MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgslem1b Structured version   Visualization version   GIF version

Theorem 2lgslem1b 26540
Description: Lemma 2 for 2lgslem1 26542. (Contributed by AV, 18-Jun-2021.)
Hypotheses
Ref Expression
2lgslem1b.i 𝐼 = (𝐴...𝐵)
2lgslem1b.f 𝐹 = (𝑗𝐼 ↦ (𝑗 · 2))
Assertion
Ref Expression
2lgslem1b 𝐹:𝐼1-1-onto→{𝑥 ∈ ℤ ∣ ∃𝑖𝐼 𝑥 = (𝑖 · 2)}
Distinct variable group:   𝑖,𝐼,𝑗,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑖,𝑗)   𝐵(𝑥,𝑖,𝑗)   𝐹(𝑥,𝑖,𝑗)

Proof of Theorem 2lgslem1b
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2lgslem1b.f . . . 4 𝐹 = (𝑗𝐼 ↦ (𝑗 · 2))
2 eqeq1 2742 . . . . . 6 (𝑥 = (𝑗 · 2) → (𝑥 = (𝑖 · 2) ↔ (𝑗 · 2) = (𝑖 · 2)))
32rexbidv 3226 . . . . 5 (𝑥 = (𝑗 · 2) → (∃𝑖𝐼 𝑥 = (𝑖 · 2) ↔ ∃𝑖𝐼 (𝑗 · 2) = (𝑖 · 2)))
4 elfzelz 13256 . . . . . . 7 (𝑗 ∈ (𝐴...𝐵) → 𝑗 ∈ ℤ)
5 2lgslem1b.i . . . . . . 7 𝐼 = (𝐴...𝐵)
64, 5eleq2s 2857 . . . . . 6 (𝑗𝐼𝑗 ∈ ℤ)
7 2z 12352 . . . . . . 7 2 ∈ ℤ
87a1i 11 . . . . . 6 (𝑗𝐼 → 2 ∈ ℤ)
96, 8zmulcld 12432 . . . . 5 (𝑗𝐼 → (𝑗 · 2) ∈ ℤ)
10 id 22 . . . . . 6 (𝑗𝐼𝑗𝐼)
11 oveq1 7282 . . . . . . . 8 (𝑖 = 𝑗 → (𝑖 · 2) = (𝑗 · 2))
1211eqeq2d 2749 . . . . . . 7 (𝑖 = 𝑗 → ((𝑗 · 2) = (𝑖 · 2) ↔ (𝑗 · 2) = (𝑗 · 2)))
1312adantl 482 . . . . . 6 ((𝑗𝐼𝑖 = 𝑗) → ((𝑗 · 2) = (𝑖 · 2) ↔ (𝑗 · 2) = (𝑗 · 2)))
14 eqidd 2739 . . . . . 6 (𝑗𝐼 → (𝑗 · 2) = (𝑗 · 2))
1510, 13, 14rspcedvd 3563 . . . . 5 (𝑗𝐼 → ∃𝑖𝐼 (𝑗 · 2) = (𝑖 · 2))
163, 9, 15elrabd 3626 . . . 4 (𝑗𝐼 → (𝑗 · 2) ∈ {𝑥 ∈ ℤ ∣ ∃𝑖𝐼 𝑥 = (𝑖 · 2)})
171, 16fmpti 6986 . . 3 𝐹:𝐼⟶{𝑥 ∈ ℤ ∣ ∃𝑖𝐼 𝑥 = (𝑖 · 2)}
18 oveq1 7282 . . . . . . 7 (𝑗 = 𝑦 → (𝑗 · 2) = (𝑦 · 2))
19 simpl 483 . . . . . . 7 ((𝑦𝐼𝑧𝐼) → 𝑦𝐼)
20 ovexd 7310 . . . . . . 7 ((𝑦𝐼𝑧𝐼) → (𝑦 · 2) ∈ V)
211, 18, 19, 20fvmptd3 6898 . . . . . 6 ((𝑦𝐼𝑧𝐼) → (𝐹𝑦) = (𝑦 · 2))
22 oveq1 7282 . . . . . . 7 (𝑗 = 𝑧 → (𝑗 · 2) = (𝑧 · 2))
23 simpr 485 . . . . . . 7 ((𝑦𝐼𝑧𝐼) → 𝑧𝐼)
24 ovexd 7310 . . . . . . 7 ((𝑦𝐼𝑧𝐼) → (𝑧 · 2) ∈ V)
251, 22, 23, 24fvmptd3 6898 . . . . . 6 ((𝑦𝐼𝑧𝐼) → (𝐹𝑧) = (𝑧 · 2))
2621, 25eqeq12d 2754 . . . . 5 ((𝑦𝐼𝑧𝐼) → ((𝐹𝑦) = (𝐹𝑧) ↔ (𝑦 · 2) = (𝑧 · 2)))
27 elfzelz 13256 . . . . . . . . . 10 (𝑦 ∈ (𝐴...𝐵) → 𝑦 ∈ ℤ)
2827, 5eleq2s 2857 . . . . . . . . 9 (𝑦𝐼𝑦 ∈ ℤ)
2928zcnd 12427 . . . . . . . 8 (𝑦𝐼𝑦 ∈ ℂ)
3029adantr 481 . . . . . . 7 ((𝑦𝐼𝑧𝐼) → 𝑦 ∈ ℂ)
31 elfzelz 13256 . . . . . . . . . 10 (𝑧 ∈ (𝐴...𝐵) → 𝑧 ∈ ℤ)
3231, 5eleq2s 2857 . . . . . . . . 9 (𝑧𝐼𝑧 ∈ ℤ)
3332zcnd 12427 . . . . . . . 8 (𝑧𝐼𝑧 ∈ ℂ)
3433adantl 482 . . . . . . 7 ((𝑦𝐼𝑧𝐼) → 𝑧 ∈ ℂ)
35 2cnd 12051 . . . . . . 7 ((𝑦𝐼𝑧𝐼) → 2 ∈ ℂ)
36 2ne0 12077 . . . . . . . 8 2 ≠ 0
3736a1i 11 . . . . . . 7 ((𝑦𝐼𝑧𝐼) → 2 ≠ 0)
3830, 34, 35, 37mulcan2d 11609 . . . . . 6 ((𝑦𝐼𝑧𝐼) → ((𝑦 · 2) = (𝑧 · 2) ↔ 𝑦 = 𝑧))
3938biimpd 228 . . . . 5 ((𝑦𝐼𝑧𝐼) → ((𝑦 · 2) = (𝑧 · 2) → 𝑦 = 𝑧))
4026, 39sylbid 239 . . . 4 ((𝑦𝐼𝑧𝐼) → ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
4140rgen2 3120 . . 3 𝑦𝐼𝑧𝐼 ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧)
42 dff13 7128 . . 3 (𝐹:𝐼1-1→{𝑥 ∈ ℤ ∣ ∃𝑖𝐼 𝑥 = (𝑖 · 2)} ↔ (𝐹:𝐼⟶{𝑥 ∈ ℤ ∣ ∃𝑖𝐼 𝑥 = (𝑖 · 2)} ∧ ∀𝑦𝐼𝑧𝐼 ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧)))
4317, 41, 42mpbir2an 708 . 2 𝐹:𝐼1-1→{𝑥 ∈ ℤ ∣ ∃𝑖𝐼 𝑥 = (𝑖 · 2)}
44 oveq1 7282 . . . . . . 7 (𝑗 = 𝑖 → (𝑗 · 2) = (𝑖 · 2))
4544eqeq2d 2749 . . . . . 6 (𝑗 = 𝑖 → (𝑥 = (𝑗 · 2) ↔ 𝑥 = (𝑖 · 2)))
4645cbvrexvw 3384 . . . . 5 (∃𝑗𝐼 𝑥 = (𝑗 · 2) ↔ ∃𝑖𝐼 𝑥 = (𝑖 · 2))
47 elfzelz 13256 . . . . . . . . . 10 (𝑖 ∈ (𝐴...𝐵) → 𝑖 ∈ ℤ)
487a1i 11 . . . . . . . . . 10 (𝑖 ∈ (𝐴...𝐵) → 2 ∈ ℤ)
4947, 48zmulcld 12432 . . . . . . . . 9 (𝑖 ∈ (𝐴...𝐵) → (𝑖 · 2) ∈ ℤ)
5049, 5eleq2s 2857 . . . . . . . 8 (𝑖𝐼 → (𝑖 · 2) ∈ ℤ)
51 eleq1 2826 . . . . . . . 8 (𝑥 = (𝑖 · 2) → (𝑥 ∈ ℤ ↔ (𝑖 · 2) ∈ ℤ))
5250, 51syl5ibrcom 246 . . . . . . 7 (𝑖𝐼 → (𝑥 = (𝑖 · 2) → 𝑥 ∈ ℤ))
5352rexlimiv 3209 . . . . . 6 (∃𝑖𝐼 𝑥 = (𝑖 · 2) → 𝑥 ∈ ℤ)
5453pm4.71ri 561 . . . . 5 (∃𝑖𝐼 𝑥 = (𝑖 · 2) ↔ (𝑥 ∈ ℤ ∧ ∃𝑖𝐼 𝑥 = (𝑖 · 2)))
5546, 54bitri 274 . . . 4 (∃𝑗𝐼 𝑥 = (𝑗 · 2) ↔ (𝑥 ∈ ℤ ∧ ∃𝑖𝐼 𝑥 = (𝑖 · 2)))
5655abbii 2808 . . 3 {𝑥 ∣ ∃𝑗𝐼 𝑥 = (𝑗 · 2)} = {𝑥 ∣ (𝑥 ∈ ℤ ∧ ∃𝑖𝐼 𝑥 = (𝑖 · 2))}
571rnmpt 5864 . . 3 ran 𝐹 = {𝑥 ∣ ∃𝑗𝐼 𝑥 = (𝑗 · 2)}
58 df-rab 3073 . . 3 {𝑥 ∈ ℤ ∣ ∃𝑖𝐼 𝑥 = (𝑖 · 2)} = {𝑥 ∣ (𝑥 ∈ ℤ ∧ ∃𝑖𝐼 𝑥 = (𝑖 · 2))}
5956, 57, 583eqtr4i 2776 . 2 ran 𝐹 = {𝑥 ∈ ℤ ∣ ∃𝑖𝐼 𝑥 = (𝑖 · 2)}
60 dff1o5 6725 . 2 (𝐹:𝐼1-1-onto→{𝑥 ∈ ℤ ∣ ∃𝑖𝐼 𝑥 = (𝑖 · 2)} ↔ (𝐹:𝐼1-1→{𝑥 ∈ ℤ ∣ ∃𝑖𝐼 𝑥 = (𝑖 · 2)} ∧ ran 𝐹 = {𝑥 ∈ ℤ ∣ ∃𝑖𝐼 𝑥 = (𝑖 · 2)}))
6143, 59, 60mpbir2an 708 1 𝐹:𝐼1-1-onto→{𝑥 ∈ ℤ ∣ ∃𝑖𝐼 𝑥 = (𝑖 · 2)}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  {cab 2715  wne 2943  wral 3064  wrex 3065  {crab 3068  Vcvv 3432  cmpt 5157  ran crn 5590  wf 6429  1-1wf1 6430  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  cc 10869  0cc0 10871   · cmul 10876  2c2 12028  cz 12319  ...cfz 13239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240
This theorem is referenced by:  2lgslem1  26542
  Copyright terms: Public domain W3C validator