Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pjfo | Structured version Visualization version GIF version |
Description: A projection is a surjection onto the subspace. (Contributed by Mario Carneiro, 16-Oct-2015.) |
Ref | Expression |
---|---|
pjf.k | ⊢ 𝐾 = (proj‘𝑊) |
pjf.v | ⊢ 𝑉 = (Base‘𝑊) |
Ref | Expression |
---|---|
pjfo | ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝐾‘𝑇):𝑉–onto→𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pjf.k | . . 3 ⊢ 𝐾 = (proj‘𝑊) | |
2 | pjf.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
3 | 1, 2 | pjf2 20523 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝐾‘𝑇):𝑉⟶𝑇) |
4 | 3 | frnd 6506 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → ran (𝐾‘𝑇) ⊆ 𝑇) |
5 | eqid 2738 | . . . . . . . 8 ⊢ (ocv‘𝑊) = (ocv‘𝑊) | |
6 | eqid 2738 | . . . . . . . 8 ⊢ (proj1‘𝑊) = (proj1‘𝑊) | |
7 | 5, 6, 1 | pjval 20519 | . . . . . . 7 ⊢ (𝑇 ∈ dom 𝐾 → (𝐾‘𝑇) = (𝑇(proj1‘𝑊)((ocv‘𝑊)‘𝑇))) |
8 | 7 | ad2antlr 727 | . . . . . 6 ⊢ (((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) ∧ 𝑥 ∈ 𝑇) → (𝐾‘𝑇) = (𝑇(proj1‘𝑊)((ocv‘𝑊)‘𝑇))) |
9 | 8 | fveq1d 6670 | . . . . 5 ⊢ (((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) ∧ 𝑥 ∈ 𝑇) → ((𝐾‘𝑇)‘𝑥) = ((𝑇(proj1‘𝑊)((ocv‘𝑊)‘𝑇))‘𝑥)) |
10 | eqid 2738 | . . . . . 6 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
11 | eqid 2738 | . . . . . 6 ⊢ (LSSum‘𝑊) = (LSSum‘𝑊) | |
12 | eqid 2738 | . . . . . 6 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
13 | eqid 2738 | . . . . . 6 ⊢ (Cntz‘𝑊) = (Cntz‘𝑊) | |
14 | phllmod 20439 | . . . . . . . . 9 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) | |
15 | 14 | adantr 484 | . . . . . . . 8 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑊 ∈ LMod) |
16 | eqid 2738 | . . . . . . . . 9 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
17 | 16 | lsssssubg 19842 | . . . . . . . 8 ⊢ (𝑊 ∈ LMod → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊)) |
18 | 15, 17 | syl 17 | . . . . . . 7 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊)) |
19 | 2, 16, 5, 11, 1 | pjdm2 20520 | . . . . . . . 8 ⊢ (𝑊 ∈ PreHil → (𝑇 ∈ dom 𝐾 ↔ (𝑇 ∈ (LSubSp‘𝑊) ∧ (𝑇(LSSum‘𝑊)((ocv‘𝑊)‘𝑇)) = 𝑉))) |
20 | 19 | simprbda 502 | . . . . . . 7 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑇 ∈ (LSubSp‘𝑊)) |
21 | 18, 20 | sseldd 3876 | . . . . . 6 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑇 ∈ (SubGrp‘𝑊)) |
22 | 2, 16 | lssss 19820 | . . . . . . . . 9 ⊢ (𝑇 ∈ (LSubSp‘𝑊) → 𝑇 ⊆ 𝑉) |
23 | 20, 22 | syl 17 | . . . . . . . 8 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑇 ⊆ 𝑉) |
24 | 2, 5, 16 | ocvlss 20481 | . . . . . . . 8 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ⊆ 𝑉) → ((ocv‘𝑊)‘𝑇) ∈ (LSubSp‘𝑊)) |
25 | 23, 24 | syldan 594 | . . . . . . 7 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → ((ocv‘𝑊)‘𝑇) ∈ (LSubSp‘𝑊)) |
26 | 18, 25 | sseldd 3876 | . . . . . 6 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → ((ocv‘𝑊)‘𝑇) ∈ (SubGrp‘𝑊)) |
27 | 5, 16, 12 | ocvin 20483 | . . . . . . 7 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ (LSubSp‘𝑊)) → (𝑇 ∩ ((ocv‘𝑊)‘𝑇)) = {(0g‘𝑊)}) |
28 | 20, 27 | syldan 594 | . . . . . 6 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝑇 ∩ ((ocv‘𝑊)‘𝑇)) = {(0g‘𝑊)}) |
29 | lmodabl 19793 | . . . . . . . 8 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) | |
30 | 15, 29 | syl 17 | . . . . . . 7 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑊 ∈ Abel) |
31 | 13, 30, 21, 26 | ablcntzd 19089 | . . . . . 6 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑇 ⊆ ((Cntz‘𝑊)‘((ocv‘𝑊)‘𝑇))) |
32 | 10, 11, 12, 13, 21, 26, 28, 31, 6 | pj1lid 18938 | . . . . 5 ⊢ (((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) ∧ 𝑥 ∈ 𝑇) → ((𝑇(proj1‘𝑊)((ocv‘𝑊)‘𝑇))‘𝑥) = 𝑥) |
33 | 9, 32 | eqtrd 2773 | . . . 4 ⊢ (((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) ∧ 𝑥 ∈ 𝑇) → ((𝐾‘𝑇)‘𝑥) = 𝑥) |
34 | 3 | ffnd 6499 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝐾‘𝑇) Fn 𝑉) |
35 | 23 | sselda 3875 | . . . . 5 ⊢ (((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) ∧ 𝑥 ∈ 𝑇) → 𝑥 ∈ 𝑉) |
36 | fnfvelrn 6852 | . . . . 5 ⊢ (((𝐾‘𝑇) Fn 𝑉 ∧ 𝑥 ∈ 𝑉) → ((𝐾‘𝑇)‘𝑥) ∈ ran (𝐾‘𝑇)) | |
37 | 34, 35, 36 | syl2an2r 685 | . . . 4 ⊢ (((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) ∧ 𝑥 ∈ 𝑇) → ((𝐾‘𝑇)‘𝑥) ∈ ran (𝐾‘𝑇)) |
38 | 33, 37 | eqeltrrd 2834 | . . 3 ⊢ (((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) ∧ 𝑥 ∈ 𝑇) → 𝑥 ∈ ran (𝐾‘𝑇)) |
39 | 4, 38 | eqelssd 3896 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → ran (𝐾‘𝑇) = 𝑇) |
40 | dffo2 6590 | . 2 ⊢ ((𝐾‘𝑇):𝑉–onto→𝑇 ↔ ((𝐾‘𝑇):𝑉⟶𝑇 ∧ ran (𝐾‘𝑇) = 𝑇)) | |
41 | 3, 39, 40 | sylanbrc 586 | 1 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝐾‘𝑇):𝑉–onto→𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2113 ∩ cin 3840 ⊆ wss 3841 {csn 4513 dom cdm 5519 ran crn 5520 Fn wfn 6328 ⟶wf 6329 –onto→wfo 6331 ‘cfv 6333 (class class class)co 7164 Basecbs 16579 +gcplusg 16661 0gc0g 16809 SubGrpcsubg 18384 Cntzccntz 18556 LSSumclsm 18870 proj1cpj1 18871 Abelcabl 19018 LModclmod 19746 LSubSpclss 19815 PreHilcphl 20433 ocvcocv 20469 projcpj 20509 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-rep 5151 ax-sep 5164 ax-nul 5171 ax-pow 5229 ax-pr 5293 ax-un 7473 ax-cnex 10664 ax-resscn 10665 ax-1cn 10666 ax-icn 10667 ax-addcl 10668 ax-addrcl 10669 ax-mulcl 10670 ax-mulrcl 10671 ax-mulcom 10672 ax-addass 10673 ax-mulass 10674 ax-distr 10675 ax-i2m1 10676 ax-1ne0 10677 ax-1rid 10678 ax-rnegex 10679 ax-rrecex 10680 ax-cnre 10681 ax-pre-lttri 10682 ax-pre-lttrn 10683 ax-pre-ltadd 10684 ax-pre-mulgt0 10685 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3399 df-sbc 3680 df-csb 3789 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-pss 3860 df-nul 4210 df-if 4412 df-pw 4487 df-sn 4514 df-pr 4516 df-tp 4518 df-op 4520 df-uni 4794 df-int 4834 df-iun 4880 df-br 5028 df-opab 5090 df-mpt 5108 df-tr 5134 df-id 5425 df-eprel 5430 df-po 5438 df-so 5439 df-fr 5478 df-we 5480 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 df-pred 6123 df-ord 6169 df-on 6170 df-lim 6171 df-suc 6172 df-iota 6291 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-riota 7121 df-ov 7167 df-oprab 7168 df-mpo 7169 df-om 7594 df-1st 7707 df-2nd 7708 df-wrecs 7969 df-recs 8030 df-rdg 8068 df-er 8313 df-map 8432 df-en 8549 df-dom 8550 df-sdom 8551 df-pnf 10748 df-mnf 10749 df-xr 10750 df-ltxr 10751 df-le 10752 df-sub 10943 df-neg 10944 df-nn 11710 df-2 11772 df-3 11773 df-4 11774 df-5 11775 df-6 11776 df-7 11777 df-8 11778 df-ndx 16582 df-slot 16583 df-base 16585 df-sets 16586 df-ress 16587 df-plusg 16674 df-sca 16677 df-vsca 16678 df-ip 16679 df-0g 16811 df-mgm 17961 df-sgrp 18010 df-mnd 18021 df-submnd 18066 df-grp 18215 df-minusg 18216 df-sbg 18217 df-subg 18387 df-ghm 18467 df-cntz 18558 df-lsm 18872 df-pj1 18873 df-cmn 19019 df-abl 19020 df-mgp 19352 df-ur 19364 df-ring 19411 df-lmod 19748 df-lss 19816 df-lmhm 19906 df-lvec 19987 df-sra 20056 df-rgmod 20057 df-phl 20435 df-ocv 20472 df-pj 20512 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |