MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sucdom2 Structured version   Visualization version   GIF version

Theorem sucdom2 8714
Description: Strict dominance of a set over another set implies dominance over its successor. (Contributed by Mario Carneiro, 12-Jan-2013.) (Proof shortened by Mario Carneiro, 27-Apr-2015.)
Assertion
Ref Expression
sucdom2 (𝐴𝐵 → suc 𝐴𝐵)

Proof of Theorem sucdom2
Dummy variables 𝑤 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sdomdom 8537 . . 3 (𝐴𝐵𝐴𝐵)
2 brdomi 8520 . . 3 (𝐴𝐵 → ∃𝑓 𝑓:𝐴1-1𝐵)
31, 2syl 17 . 2 (𝐴𝐵 → ∃𝑓 𝑓:𝐴1-1𝐵)
4 relsdom 8516 . . . . . . 7 Rel ≺
54brrelex1i 5608 . . . . . 6 (𝐴𝐵𝐴 ∈ V)
65adantr 483 . . . . 5 ((𝐴𝐵𝑓:𝐴1-1𝐵) → 𝐴 ∈ V)
7 vex 3497 . . . . . . 7 𝑓 ∈ V
87rnex 7617 . . . . . 6 ran 𝑓 ∈ V
98a1i 11 . . . . 5 ((𝐴𝐵𝑓:𝐴1-1𝐵) → ran 𝑓 ∈ V)
10 f1f1orn 6626 . . . . . . 7 (𝑓:𝐴1-1𝐵𝑓:𝐴1-1-onto→ran 𝑓)
1110adantl 484 . . . . . 6 ((𝐴𝐵𝑓:𝐴1-1𝐵) → 𝑓:𝐴1-1-onto→ran 𝑓)
12 f1of1 6614 . . . . . 6 (𝑓:𝐴1-1-onto→ran 𝑓𝑓:𝐴1-1→ran 𝑓)
1311, 12syl 17 . . . . 5 ((𝐴𝐵𝑓:𝐴1-1𝐵) → 𝑓:𝐴1-1→ran 𝑓)
14 f1dom2g 8527 . . . . 5 ((𝐴 ∈ V ∧ ran 𝑓 ∈ V ∧ 𝑓:𝐴1-1→ran 𝑓) → 𝐴 ≼ ran 𝑓)
156, 9, 13, 14syl3anc 1367 . . . 4 ((𝐴𝐵𝑓:𝐴1-1𝐵) → 𝐴 ≼ ran 𝑓)
16 sdomnen 8538 . . . . . . . 8 (𝐴𝐵 → ¬ 𝐴𝐵)
1716adantr 483 . . . . . . 7 ((𝐴𝐵𝑓:𝐴1-1𝐵) → ¬ 𝐴𝐵)
18 ssdif0 4323 . . . . . . . 8 (𝐵 ⊆ ran 𝑓 ↔ (𝐵 ∖ ran 𝑓) = ∅)
19 simplr 767 . . . . . . . . . . 11 (((𝐴𝐵𝑓:𝐴1-1𝐵) ∧ 𝐵 ⊆ ran 𝑓) → 𝑓:𝐴1-1𝐵)
20 f1f 6575 . . . . . . . . . . . . . 14 (𝑓:𝐴1-1𝐵𝑓:𝐴𝐵)
2120frnd 6521 . . . . . . . . . . . . 13 (𝑓:𝐴1-1𝐵 → ran 𝑓𝐵)
2219, 21syl 17 . . . . . . . . . . . 12 (((𝐴𝐵𝑓:𝐴1-1𝐵) ∧ 𝐵 ⊆ ran 𝑓) → ran 𝑓𝐵)
23 simpr 487 . . . . . . . . . . . 12 (((𝐴𝐵𝑓:𝐴1-1𝐵) ∧ 𝐵 ⊆ ran 𝑓) → 𝐵 ⊆ ran 𝑓)
2422, 23eqssd 3984 . . . . . . . . . . 11 (((𝐴𝐵𝑓:𝐴1-1𝐵) ∧ 𝐵 ⊆ ran 𝑓) → ran 𝑓 = 𝐵)
25 dff1o5 6624 . . . . . . . . . . 11 (𝑓:𝐴1-1-onto𝐵 ↔ (𝑓:𝐴1-1𝐵 ∧ ran 𝑓 = 𝐵))
2619, 24, 25sylanbrc 585 . . . . . . . . . 10 (((𝐴𝐵𝑓:𝐴1-1𝐵) ∧ 𝐵 ⊆ ran 𝑓) → 𝑓:𝐴1-1-onto𝐵)
27 f1oen3g 8525 . . . . . . . . . 10 ((𝑓 ∈ V ∧ 𝑓:𝐴1-1-onto𝐵) → 𝐴𝐵)
287, 26, 27sylancr 589 . . . . . . . . 9 (((𝐴𝐵𝑓:𝐴1-1𝐵) ∧ 𝐵 ⊆ ran 𝑓) → 𝐴𝐵)
2928ex 415 . . . . . . . 8 ((𝐴𝐵𝑓:𝐴1-1𝐵) → (𝐵 ⊆ ran 𝑓𝐴𝐵))
3018, 29syl5bir 245 . . . . . . 7 ((𝐴𝐵𝑓:𝐴1-1𝐵) → ((𝐵 ∖ ran 𝑓) = ∅ → 𝐴𝐵))
3117, 30mtod 200 . . . . . 6 ((𝐴𝐵𝑓:𝐴1-1𝐵) → ¬ (𝐵 ∖ ran 𝑓) = ∅)
32 neq0 4309 . . . . . 6 (¬ (𝐵 ∖ ran 𝑓) = ∅ ↔ ∃𝑤 𝑤 ∈ (𝐵 ∖ ran 𝑓))
3331, 32sylib 220 . . . . 5 ((𝐴𝐵𝑓:𝐴1-1𝐵) → ∃𝑤 𝑤 ∈ (𝐵 ∖ ran 𝑓))
34 snssi 4741 . . . . . . 7 (𝑤 ∈ (𝐵 ∖ ran 𝑓) → {𝑤} ⊆ (𝐵 ∖ ran 𝑓))
35 vex 3497 . . . . . . . . 9 𝑤 ∈ V
36 en2sn 8593 . . . . . . . . 9 ((𝐴 ∈ V ∧ 𝑤 ∈ V) → {𝐴} ≈ {𝑤})
376, 35, 36sylancl 588 . . . . . . . 8 ((𝐴𝐵𝑓:𝐴1-1𝐵) → {𝐴} ≈ {𝑤})
384brrelex2i 5609 . . . . . . . . . 10 (𝐴𝐵𝐵 ∈ V)
3938adantr 483 . . . . . . . . 9 ((𝐴𝐵𝑓:𝐴1-1𝐵) → 𝐵 ∈ V)
40 difexg 5231 . . . . . . . . 9 (𝐵 ∈ V → (𝐵 ∖ ran 𝑓) ∈ V)
41 ssdomg 8555 . . . . . . . . 9 ((𝐵 ∖ ran 𝑓) ∈ V → ({𝑤} ⊆ (𝐵 ∖ ran 𝑓) → {𝑤} ≼ (𝐵 ∖ ran 𝑓)))
4239, 40, 413syl 18 . . . . . . . 8 ((𝐴𝐵𝑓:𝐴1-1𝐵) → ({𝑤} ⊆ (𝐵 ∖ ran 𝑓) → {𝑤} ≼ (𝐵 ∖ ran 𝑓)))
43 endomtr 8567 . . . . . . . 8 (({𝐴} ≈ {𝑤} ∧ {𝑤} ≼ (𝐵 ∖ ran 𝑓)) → {𝐴} ≼ (𝐵 ∖ ran 𝑓))
4437, 42, 43syl6an 682 . . . . . . 7 ((𝐴𝐵𝑓:𝐴1-1𝐵) → ({𝑤} ⊆ (𝐵 ∖ ran 𝑓) → {𝐴} ≼ (𝐵 ∖ ran 𝑓)))
4534, 44syl5 34 . . . . . 6 ((𝐴𝐵𝑓:𝐴1-1𝐵) → (𝑤 ∈ (𝐵 ∖ ran 𝑓) → {𝐴} ≼ (𝐵 ∖ ran 𝑓)))
4645exlimdv 1934 . . . . 5 ((𝐴𝐵𝑓:𝐴1-1𝐵) → (∃𝑤 𝑤 ∈ (𝐵 ∖ ran 𝑓) → {𝐴} ≼ (𝐵 ∖ ran 𝑓)))
4733, 46mpd 15 . . . 4 ((𝐴𝐵𝑓:𝐴1-1𝐵) → {𝐴} ≼ (𝐵 ∖ ran 𝑓))
48 disjdif 4421 . . . . 5 (ran 𝑓 ∩ (𝐵 ∖ ran 𝑓)) = ∅
4948a1i 11 . . . 4 ((𝐴𝐵𝑓:𝐴1-1𝐵) → (ran 𝑓 ∩ (𝐵 ∖ ran 𝑓)) = ∅)
50 undom 8605 . . . 4 (((𝐴 ≼ ran 𝑓 ∧ {𝐴} ≼ (𝐵 ∖ ran 𝑓)) ∧ (ran 𝑓 ∩ (𝐵 ∖ ran 𝑓)) = ∅) → (𝐴 ∪ {𝐴}) ≼ (ran 𝑓 ∪ (𝐵 ∖ ran 𝑓)))
5115, 47, 49, 50syl21anc 835 . . 3 ((𝐴𝐵𝑓:𝐴1-1𝐵) → (𝐴 ∪ {𝐴}) ≼ (ran 𝑓 ∪ (𝐵 ∖ ran 𝑓)))
52 df-suc 6197 . . . 4 suc 𝐴 = (𝐴 ∪ {𝐴})
5352a1i 11 . . 3 ((𝐴𝐵𝑓:𝐴1-1𝐵) → suc 𝐴 = (𝐴 ∪ {𝐴}))
54 undif2 4425 . . . 4 (ran 𝑓 ∪ (𝐵 ∖ ran 𝑓)) = (ran 𝑓𝐵)
5521adantl 484 . . . . 5 ((𝐴𝐵𝑓:𝐴1-1𝐵) → ran 𝑓𝐵)
56 ssequn1 4156 . . . . 5 (ran 𝑓𝐵 ↔ (ran 𝑓𝐵) = 𝐵)
5755, 56sylib 220 . . . 4 ((𝐴𝐵𝑓:𝐴1-1𝐵) → (ran 𝑓𝐵) = 𝐵)
5854, 57syl5req 2869 . . 3 ((𝐴𝐵𝑓:𝐴1-1𝐵) → 𝐵 = (ran 𝑓 ∪ (𝐵 ∖ ran 𝑓)))
5951, 53, 583brtr4d 5098 . 2 ((𝐴𝐵𝑓:𝐴1-1𝐵) → suc 𝐴𝐵)
603, 59exlimddv 1936 1 (𝐴𝐵 → suc 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1537  wex 1780  wcel 2114  Vcvv 3494  cdif 3933  cun 3934  cin 3935  wss 3936  c0 4291  {csn 4567   class class class wbr 5066  ran crn 5556  suc csuc 6193  1-1wf1 6352  1-1-ontowf1o 6354  cen 8506  cdom 8507  csdm 8508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-suc 6197  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-1o 8102  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512
This theorem is referenced by:  sucdom  8715  card2inf  9019
  Copyright terms: Public domain W3C validator