Step | Hyp | Ref
| Expression |
1 | | sdomdom 8768 |
. . 3
⊢ (𝐴 ≺ 𝐵 → 𝐴 ≼ 𝐵) |
2 | | brdomi 8748 |
. . 3
⊢ (𝐴 ≼ 𝐵 → ∃𝑓 𝑓:𝐴–1-1→𝐵) |
3 | 1, 2 | syl 17 |
. 2
⊢ (𝐴 ≺ 𝐵 → ∃𝑓 𝑓:𝐴–1-1→𝐵) |
4 | | vex 3436 |
. . . . 5
⊢ 𝑓 ∈ V |
5 | 4 | rnex 7759 |
. . . . 5
⊢ ran 𝑓 ∈ V |
6 | | f1f1orn 6727 |
. . . . . . 7
⊢ (𝑓:𝐴–1-1→𝐵 → 𝑓:𝐴–1-1-onto→ran
𝑓) |
7 | 6 | adantl 482 |
. . . . . 6
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → 𝑓:𝐴–1-1-onto→ran
𝑓) |
8 | | f1of1 6715 |
. . . . . 6
⊢ (𝑓:𝐴–1-1-onto→ran
𝑓 → 𝑓:𝐴–1-1→ran 𝑓) |
9 | 7, 8 | syl 17 |
. . . . 5
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → 𝑓:𝐴–1-1→ran 𝑓) |
10 | | f1dom3g 8755 |
. . . . 5
⊢ ((𝑓 ∈ V ∧ ran 𝑓 ∈ V ∧ 𝑓:𝐴–1-1→ran 𝑓) → 𝐴 ≼ ran 𝑓) |
11 | 4, 5, 9, 10 | mp3an12i 1464 |
. . . 4
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → 𝐴 ≼ ran 𝑓) |
12 | | sdomnen 8769 |
. . . . . . . 8
⊢ (𝐴 ≺ 𝐵 → ¬ 𝐴 ≈ 𝐵) |
13 | 12 | adantr 481 |
. . . . . . 7
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → ¬ 𝐴 ≈ 𝐵) |
14 | | ssdif0 4297 |
. . . . . . . 8
⊢ (𝐵 ⊆ ran 𝑓 ↔ (𝐵 ∖ ran 𝑓) = ∅) |
15 | | simplr 766 |
. . . . . . . . . . 11
⊢ (((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) ∧ 𝐵 ⊆ ran 𝑓) → 𝑓:𝐴–1-1→𝐵) |
16 | | f1f 6670 |
. . . . . . . . . . . . . 14
⊢ (𝑓:𝐴–1-1→𝐵 → 𝑓:𝐴⟶𝐵) |
17 | 16 | frnd 6608 |
. . . . . . . . . . . . 13
⊢ (𝑓:𝐴–1-1→𝐵 → ran 𝑓 ⊆ 𝐵) |
18 | 15, 17 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) ∧ 𝐵 ⊆ ran 𝑓) → ran 𝑓 ⊆ 𝐵) |
19 | | simpr 485 |
. . . . . . . . . . . 12
⊢ (((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) ∧ 𝐵 ⊆ ran 𝑓) → 𝐵 ⊆ ran 𝑓) |
20 | 18, 19 | eqssd 3938 |
. . . . . . . . . . 11
⊢ (((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) ∧ 𝐵 ⊆ ran 𝑓) → ran 𝑓 = 𝐵) |
21 | | dff1o5 6725 |
. . . . . . . . . . 11
⊢ (𝑓:𝐴–1-1-onto→𝐵 ↔ (𝑓:𝐴–1-1→𝐵 ∧ ran 𝑓 = 𝐵)) |
22 | 15, 20, 21 | sylanbrc 583 |
. . . . . . . . . 10
⊢ (((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) ∧ 𝐵 ⊆ ran 𝑓) → 𝑓:𝐴–1-1-onto→𝐵) |
23 | | f1oen3g 8754 |
. . . . . . . . . 10
⊢ ((𝑓 ∈ V ∧ 𝑓:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) |
24 | 4, 22, 23 | sylancr 587 |
. . . . . . . . 9
⊢ (((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) ∧ 𝐵 ⊆ ran 𝑓) → 𝐴 ≈ 𝐵) |
25 | 24 | ex 413 |
. . . . . . . 8
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → (𝐵 ⊆ ran 𝑓 → 𝐴 ≈ 𝐵)) |
26 | 14, 25 | syl5bir 242 |
. . . . . . 7
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → ((𝐵 ∖ ran 𝑓) = ∅ → 𝐴 ≈ 𝐵)) |
27 | 13, 26 | mtod 197 |
. . . . . 6
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → ¬ (𝐵 ∖ ran 𝑓) = ∅) |
28 | | neq0 4279 |
. . . . . 6
⊢ (¬
(𝐵 ∖ ran 𝑓) = ∅ ↔ ∃𝑤 𝑤 ∈ (𝐵 ∖ ran 𝑓)) |
29 | 27, 28 | sylib 217 |
. . . . 5
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → ∃𝑤 𝑤 ∈ (𝐵 ∖ ran 𝑓)) |
30 | | snssi 4741 |
. . . . . . 7
⊢ (𝑤 ∈ (𝐵 ∖ ran 𝑓) → {𝑤} ⊆ (𝐵 ∖ ran 𝑓)) |
31 | | relsdom 8740 |
. . . . . . . . . . 11
⊢ Rel
≺ |
32 | 31 | brrelex1i 5643 |
. . . . . . . . . 10
⊢ (𝐴 ≺ 𝐵 → 𝐴 ∈ V) |
33 | 32 | adantr 481 |
. . . . . . . . 9
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → 𝐴 ∈ V) |
34 | | vex 3436 |
. . . . . . . . 9
⊢ 𝑤 ∈ V |
35 | | en2sn 8831 |
. . . . . . . . 9
⊢ ((𝐴 ∈ V ∧ 𝑤 ∈ V) → {𝐴} ≈ {𝑤}) |
36 | 33, 34, 35 | sylancl 586 |
. . . . . . . 8
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → {𝐴} ≈ {𝑤}) |
37 | 31 | brrelex2i 5644 |
. . . . . . . . . 10
⊢ (𝐴 ≺ 𝐵 → 𝐵 ∈ V) |
38 | 37 | adantr 481 |
. . . . . . . . 9
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → 𝐵 ∈ V) |
39 | | difexg 5251 |
. . . . . . . . 9
⊢ (𝐵 ∈ V → (𝐵 ∖ ran 𝑓) ∈ V) |
40 | | snfi 8834 |
. . . . . . . . . . 11
⊢ {𝑤} ∈ Fin |
41 | | ssdomfi2 8983 |
. . . . . . . . . . 11
⊢ (({𝑤} ∈ Fin ∧ (𝐵 ∖ ran 𝑓) ∈ V ∧ {𝑤} ⊆ (𝐵 ∖ ran 𝑓)) → {𝑤} ≼ (𝐵 ∖ ran 𝑓)) |
42 | 40, 41 | mp3an1 1447 |
. . . . . . . . . 10
⊢ (((𝐵 ∖ ran 𝑓) ∈ V ∧ {𝑤} ⊆ (𝐵 ∖ ran 𝑓)) → {𝑤} ≼ (𝐵 ∖ ran 𝑓)) |
43 | 42 | ex 413 |
. . . . . . . . 9
⊢ ((𝐵 ∖ ran 𝑓) ∈ V → ({𝑤} ⊆ (𝐵 ∖ ran 𝑓) → {𝑤} ≼ (𝐵 ∖ ran 𝑓))) |
44 | 38, 39, 43 | 3syl 18 |
. . . . . . . 8
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → ({𝑤} ⊆ (𝐵 ∖ ran 𝑓) → {𝑤} ≼ (𝐵 ∖ ran 𝑓))) |
45 | | endom 8767 |
. . . . . . . . 9
⊢ ({𝐴} ≈ {𝑤} → {𝐴} ≼ {𝑤}) |
46 | | domtrfi 8979 |
. . . . . . . . . 10
⊢ (({𝑤} ∈ Fin ∧ {𝐴} ≼ {𝑤} ∧ {𝑤} ≼ (𝐵 ∖ ran 𝑓)) → {𝐴} ≼ (𝐵 ∖ ran 𝑓)) |
47 | 40, 46 | mp3an1 1447 |
. . . . . . . . 9
⊢ (({𝐴} ≼ {𝑤} ∧ {𝑤} ≼ (𝐵 ∖ ran 𝑓)) → {𝐴} ≼ (𝐵 ∖ ran 𝑓)) |
48 | 45, 47 | sylan 580 |
. . . . . . . 8
⊢ (({𝐴} ≈ {𝑤} ∧ {𝑤} ≼ (𝐵 ∖ ran 𝑓)) → {𝐴} ≼ (𝐵 ∖ ran 𝑓)) |
49 | 36, 44, 48 | syl6an 681 |
. . . . . . 7
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → ({𝑤} ⊆ (𝐵 ∖ ran 𝑓) → {𝐴} ≼ (𝐵 ∖ ran 𝑓))) |
50 | 30, 49 | syl5 34 |
. . . . . 6
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → (𝑤 ∈ (𝐵 ∖ ran 𝑓) → {𝐴} ≼ (𝐵 ∖ ran 𝑓))) |
51 | 50 | exlimdv 1936 |
. . . . 5
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → (∃𝑤 𝑤 ∈ (𝐵 ∖ ran 𝑓) → {𝐴} ≼ (𝐵 ∖ ran 𝑓))) |
52 | 29, 51 | mpd 15 |
. . . 4
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → {𝐴} ≼ (𝐵 ∖ ran 𝑓)) |
53 | | disjdif 4405 |
. . . . 5
⊢ (ran
𝑓 ∩ (𝐵 ∖ ran 𝑓)) = ∅ |
54 | 53 | a1i 11 |
. . . 4
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → (ran 𝑓 ∩ (𝐵 ∖ ran 𝑓)) = ∅) |
55 | | undom 8846 |
. . . 4
⊢ (((𝐴 ≼ ran 𝑓 ∧ {𝐴} ≼ (𝐵 ∖ ran 𝑓)) ∧ (ran 𝑓 ∩ (𝐵 ∖ ran 𝑓)) = ∅) → (𝐴 ∪ {𝐴}) ≼ (ran 𝑓 ∪ (𝐵 ∖ ran 𝑓))) |
56 | 11, 52, 54, 55 | syl21anc 835 |
. . 3
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → (𝐴 ∪ {𝐴}) ≼ (ran 𝑓 ∪ (𝐵 ∖ ran 𝑓))) |
57 | | df-suc 6272 |
. . . 4
⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) |
58 | 57 | a1i 11 |
. . 3
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → suc 𝐴 = (𝐴 ∪ {𝐴})) |
59 | | undif2 4410 |
. . . 4
⊢ (ran
𝑓 ∪ (𝐵 ∖ ran 𝑓)) = (ran 𝑓 ∪ 𝐵) |
60 | 17 | adantl 482 |
. . . . 5
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → ran 𝑓 ⊆ 𝐵) |
61 | | ssequn1 4114 |
. . . . 5
⊢ (ran
𝑓 ⊆ 𝐵 ↔ (ran 𝑓 ∪ 𝐵) = 𝐵) |
62 | 60, 61 | sylib 217 |
. . . 4
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → (ran 𝑓 ∪ 𝐵) = 𝐵) |
63 | 59, 62 | eqtr2id 2791 |
. . 3
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → 𝐵 = (ran 𝑓 ∪ (𝐵 ∖ ran 𝑓))) |
64 | 56, 58, 63 | 3brtr4d 5106 |
. 2
⊢ ((𝐴 ≺ 𝐵 ∧ 𝑓:𝐴–1-1→𝐵) → suc 𝐴 ≼ 𝐵) |
65 | 3, 64 | exlimddv 1938 |
1
⊢ (𝐴 ≺ 𝐵 → suc 𝐴 ≼ 𝐵) |