MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgslem1b Structured version   Visualization version   GIF version

Theorem 2lgslem1b 27330
Description: Lemma 2 for 2lgslem1 27332. (Contributed by AV, 18-Jun-2021.)
Hypotheses
Ref Expression
2lgslem1b.i 𝐼 = (𝐴...𝐵)
2lgslem1b.f 𝐹 = (𝑗𝐼 ↦ (𝑗 · 2))
Assertion
Ref Expression
2lgslem1b 𝐹:𝐼1-1-onto→{𝑥 ∈ ℤ ∣ ∃𝑖𝐼 𝑥 = (𝑖 · 2)}
Distinct variable group:   𝑖,𝐼,𝑗,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑖,𝑗)   𝐵(𝑥,𝑖,𝑗)   𝐹(𝑥,𝑖,𝑗)

Proof of Theorem 2lgslem1b
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2lgslem1b.f . . . 4 𝐹 = (𝑗𝐼 ↦ (𝑗 · 2))
2 eqeq1 2735 . . . . . 6 (𝑥 = (𝑗 · 2) → (𝑥 = (𝑖 · 2) ↔ (𝑗 · 2) = (𝑖 · 2)))
32rexbidv 3156 . . . . 5 (𝑥 = (𝑗 · 2) → (∃𝑖𝐼 𝑥 = (𝑖 · 2) ↔ ∃𝑖𝐼 (𝑗 · 2) = (𝑖 · 2)))
4 elfzelz 13424 . . . . . . 7 (𝑗 ∈ (𝐴...𝐵) → 𝑗 ∈ ℤ)
5 2lgslem1b.i . . . . . . 7 𝐼 = (𝐴...𝐵)
64, 5eleq2s 2849 . . . . . 6 (𝑗𝐼𝑗 ∈ ℤ)
7 2z 12504 . . . . . . 7 2 ∈ ℤ
87a1i 11 . . . . . 6 (𝑗𝐼 → 2 ∈ ℤ)
96, 8zmulcld 12583 . . . . 5 (𝑗𝐼 → (𝑗 · 2) ∈ ℤ)
10 id 22 . . . . . 6 (𝑗𝐼𝑗𝐼)
11 oveq1 7353 . . . . . . . 8 (𝑖 = 𝑗 → (𝑖 · 2) = (𝑗 · 2))
1211eqeq2d 2742 . . . . . . 7 (𝑖 = 𝑗 → ((𝑗 · 2) = (𝑖 · 2) ↔ (𝑗 · 2) = (𝑗 · 2)))
1312adantl 481 . . . . . 6 ((𝑗𝐼𝑖 = 𝑗) → ((𝑗 · 2) = (𝑖 · 2) ↔ (𝑗 · 2) = (𝑗 · 2)))
14 eqidd 2732 . . . . . 6 (𝑗𝐼 → (𝑗 · 2) = (𝑗 · 2))
1510, 13, 14rspcedvd 3574 . . . . 5 (𝑗𝐼 → ∃𝑖𝐼 (𝑗 · 2) = (𝑖 · 2))
163, 9, 15elrabd 3644 . . . 4 (𝑗𝐼 → (𝑗 · 2) ∈ {𝑥 ∈ ℤ ∣ ∃𝑖𝐼 𝑥 = (𝑖 · 2)})
171, 16fmpti 7045 . . 3 𝐹:𝐼⟶{𝑥 ∈ ℤ ∣ ∃𝑖𝐼 𝑥 = (𝑖 · 2)}
18 oveq1 7353 . . . . . . 7 (𝑗 = 𝑦 → (𝑗 · 2) = (𝑦 · 2))
19 simpl 482 . . . . . . 7 ((𝑦𝐼𝑧𝐼) → 𝑦𝐼)
20 ovexd 7381 . . . . . . 7 ((𝑦𝐼𝑧𝐼) → (𝑦 · 2) ∈ V)
211, 18, 19, 20fvmptd3 6952 . . . . . 6 ((𝑦𝐼𝑧𝐼) → (𝐹𝑦) = (𝑦 · 2))
22 oveq1 7353 . . . . . . 7 (𝑗 = 𝑧 → (𝑗 · 2) = (𝑧 · 2))
23 simpr 484 . . . . . . 7 ((𝑦𝐼𝑧𝐼) → 𝑧𝐼)
24 ovexd 7381 . . . . . . 7 ((𝑦𝐼𝑧𝐼) → (𝑧 · 2) ∈ V)
251, 22, 23, 24fvmptd3 6952 . . . . . 6 ((𝑦𝐼𝑧𝐼) → (𝐹𝑧) = (𝑧 · 2))
2621, 25eqeq12d 2747 . . . . 5 ((𝑦𝐼𝑧𝐼) → ((𝐹𝑦) = (𝐹𝑧) ↔ (𝑦 · 2) = (𝑧 · 2)))
27 elfzelz 13424 . . . . . . . . . 10 (𝑦 ∈ (𝐴...𝐵) → 𝑦 ∈ ℤ)
2827, 5eleq2s 2849 . . . . . . . . 9 (𝑦𝐼𝑦 ∈ ℤ)
2928zcnd 12578 . . . . . . . 8 (𝑦𝐼𝑦 ∈ ℂ)
3029adantr 480 . . . . . . 7 ((𝑦𝐼𝑧𝐼) → 𝑦 ∈ ℂ)
31 elfzelz 13424 . . . . . . . . . 10 (𝑧 ∈ (𝐴...𝐵) → 𝑧 ∈ ℤ)
3231, 5eleq2s 2849 . . . . . . . . 9 (𝑧𝐼𝑧 ∈ ℤ)
3332zcnd 12578 . . . . . . . 8 (𝑧𝐼𝑧 ∈ ℂ)
3433adantl 481 . . . . . . 7 ((𝑦𝐼𝑧𝐼) → 𝑧 ∈ ℂ)
35 2cnd 12203 . . . . . . 7 ((𝑦𝐼𝑧𝐼) → 2 ∈ ℂ)
36 2ne0 12229 . . . . . . . 8 2 ≠ 0
3736a1i 11 . . . . . . 7 ((𝑦𝐼𝑧𝐼) → 2 ≠ 0)
3830, 34, 35, 37mulcan2d 11751 . . . . . 6 ((𝑦𝐼𝑧𝐼) → ((𝑦 · 2) = (𝑧 · 2) ↔ 𝑦 = 𝑧))
3938biimpd 229 . . . . 5 ((𝑦𝐼𝑧𝐼) → ((𝑦 · 2) = (𝑧 · 2) → 𝑦 = 𝑧))
4026, 39sylbid 240 . . . 4 ((𝑦𝐼𝑧𝐼) → ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
4140rgen2 3172 . . 3 𝑦𝐼𝑧𝐼 ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧)
42 dff13 7188 . . 3 (𝐹:𝐼1-1→{𝑥 ∈ ℤ ∣ ∃𝑖𝐼 𝑥 = (𝑖 · 2)} ↔ (𝐹:𝐼⟶{𝑥 ∈ ℤ ∣ ∃𝑖𝐼 𝑥 = (𝑖 · 2)} ∧ ∀𝑦𝐼𝑧𝐼 ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧)))
4317, 41, 42mpbir2an 711 . 2 𝐹:𝐼1-1→{𝑥 ∈ ℤ ∣ ∃𝑖𝐼 𝑥 = (𝑖 · 2)}
44 oveq1 7353 . . . . . . 7 (𝑗 = 𝑖 → (𝑗 · 2) = (𝑖 · 2))
4544eqeq2d 2742 . . . . . 6 (𝑗 = 𝑖 → (𝑥 = (𝑗 · 2) ↔ 𝑥 = (𝑖 · 2)))
4645cbvrexvw 3211 . . . . 5 (∃𝑗𝐼 𝑥 = (𝑗 · 2) ↔ ∃𝑖𝐼 𝑥 = (𝑖 · 2))
47 elfzelz 13424 . . . . . . . . . 10 (𝑖 ∈ (𝐴...𝐵) → 𝑖 ∈ ℤ)
487a1i 11 . . . . . . . . . 10 (𝑖 ∈ (𝐴...𝐵) → 2 ∈ ℤ)
4947, 48zmulcld 12583 . . . . . . . . 9 (𝑖 ∈ (𝐴...𝐵) → (𝑖 · 2) ∈ ℤ)
5049, 5eleq2s 2849 . . . . . . . 8 (𝑖𝐼 → (𝑖 · 2) ∈ ℤ)
51 eleq1 2819 . . . . . . . 8 (𝑥 = (𝑖 · 2) → (𝑥 ∈ ℤ ↔ (𝑖 · 2) ∈ ℤ))
5250, 51syl5ibrcom 247 . . . . . . 7 (𝑖𝐼 → (𝑥 = (𝑖 · 2) → 𝑥 ∈ ℤ))
5352rexlimiv 3126 . . . . . 6 (∃𝑖𝐼 𝑥 = (𝑖 · 2) → 𝑥 ∈ ℤ)
5453pm4.71ri 560 . . . . 5 (∃𝑖𝐼 𝑥 = (𝑖 · 2) ↔ (𝑥 ∈ ℤ ∧ ∃𝑖𝐼 𝑥 = (𝑖 · 2)))
5546, 54bitri 275 . . . 4 (∃𝑗𝐼 𝑥 = (𝑗 · 2) ↔ (𝑥 ∈ ℤ ∧ ∃𝑖𝐼 𝑥 = (𝑖 · 2)))
5655abbii 2798 . . 3 {𝑥 ∣ ∃𝑗𝐼 𝑥 = (𝑗 · 2)} = {𝑥 ∣ (𝑥 ∈ ℤ ∧ ∃𝑖𝐼 𝑥 = (𝑖 · 2))}
571rnmpt 5896 . . 3 ran 𝐹 = {𝑥 ∣ ∃𝑗𝐼 𝑥 = (𝑗 · 2)}
58 df-rab 3396 . . 3 {𝑥 ∈ ℤ ∣ ∃𝑖𝐼 𝑥 = (𝑖 · 2)} = {𝑥 ∣ (𝑥 ∈ ℤ ∧ ∃𝑖𝐼 𝑥 = (𝑖 · 2))}
5956, 57, 583eqtr4i 2764 . 2 ran 𝐹 = {𝑥 ∈ ℤ ∣ ∃𝑖𝐼 𝑥 = (𝑖 · 2)}
60 dff1o5 6772 . 2 (𝐹:𝐼1-1-onto→{𝑥 ∈ ℤ ∣ ∃𝑖𝐼 𝑥 = (𝑖 · 2)} ↔ (𝐹:𝐼1-1→{𝑥 ∈ ℤ ∣ ∃𝑖𝐼 𝑥 = (𝑖 · 2)} ∧ ran 𝐹 = {𝑥 ∈ ℤ ∣ ∃𝑖𝐼 𝑥 = (𝑖 · 2)}))
6143, 59, 60mpbir2an 711 1 𝐹:𝐼1-1-onto→{𝑥 ∈ ℤ ∣ ∃𝑖𝐼 𝑥 = (𝑖 · 2)}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  {cab 2709  wne 2928  wral 3047  wrex 3056  {crab 3395  Vcvv 3436  cmpt 5170  ran crn 5615  wf 6477  1-1wf1 6478  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  cc 11004  0cc0 11006   · cmul 11011  2c2 12180  cz 12468  ...cfz 13407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408
This theorem is referenced by:  2lgslem1  27332
  Copyright terms: Public domain W3C validator