MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fo2ndres Structured version   Visualization version   GIF version

Theorem fo2ndres 8040
Description: Onto mapping of a restriction of the 2nd (second member of an ordered pair) function. (Contributed by NM, 14-Dec-2008.)
Assertion
Ref Expression
fo2ndres (𝐴 ≠ ∅ → (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)–onto𝐵)

Proof of Theorem fo2ndres
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 4359 . . . . . . 7 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
2 opelxp 5725 . . . . . . . . . 10 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) ↔ (𝑥𝐴𝑦𝐵))
3 fvres 6926 . . . . . . . . . . . 12 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → ((2nd ↾ (𝐴 × 𝐵))‘⟨𝑥, 𝑦⟩) = (2nd ‘⟨𝑥, 𝑦⟩))
4 vex 3482 . . . . . . . . . . . . 13 𝑥 ∈ V
5 vex 3482 . . . . . . . . . . . . 13 𝑦 ∈ V
64, 5op2nd 8022 . . . . . . . . . . . 12 (2nd ‘⟨𝑥, 𝑦⟩) = 𝑦
73, 6eqtr2di 2792 . . . . . . . . . . 11 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → 𝑦 = ((2nd ↾ (𝐴 × 𝐵))‘⟨𝑥, 𝑦⟩))
8 f2ndres 8038 . . . . . . . . . . . . 13 (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵
9 ffn 6737 . . . . . . . . . . . . 13 ((2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵 → (2nd ↾ (𝐴 × 𝐵)) Fn (𝐴 × 𝐵))
108, 9ax-mp 5 . . . . . . . . . . . 12 (2nd ↾ (𝐴 × 𝐵)) Fn (𝐴 × 𝐵)
11 fnfvelrn 7100 . . . . . . . . . . . 12 (((2nd ↾ (𝐴 × 𝐵)) Fn (𝐴 × 𝐵) ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵)) → ((2nd ↾ (𝐴 × 𝐵))‘⟨𝑥, 𝑦⟩) ∈ ran (2nd ↾ (𝐴 × 𝐵)))
1210, 11mpan 690 . . . . . . . . . . 11 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → ((2nd ↾ (𝐴 × 𝐵))‘⟨𝑥, 𝑦⟩) ∈ ran (2nd ↾ (𝐴 × 𝐵)))
137, 12eqeltrd 2839 . . . . . . . . . 10 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → 𝑦 ∈ ran (2nd ↾ (𝐴 × 𝐵)))
142, 13sylbir 235 . . . . . . . . 9 ((𝑥𝐴𝑦𝐵) → 𝑦 ∈ ran (2nd ↾ (𝐴 × 𝐵)))
1514ex 412 . . . . . . . 8 (𝑥𝐴 → (𝑦𝐵𝑦 ∈ ran (2nd ↾ (𝐴 × 𝐵))))
1615exlimiv 1928 . . . . . . 7 (∃𝑥 𝑥𝐴 → (𝑦𝐵𝑦 ∈ ran (2nd ↾ (𝐴 × 𝐵))))
171, 16sylbi 217 . . . . . 6 (𝐴 ≠ ∅ → (𝑦𝐵𝑦 ∈ ran (2nd ↾ (𝐴 × 𝐵))))
1817ssrdv 4001 . . . . 5 (𝐴 ≠ ∅ → 𝐵 ⊆ ran (2nd ↾ (𝐴 × 𝐵)))
19 frn 6744 . . . . . 6 ((2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵 → ran (2nd ↾ (𝐴 × 𝐵)) ⊆ 𝐵)
208, 19ax-mp 5 . . . . 5 ran (2nd ↾ (𝐴 × 𝐵)) ⊆ 𝐵
2118, 20jctil 519 . . . 4 (𝐴 ≠ ∅ → (ran (2nd ↾ (𝐴 × 𝐵)) ⊆ 𝐵𝐵 ⊆ ran (2nd ↾ (𝐴 × 𝐵))))
22 eqss 4011 . . . 4 (ran (2nd ↾ (𝐴 × 𝐵)) = 𝐵 ↔ (ran (2nd ↾ (𝐴 × 𝐵)) ⊆ 𝐵𝐵 ⊆ ran (2nd ↾ (𝐴 × 𝐵))))
2321, 22sylibr 234 . . 3 (𝐴 ≠ ∅ → ran (2nd ↾ (𝐴 × 𝐵)) = 𝐵)
2423, 8jctil 519 . 2 (𝐴 ≠ ∅ → ((2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵 ∧ ran (2nd ↾ (𝐴 × 𝐵)) = 𝐵))
25 dffo2 6825 . 2 ((2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)–onto𝐵 ↔ ((2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵 ∧ ran (2nd ↾ (𝐴 × 𝐵)) = 𝐵))
2624, 25sylibr 234 1 (𝐴 ≠ ∅ → (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)–onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wex 1776  wcel 2106  wne 2938  wss 3963  c0 4339  cop 4637   × cxp 5687  ran crn 5690  cres 5691   Fn wfn 6558  wf 6559  ontowfo 6561  cfv 6563  2nd c2nd 8012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fo 6569  df-fv 6571  df-2nd 8014
This theorem is referenced by:  2ndconst  8125  txcmpb  23668
  Copyright terms: Public domain W3C validator