MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgslem1b Structured version   Visualization version   GIF version

Theorem 2lgslem1b 27436
Description: Lemma 2 for 2lgslem1 27438. (Contributed by AV, 18-Jun-2021.)
Hypotheses
Ref Expression
2lgslem1b.i 𝐼 = (𝐴...𝐵)
2lgslem1b.f 𝐹 = (𝑗𝐼 ↦ (𝑗 · 2))
Assertion
Ref Expression
2lgslem1b 𝐹:𝐼1-1-onto→{𝑥 ∈ ℤ ∣ ∃𝑖𝐼 𝑥 = (𝑖 · 2)}
Distinct variable group:   𝑖,𝐼,𝑗,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑖,𝑗)   𝐵(𝑥,𝑖,𝑗)   𝐹(𝑥,𝑖,𝑗)

Proof of Theorem 2lgslem1b
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2lgslem1b.f . . . 4 𝐹 = (𝑗𝐼 ↦ (𝑗 · 2))
2 eqeq1 2741 . . . . . 6 (𝑥 = (𝑗 · 2) → (𝑥 = (𝑖 · 2) ↔ (𝑗 · 2) = (𝑖 · 2)))
32rexbidv 3179 . . . . 5 (𝑥 = (𝑗 · 2) → (∃𝑖𝐼 𝑥 = (𝑖 · 2) ↔ ∃𝑖𝐼 (𝑗 · 2) = (𝑖 · 2)))
4 elfzelz 13564 . . . . . . 7 (𝑗 ∈ (𝐴...𝐵) → 𝑗 ∈ ℤ)
5 2lgslem1b.i . . . . . . 7 𝐼 = (𝐴...𝐵)
64, 5eleq2s 2859 . . . . . 6 (𝑗𝐼𝑗 ∈ ℤ)
7 2z 12649 . . . . . . 7 2 ∈ ℤ
87a1i 11 . . . . . 6 (𝑗𝐼 → 2 ∈ ℤ)
96, 8zmulcld 12728 . . . . 5 (𝑗𝐼 → (𝑗 · 2) ∈ ℤ)
10 id 22 . . . . . 6 (𝑗𝐼𝑗𝐼)
11 oveq1 7438 . . . . . . . 8 (𝑖 = 𝑗 → (𝑖 · 2) = (𝑗 · 2))
1211eqeq2d 2748 . . . . . . 7 (𝑖 = 𝑗 → ((𝑗 · 2) = (𝑖 · 2) ↔ (𝑗 · 2) = (𝑗 · 2)))
1312adantl 481 . . . . . 6 ((𝑗𝐼𝑖 = 𝑗) → ((𝑗 · 2) = (𝑖 · 2) ↔ (𝑗 · 2) = (𝑗 · 2)))
14 eqidd 2738 . . . . . 6 (𝑗𝐼 → (𝑗 · 2) = (𝑗 · 2))
1510, 13, 14rspcedvd 3624 . . . . 5 (𝑗𝐼 → ∃𝑖𝐼 (𝑗 · 2) = (𝑖 · 2))
163, 9, 15elrabd 3694 . . . 4 (𝑗𝐼 → (𝑗 · 2) ∈ {𝑥 ∈ ℤ ∣ ∃𝑖𝐼 𝑥 = (𝑖 · 2)})
171, 16fmpti 7132 . . 3 𝐹:𝐼⟶{𝑥 ∈ ℤ ∣ ∃𝑖𝐼 𝑥 = (𝑖 · 2)}
18 oveq1 7438 . . . . . . 7 (𝑗 = 𝑦 → (𝑗 · 2) = (𝑦 · 2))
19 simpl 482 . . . . . . 7 ((𝑦𝐼𝑧𝐼) → 𝑦𝐼)
20 ovexd 7466 . . . . . . 7 ((𝑦𝐼𝑧𝐼) → (𝑦 · 2) ∈ V)
211, 18, 19, 20fvmptd3 7039 . . . . . 6 ((𝑦𝐼𝑧𝐼) → (𝐹𝑦) = (𝑦 · 2))
22 oveq1 7438 . . . . . . 7 (𝑗 = 𝑧 → (𝑗 · 2) = (𝑧 · 2))
23 simpr 484 . . . . . . 7 ((𝑦𝐼𝑧𝐼) → 𝑧𝐼)
24 ovexd 7466 . . . . . . 7 ((𝑦𝐼𝑧𝐼) → (𝑧 · 2) ∈ V)
251, 22, 23, 24fvmptd3 7039 . . . . . 6 ((𝑦𝐼𝑧𝐼) → (𝐹𝑧) = (𝑧 · 2))
2621, 25eqeq12d 2753 . . . . 5 ((𝑦𝐼𝑧𝐼) → ((𝐹𝑦) = (𝐹𝑧) ↔ (𝑦 · 2) = (𝑧 · 2)))
27 elfzelz 13564 . . . . . . . . . 10 (𝑦 ∈ (𝐴...𝐵) → 𝑦 ∈ ℤ)
2827, 5eleq2s 2859 . . . . . . . . 9 (𝑦𝐼𝑦 ∈ ℤ)
2928zcnd 12723 . . . . . . . 8 (𝑦𝐼𝑦 ∈ ℂ)
3029adantr 480 . . . . . . 7 ((𝑦𝐼𝑧𝐼) → 𝑦 ∈ ℂ)
31 elfzelz 13564 . . . . . . . . . 10 (𝑧 ∈ (𝐴...𝐵) → 𝑧 ∈ ℤ)
3231, 5eleq2s 2859 . . . . . . . . 9 (𝑧𝐼𝑧 ∈ ℤ)
3332zcnd 12723 . . . . . . . 8 (𝑧𝐼𝑧 ∈ ℂ)
3433adantl 481 . . . . . . 7 ((𝑦𝐼𝑧𝐼) → 𝑧 ∈ ℂ)
35 2cnd 12344 . . . . . . 7 ((𝑦𝐼𝑧𝐼) → 2 ∈ ℂ)
36 2ne0 12370 . . . . . . . 8 2 ≠ 0
3736a1i 11 . . . . . . 7 ((𝑦𝐼𝑧𝐼) → 2 ≠ 0)
3830, 34, 35, 37mulcan2d 11897 . . . . . 6 ((𝑦𝐼𝑧𝐼) → ((𝑦 · 2) = (𝑧 · 2) ↔ 𝑦 = 𝑧))
3938biimpd 229 . . . . 5 ((𝑦𝐼𝑧𝐼) → ((𝑦 · 2) = (𝑧 · 2) → 𝑦 = 𝑧))
4026, 39sylbid 240 . . . 4 ((𝑦𝐼𝑧𝐼) → ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
4140rgen2 3199 . . 3 𝑦𝐼𝑧𝐼 ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧)
42 dff13 7275 . . 3 (𝐹:𝐼1-1→{𝑥 ∈ ℤ ∣ ∃𝑖𝐼 𝑥 = (𝑖 · 2)} ↔ (𝐹:𝐼⟶{𝑥 ∈ ℤ ∣ ∃𝑖𝐼 𝑥 = (𝑖 · 2)} ∧ ∀𝑦𝐼𝑧𝐼 ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧)))
4317, 41, 42mpbir2an 711 . 2 𝐹:𝐼1-1→{𝑥 ∈ ℤ ∣ ∃𝑖𝐼 𝑥 = (𝑖 · 2)}
44 oveq1 7438 . . . . . . 7 (𝑗 = 𝑖 → (𝑗 · 2) = (𝑖 · 2))
4544eqeq2d 2748 . . . . . 6 (𝑗 = 𝑖 → (𝑥 = (𝑗 · 2) ↔ 𝑥 = (𝑖 · 2)))
4645cbvrexvw 3238 . . . . 5 (∃𝑗𝐼 𝑥 = (𝑗 · 2) ↔ ∃𝑖𝐼 𝑥 = (𝑖 · 2))
47 elfzelz 13564 . . . . . . . . . 10 (𝑖 ∈ (𝐴...𝐵) → 𝑖 ∈ ℤ)
487a1i 11 . . . . . . . . . 10 (𝑖 ∈ (𝐴...𝐵) → 2 ∈ ℤ)
4947, 48zmulcld 12728 . . . . . . . . 9 (𝑖 ∈ (𝐴...𝐵) → (𝑖 · 2) ∈ ℤ)
5049, 5eleq2s 2859 . . . . . . . 8 (𝑖𝐼 → (𝑖 · 2) ∈ ℤ)
51 eleq1 2829 . . . . . . . 8 (𝑥 = (𝑖 · 2) → (𝑥 ∈ ℤ ↔ (𝑖 · 2) ∈ ℤ))
5250, 51syl5ibrcom 247 . . . . . . 7 (𝑖𝐼 → (𝑥 = (𝑖 · 2) → 𝑥 ∈ ℤ))
5352rexlimiv 3148 . . . . . 6 (∃𝑖𝐼 𝑥 = (𝑖 · 2) → 𝑥 ∈ ℤ)
5453pm4.71ri 560 . . . . 5 (∃𝑖𝐼 𝑥 = (𝑖 · 2) ↔ (𝑥 ∈ ℤ ∧ ∃𝑖𝐼 𝑥 = (𝑖 · 2)))
5546, 54bitri 275 . . . 4 (∃𝑗𝐼 𝑥 = (𝑗 · 2) ↔ (𝑥 ∈ ℤ ∧ ∃𝑖𝐼 𝑥 = (𝑖 · 2)))
5655abbii 2809 . . 3 {𝑥 ∣ ∃𝑗𝐼 𝑥 = (𝑗 · 2)} = {𝑥 ∣ (𝑥 ∈ ℤ ∧ ∃𝑖𝐼 𝑥 = (𝑖 · 2))}
571rnmpt 5968 . . 3 ran 𝐹 = {𝑥 ∣ ∃𝑗𝐼 𝑥 = (𝑗 · 2)}
58 df-rab 3437 . . 3 {𝑥 ∈ ℤ ∣ ∃𝑖𝐼 𝑥 = (𝑖 · 2)} = {𝑥 ∣ (𝑥 ∈ ℤ ∧ ∃𝑖𝐼 𝑥 = (𝑖 · 2))}
5956, 57, 583eqtr4i 2775 . 2 ran 𝐹 = {𝑥 ∈ ℤ ∣ ∃𝑖𝐼 𝑥 = (𝑖 · 2)}
60 dff1o5 6857 . 2 (𝐹:𝐼1-1-onto→{𝑥 ∈ ℤ ∣ ∃𝑖𝐼 𝑥 = (𝑖 · 2)} ↔ (𝐹:𝐼1-1→{𝑥 ∈ ℤ ∣ ∃𝑖𝐼 𝑥 = (𝑖 · 2)} ∧ ran 𝐹 = {𝑥 ∈ ℤ ∣ ∃𝑖𝐼 𝑥 = (𝑖 · 2)}))
6143, 59, 60mpbir2an 711 1 𝐹:𝐼1-1-onto→{𝑥 ∈ ℤ ∣ ∃𝑖𝐼 𝑥 = (𝑖 · 2)}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  {cab 2714  wne 2940  wral 3061  wrex 3070  {crab 3436  Vcvv 3480  cmpt 5225  ran crn 5686  wf 6557  1-1wf1 6558  1-1-ontowf1o 6560  cfv 6561  (class class class)co 7431  cc 11153  0cc0 11155   · cmul 11160  2c2 12321  cz 12613  ...cfz 13547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548
This theorem is referenced by:  2lgslem1  27438
  Copyright terms: Public domain W3C validator