MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pjfo Structured version   Visualization version   GIF version

Theorem pjfo 21640
Description: A projection is a surjection onto the subspace. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
pjf.k 𝐾 = (proj‘𝑊)
pjf.v 𝑉 = (Base‘𝑊)
Assertion
Ref Expression
pjfo ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝐾𝑇):𝑉onto𝑇)

Proof of Theorem pjfo
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pjf.k . . 3 𝐾 = (proj‘𝑊)
2 pjf.v . . 3 𝑉 = (Base‘𝑊)
31, 2pjf2 21639 . 2 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝐾𝑇):𝑉𝑇)
43frnd 6664 . . 3 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → ran (𝐾𝑇) ⊆ 𝑇)
5 eqid 2729 . . . . . . . 8 (ocv‘𝑊) = (ocv‘𝑊)
6 eqid 2729 . . . . . . . 8 (proj1𝑊) = (proj1𝑊)
75, 6, 1pjval 21635 . . . . . . 7 (𝑇 ∈ dom 𝐾 → (𝐾𝑇) = (𝑇(proj1𝑊)((ocv‘𝑊)‘𝑇)))
87ad2antlr 727 . . . . . 6 (((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) ∧ 𝑥𝑇) → (𝐾𝑇) = (𝑇(proj1𝑊)((ocv‘𝑊)‘𝑇)))
98fveq1d 6828 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) ∧ 𝑥𝑇) → ((𝐾𝑇)‘𝑥) = ((𝑇(proj1𝑊)((ocv‘𝑊)‘𝑇))‘𝑥))
10 eqid 2729 . . . . . 6 (+g𝑊) = (+g𝑊)
11 eqid 2729 . . . . . 6 (LSSum‘𝑊) = (LSSum‘𝑊)
12 eqid 2729 . . . . . 6 (0g𝑊) = (0g𝑊)
13 eqid 2729 . . . . . 6 (Cntz‘𝑊) = (Cntz‘𝑊)
14 phllmod 21555 . . . . . . . . 9 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
1514adantr 480 . . . . . . . 8 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑊 ∈ LMod)
16 eqid 2729 . . . . . . . . 9 (LSubSp‘𝑊) = (LSubSp‘𝑊)
1716lsssssubg 20879 . . . . . . . 8 (𝑊 ∈ LMod → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
1815, 17syl 17 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
192, 16, 5, 11, 1pjdm2 21636 . . . . . . . 8 (𝑊 ∈ PreHil → (𝑇 ∈ dom 𝐾 ↔ (𝑇 ∈ (LSubSp‘𝑊) ∧ (𝑇(LSSum‘𝑊)((ocv‘𝑊)‘𝑇)) = 𝑉)))
2019simprbda 498 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑇 ∈ (LSubSp‘𝑊))
2118, 20sseldd 3938 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑇 ∈ (SubGrp‘𝑊))
222, 16lssss 20857 . . . . . . . . 9 (𝑇 ∈ (LSubSp‘𝑊) → 𝑇𝑉)
2320, 22syl 17 . . . . . . . 8 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑇𝑉)
242, 5, 16ocvlss 21597 . . . . . . . 8 ((𝑊 ∈ PreHil ∧ 𝑇𝑉) → ((ocv‘𝑊)‘𝑇) ∈ (LSubSp‘𝑊))
2523, 24syldan 591 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → ((ocv‘𝑊)‘𝑇) ∈ (LSubSp‘𝑊))
2618, 25sseldd 3938 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → ((ocv‘𝑊)‘𝑇) ∈ (SubGrp‘𝑊))
275, 16, 12ocvin 21599 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ (LSubSp‘𝑊)) → (𝑇 ∩ ((ocv‘𝑊)‘𝑇)) = {(0g𝑊)})
2820, 27syldan 591 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝑇 ∩ ((ocv‘𝑊)‘𝑇)) = {(0g𝑊)})
29 lmodabl 20830 . . . . . . . 8 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
3015, 29syl 17 . . . . . . 7 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑊 ∈ Abel)
3113, 30, 21, 26ablcntzd 19754 . . . . . 6 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑇 ⊆ ((Cntz‘𝑊)‘((ocv‘𝑊)‘𝑇)))
3210, 11, 12, 13, 21, 26, 28, 31, 6pj1lid 19598 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) ∧ 𝑥𝑇) → ((𝑇(proj1𝑊)((ocv‘𝑊)‘𝑇))‘𝑥) = 𝑥)
339, 32eqtrd 2764 . . . 4 (((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) ∧ 𝑥𝑇) → ((𝐾𝑇)‘𝑥) = 𝑥)
343ffnd 6657 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝐾𝑇) Fn 𝑉)
3523sselda 3937 . . . . 5 (((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) ∧ 𝑥𝑇) → 𝑥𝑉)
36 fnfvelrn 7018 . . . . 5 (((𝐾𝑇) Fn 𝑉𝑥𝑉) → ((𝐾𝑇)‘𝑥) ∈ ran (𝐾𝑇))
3734, 35, 36syl2an2r 685 . . . 4 (((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) ∧ 𝑥𝑇) → ((𝐾𝑇)‘𝑥) ∈ ran (𝐾𝑇))
3833, 37eqeltrrd 2829 . . 3 (((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) ∧ 𝑥𝑇) → 𝑥 ∈ ran (𝐾𝑇))
394, 38eqelssd 3959 . 2 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → ran (𝐾𝑇) = 𝑇)
40 dffo2 6744 . 2 ((𝐾𝑇):𝑉onto𝑇 ↔ ((𝐾𝑇):𝑉𝑇 ∧ ran (𝐾𝑇) = 𝑇))
413, 39, 40sylanbrc 583 1 ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝐾𝑇):𝑉onto𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cin 3904  wss 3905  {csn 4579  dom cdm 5623  ran crn 5624   Fn wfn 6481  wf 6482  ontowfo 6484  cfv 6486  (class class class)co 7353  Basecbs 17138  +gcplusg 17179  0gc0g 17361  SubGrpcsubg 19017  Cntzccntz 19212  LSSumclsm 19531  proj1cpj1 19532  Abelcabl 19678  LModclmod 20781  LSubSpclss 20852  PreHilcphl 21549  ocvcocv 21585  projcpj 21625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-sca 17195  df-vsca 17196  df-ip 17197  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-subg 19020  df-ghm 19110  df-cntz 19214  df-lsm 19533  df-pj1 19534  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-lmod 20783  df-lss 20853  df-lmhm 20944  df-lvec 21025  df-sra 21095  df-rgmod 21096  df-phl 21551  df-ocv 21588  df-pj 21628
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator