MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fo2ndres Structured version   Visualization version   GIF version

Theorem fo2ndres 7958
Description: Onto mapping of a restriction of the 2nd (second member of an ordered pair) function. (Contributed by NM, 14-Dec-2008.)
Assertion
Ref Expression
fo2ndres (𝐴 ≠ ∅ → (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)–onto𝐵)

Proof of Theorem fo2ndres
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 4306 . . . . . . 7 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
2 opelxp 5659 . . . . . . . . . 10 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) ↔ (𝑥𝐴𝑦𝐵))
3 fvres 6845 . . . . . . . . . . . 12 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → ((2nd ↾ (𝐴 × 𝐵))‘⟨𝑥, 𝑦⟩) = (2nd ‘⟨𝑥, 𝑦⟩))
4 vex 3442 . . . . . . . . . . . . 13 𝑥 ∈ V
5 vex 3442 . . . . . . . . . . . . 13 𝑦 ∈ V
64, 5op2nd 7940 . . . . . . . . . . . 12 (2nd ‘⟨𝑥, 𝑦⟩) = 𝑦
73, 6eqtr2di 2781 . . . . . . . . . . 11 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → 𝑦 = ((2nd ↾ (𝐴 × 𝐵))‘⟨𝑥, 𝑦⟩))
8 f2ndres 7956 . . . . . . . . . . . . 13 (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵
9 ffn 6656 . . . . . . . . . . . . 13 ((2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵 → (2nd ↾ (𝐴 × 𝐵)) Fn (𝐴 × 𝐵))
108, 9ax-mp 5 . . . . . . . . . . . 12 (2nd ↾ (𝐴 × 𝐵)) Fn (𝐴 × 𝐵)
11 fnfvelrn 7018 . . . . . . . . . . . 12 (((2nd ↾ (𝐴 × 𝐵)) Fn (𝐴 × 𝐵) ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵)) → ((2nd ↾ (𝐴 × 𝐵))‘⟨𝑥, 𝑦⟩) ∈ ran (2nd ↾ (𝐴 × 𝐵)))
1210, 11mpan 690 . . . . . . . . . . 11 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → ((2nd ↾ (𝐴 × 𝐵))‘⟨𝑥, 𝑦⟩) ∈ ran (2nd ↾ (𝐴 × 𝐵)))
137, 12eqeltrd 2828 . . . . . . . . . 10 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → 𝑦 ∈ ran (2nd ↾ (𝐴 × 𝐵)))
142, 13sylbir 235 . . . . . . . . 9 ((𝑥𝐴𝑦𝐵) → 𝑦 ∈ ran (2nd ↾ (𝐴 × 𝐵)))
1514ex 412 . . . . . . . 8 (𝑥𝐴 → (𝑦𝐵𝑦 ∈ ran (2nd ↾ (𝐴 × 𝐵))))
1615exlimiv 1930 . . . . . . 7 (∃𝑥 𝑥𝐴 → (𝑦𝐵𝑦 ∈ ran (2nd ↾ (𝐴 × 𝐵))))
171, 16sylbi 217 . . . . . 6 (𝐴 ≠ ∅ → (𝑦𝐵𝑦 ∈ ran (2nd ↾ (𝐴 × 𝐵))))
1817ssrdv 3943 . . . . 5 (𝐴 ≠ ∅ → 𝐵 ⊆ ran (2nd ↾ (𝐴 × 𝐵)))
19 frn 6663 . . . . . 6 ((2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵 → ran (2nd ↾ (𝐴 × 𝐵)) ⊆ 𝐵)
208, 19ax-mp 5 . . . . 5 ran (2nd ↾ (𝐴 × 𝐵)) ⊆ 𝐵
2118, 20jctil 519 . . . 4 (𝐴 ≠ ∅ → (ran (2nd ↾ (𝐴 × 𝐵)) ⊆ 𝐵𝐵 ⊆ ran (2nd ↾ (𝐴 × 𝐵))))
22 eqss 3953 . . . 4 (ran (2nd ↾ (𝐴 × 𝐵)) = 𝐵 ↔ (ran (2nd ↾ (𝐴 × 𝐵)) ⊆ 𝐵𝐵 ⊆ ran (2nd ↾ (𝐴 × 𝐵))))
2321, 22sylibr 234 . . 3 (𝐴 ≠ ∅ → ran (2nd ↾ (𝐴 × 𝐵)) = 𝐵)
2423, 8jctil 519 . 2 (𝐴 ≠ ∅ → ((2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵 ∧ ran (2nd ↾ (𝐴 × 𝐵)) = 𝐵))
25 dffo2 6744 . 2 ((2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)–onto𝐵 ↔ ((2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐵 ∧ ran (2nd ↾ (𝐴 × 𝐵)) = 𝐵))
2624, 25sylibr 234 1 (𝐴 ≠ ∅ → (2nd ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)–onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2925  wss 3905  c0 4286  cop 4585   × cxp 5621  ran crn 5624  cres 5625   Fn wfn 6481  wf 6482  ontowfo 6484  cfv 6486  2nd c2nd 7930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fo 6492  df-fv 6494  df-2nd 7932
This theorem is referenced by:  2ndconst  8041  txcmpb  23547
  Copyright terms: Public domain W3C validator