![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pjfo | Structured version Visualization version GIF version |
Description: A projection is a surjection onto the subspace. (Contributed by Mario Carneiro, 16-Oct-2015.) |
Ref | Expression |
---|---|
pjf.k | ⊢ 𝐾 = (proj‘𝑊) |
pjf.v | ⊢ 𝑉 = (Base‘𝑊) |
Ref | Expression |
---|---|
pjfo | ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝐾‘𝑇):𝑉–onto→𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pjf.k | . . 3 ⊢ 𝐾 = (proj‘𝑊) | |
2 | pjf.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
3 | 1, 2 | pjf2 20544 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝐾‘𝑇):𝑉⟶𝑇) |
4 | 3 | frnd 6396 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → ran (𝐾‘𝑇) ⊆ 𝑇) |
5 | eqid 2797 | . . . . . . . 8 ⊢ (ocv‘𝑊) = (ocv‘𝑊) | |
6 | eqid 2797 | . . . . . . . 8 ⊢ (proj1‘𝑊) = (proj1‘𝑊) | |
7 | 5, 6, 1 | pjval 20540 | . . . . . . 7 ⊢ (𝑇 ∈ dom 𝐾 → (𝐾‘𝑇) = (𝑇(proj1‘𝑊)((ocv‘𝑊)‘𝑇))) |
8 | 7 | ad2antlr 723 | . . . . . 6 ⊢ (((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) ∧ 𝑥 ∈ 𝑇) → (𝐾‘𝑇) = (𝑇(proj1‘𝑊)((ocv‘𝑊)‘𝑇))) |
9 | 8 | fveq1d 6547 | . . . . 5 ⊢ (((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) ∧ 𝑥 ∈ 𝑇) → ((𝐾‘𝑇)‘𝑥) = ((𝑇(proj1‘𝑊)((ocv‘𝑊)‘𝑇))‘𝑥)) |
10 | eqid 2797 | . . . . . 6 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
11 | eqid 2797 | . . . . . 6 ⊢ (LSSum‘𝑊) = (LSSum‘𝑊) | |
12 | eqid 2797 | . . . . . 6 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
13 | eqid 2797 | . . . . . 6 ⊢ (Cntz‘𝑊) = (Cntz‘𝑊) | |
14 | phllmod 20460 | . . . . . . . . 9 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) | |
15 | 14 | adantr 481 | . . . . . . . 8 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑊 ∈ LMod) |
16 | eqid 2797 | . . . . . . . . 9 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
17 | 16 | lsssssubg 19424 | . . . . . . . 8 ⊢ (𝑊 ∈ LMod → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊)) |
18 | 15, 17 | syl 17 | . . . . . . 7 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊)) |
19 | 2, 16, 5, 11, 1 | pjdm2 20541 | . . . . . . . 8 ⊢ (𝑊 ∈ PreHil → (𝑇 ∈ dom 𝐾 ↔ (𝑇 ∈ (LSubSp‘𝑊) ∧ (𝑇(LSSum‘𝑊)((ocv‘𝑊)‘𝑇)) = 𝑉))) |
20 | 19 | simprbda 499 | . . . . . . 7 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑇 ∈ (LSubSp‘𝑊)) |
21 | 18, 20 | sseldd 3896 | . . . . . 6 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑇 ∈ (SubGrp‘𝑊)) |
22 | 2, 16 | lssss 19402 | . . . . . . . . 9 ⊢ (𝑇 ∈ (LSubSp‘𝑊) → 𝑇 ⊆ 𝑉) |
23 | 20, 22 | syl 17 | . . . . . . . 8 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑇 ⊆ 𝑉) |
24 | 2, 5, 16 | ocvlss 20502 | . . . . . . . 8 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ⊆ 𝑉) → ((ocv‘𝑊)‘𝑇) ∈ (LSubSp‘𝑊)) |
25 | 23, 24 | syldan 591 | . . . . . . 7 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → ((ocv‘𝑊)‘𝑇) ∈ (LSubSp‘𝑊)) |
26 | 18, 25 | sseldd 3896 | . . . . . 6 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → ((ocv‘𝑊)‘𝑇) ∈ (SubGrp‘𝑊)) |
27 | 5, 16, 12 | ocvin 20504 | . . . . . . 7 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ (LSubSp‘𝑊)) → (𝑇 ∩ ((ocv‘𝑊)‘𝑇)) = {(0g‘𝑊)}) |
28 | 20, 27 | syldan 591 | . . . . . 6 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝑇 ∩ ((ocv‘𝑊)‘𝑇)) = {(0g‘𝑊)}) |
29 | lmodabl 19375 | . . . . . . . 8 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) | |
30 | 15, 29 | syl 17 | . . . . . . 7 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑊 ∈ Abel) |
31 | 13, 30, 21, 26 | ablcntzd 18704 | . . . . . 6 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑇 ⊆ ((Cntz‘𝑊)‘((ocv‘𝑊)‘𝑇))) |
32 | 10, 11, 12, 13, 21, 26, 28, 31, 6 | pj1lid 18558 | . . . . 5 ⊢ (((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) ∧ 𝑥 ∈ 𝑇) → ((𝑇(proj1‘𝑊)((ocv‘𝑊)‘𝑇))‘𝑥) = 𝑥) |
33 | 9, 32 | eqtrd 2833 | . . . 4 ⊢ (((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) ∧ 𝑥 ∈ 𝑇) → ((𝐾‘𝑇)‘𝑥) = 𝑥) |
34 | 3 | ffnd 6390 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝐾‘𝑇) Fn 𝑉) |
35 | 23 | sselda 3895 | . . . . 5 ⊢ (((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) ∧ 𝑥 ∈ 𝑇) → 𝑥 ∈ 𝑉) |
36 | fnfvelrn 6720 | . . . . 5 ⊢ (((𝐾‘𝑇) Fn 𝑉 ∧ 𝑥 ∈ 𝑉) → ((𝐾‘𝑇)‘𝑥) ∈ ran (𝐾‘𝑇)) | |
37 | 34, 35, 36 | syl2an2r 681 | . . . 4 ⊢ (((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) ∧ 𝑥 ∈ 𝑇) → ((𝐾‘𝑇)‘𝑥) ∈ ran (𝐾‘𝑇)) |
38 | 33, 37 | eqeltrrd 2886 | . . 3 ⊢ (((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) ∧ 𝑥 ∈ 𝑇) → 𝑥 ∈ ran (𝐾‘𝑇)) |
39 | 4, 38 | eqelssd 3915 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → ran (𝐾‘𝑇) = 𝑇) |
40 | dffo2 6469 | . 2 ⊢ ((𝐾‘𝑇):𝑉–onto→𝑇 ↔ ((𝐾‘𝑇):𝑉⟶𝑇 ∧ ran (𝐾‘𝑇) = 𝑇)) | |
41 | 3, 39, 40 | sylanbrc 583 | 1 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝐾‘𝑇):𝑉–onto→𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1525 ∈ wcel 2083 ∩ cin 3864 ⊆ wss 3865 {csn 4478 dom cdm 5450 ran crn 5451 Fn wfn 6227 ⟶wf 6228 –onto→wfo 6230 ‘cfv 6232 (class class class)co 7023 Basecbs 16316 +gcplusg 16398 0gc0g 16546 SubGrpcsubg 18031 Cntzccntz 18190 LSSumclsm 18493 proj1cpj1 18494 Abelcabl 18638 LModclmod 19328 LSubSpclss 19397 PreHilcphl 20454 ocvcocv 20490 projcpj 20530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-rep 5088 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 ax-cnex 10446 ax-resscn 10447 ax-1cn 10448 ax-icn 10449 ax-addcl 10450 ax-addrcl 10451 ax-mulcl 10452 ax-mulrcl 10453 ax-mulcom 10454 ax-addass 10455 ax-mulass 10456 ax-distr 10457 ax-i2m1 10458 ax-1ne0 10459 ax-1rid 10460 ax-rnegex 10461 ax-rrecex 10462 ax-cnre 10463 ax-pre-lttri 10464 ax-pre-lttrn 10465 ax-pre-ltadd 10466 ax-pre-mulgt0 10467 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-nel 3093 df-ral 3112 df-rex 3113 df-reu 3114 df-rmo 3115 df-rab 3116 df-v 3442 df-sbc 3712 df-csb 3818 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-pss 3882 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-tp 4483 df-op 4485 df-uni 4752 df-int 4789 df-iun 4833 df-br 4969 df-opab 5031 df-mpt 5048 df-tr 5071 df-id 5355 df-eprel 5360 df-po 5369 df-so 5370 df-fr 5409 df-we 5411 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-pred 6030 df-ord 6076 df-on 6077 df-lim 6078 df-suc 6079 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-fv 6240 df-riota 6984 df-ov 7026 df-oprab 7027 df-mpo 7028 df-om 7444 df-1st 7552 df-2nd 7553 df-wrecs 7805 df-recs 7867 df-rdg 7905 df-er 8146 df-map 8265 df-en 8365 df-dom 8366 df-sdom 8367 df-pnf 10530 df-mnf 10531 df-xr 10532 df-ltxr 10533 df-le 10534 df-sub 10725 df-neg 10726 df-nn 11493 df-2 11554 df-3 11555 df-4 11556 df-5 11557 df-6 11558 df-7 11559 df-8 11560 df-ndx 16319 df-slot 16320 df-base 16322 df-sets 16323 df-ress 16324 df-plusg 16411 df-sca 16414 df-vsca 16415 df-ip 16416 df-0g 16548 df-mgm 17685 df-sgrp 17727 df-mnd 17738 df-submnd 17779 df-grp 17868 df-minusg 17869 df-sbg 17870 df-subg 18034 df-ghm 18101 df-cntz 18192 df-lsm 18495 df-pj1 18496 df-cmn 18639 df-abl 18640 df-mgp 18934 df-ur 18946 df-ring 18993 df-lmod 19330 df-lss 19398 df-lmhm 19488 df-lvec 19569 df-sra 19638 df-rgmod 19639 df-phl 20456 df-ocv 20493 df-pj 20533 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |