (𝐵 ∖ ran 𝑓)) = ∅) → (𝐴 ∪ {𝐴}) ≼ (ran 𝑓 ∪ (𝐵 ∖ ran 𝑓)))
5611, 52, 54, 55syl21anc 835 . . 3 ((𝐴𝐵𝑓:𝐴1-1𝐵) → (𝐴 ∪ {𝐴}) ≼ (ran 𝑓 ∪ (𝐵 ∖ ran 𝑓)))
57 df-suc 6272 . . . 4 suc 𝐴 = (𝐴 ∪ {𝐴})
5857a1i 11 . . 3 ((𝐴𝐵𝑓:𝐴1-1𝐵) → suc 𝐴 = (𝐴 ∪ {𝐴}))
59 undif2 4410 . . . 4 (ran 𝑓 ∪ (𝐵 ∖ ran 𝑓)) = (ran 𝑓𝐵)
6017adantl 482 . . . . 5 ((𝐴𝐵𝑓:𝐴1-1𝐵) → ran 𝑓𝐵)
61 ssequn1 4114 . . . . 5 (ran 𝑓𝐵 ↔ (ran 𝑓𝐵) = 𝐵)
6260, 61sylib 217 . . . 4 ((𝐴𝐵𝑓:𝐴1-1𝐵) → (ran 𝑓𝐵) = 𝐵)
6359, 62eqtr2id 2791 . . 3 ((𝐴𝐵𝑓:𝐴1-1𝐵) → 𝐵 = (ran 𝑓 ∪ (𝐵 ∖ ran 𝑓)))
6456, 58, 633brtr4d 5106 . 2 ((𝐴𝐵𝑓:𝐴1-1𝐵) → suc 𝐴𝐵)
653, 64exlimddv 1938 1 (𝐴𝐵 → suc 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wex 1782  wcel 2106  Vcvv 3432  cdif 3884  cun 3885  cin 3886  wss 3887  c0 4256  {csn 4561   class class class wbr 5074  ran crn 5590  suc csuc 6268  1-1wf1 6430  1-1-ontowf1o 6432  cen 8730  cdom 8731  csdm 8732  Fincfn 8733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-om 7713  df-1o 8297  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737
This theorem is referenced by:  sucdom  9018  sucdomOLD  9019  card2inf  9314
  Copyright terms: Public domain W3C validator