| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pjfo | Structured version Visualization version GIF version | ||
| Description: A projection is a surjection onto the subspace. (Contributed by Mario Carneiro, 16-Oct-2015.) |
| Ref | Expression |
|---|---|
| pjf.k | ⊢ 𝐾 = (proj‘𝑊) |
| pjf.v | ⊢ 𝑉 = (Base‘𝑊) |
| Ref | Expression |
|---|---|
| pjfo | ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝐾‘𝑇):𝑉–onto→𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjf.k | . . 3 ⊢ 𝐾 = (proj‘𝑊) | |
| 2 | pjf.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 3 | 1, 2 | pjf2 21623 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝐾‘𝑇):𝑉⟶𝑇) |
| 4 | 3 | frnd 6696 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → ran (𝐾‘𝑇) ⊆ 𝑇) |
| 5 | eqid 2729 | . . . . . . . 8 ⊢ (ocv‘𝑊) = (ocv‘𝑊) | |
| 6 | eqid 2729 | . . . . . . . 8 ⊢ (proj1‘𝑊) = (proj1‘𝑊) | |
| 7 | 5, 6, 1 | pjval 21619 | . . . . . . 7 ⊢ (𝑇 ∈ dom 𝐾 → (𝐾‘𝑇) = (𝑇(proj1‘𝑊)((ocv‘𝑊)‘𝑇))) |
| 8 | 7 | ad2antlr 727 | . . . . . 6 ⊢ (((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) ∧ 𝑥 ∈ 𝑇) → (𝐾‘𝑇) = (𝑇(proj1‘𝑊)((ocv‘𝑊)‘𝑇))) |
| 9 | 8 | fveq1d 6860 | . . . . 5 ⊢ (((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) ∧ 𝑥 ∈ 𝑇) → ((𝐾‘𝑇)‘𝑥) = ((𝑇(proj1‘𝑊)((ocv‘𝑊)‘𝑇))‘𝑥)) |
| 10 | eqid 2729 | . . . . . 6 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 11 | eqid 2729 | . . . . . 6 ⊢ (LSSum‘𝑊) = (LSSum‘𝑊) | |
| 12 | eqid 2729 | . . . . . 6 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
| 13 | eqid 2729 | . . . . . 6 ⊢ (Cntz‘𝑊) = (Cntz‘𝑊) | |
| 14 | phllmod 21539 | . . . . . . . . 9 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) | |
| 15 | 14 | adantr 480 | . . . . . . . 8 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑊 ∈ LMod) |
| 16 | eqid 2729 | . . . . . . . . 9 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
| 17 | 16 | lsssssubg 20864 | . . . . . . . 8 ⊢ (𝑊 ∈ LMod → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊)) |
| 18 | 15, 17 | syl 17 | . . . . . . 7 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊)) |
| 19 | 2, 16, 5, 11, 1 | pjdm2 21620 | . . . . . . . 8 ⊢ (𝑊 ∈ PreHil → (𝑇 ∈ dom 𝐾 ↔ (𝑇 ∈ (LSubSp‘𝑊) ∧ (𝑇(LSSum‘𝑊)((ocv‘𝑊)‘𝑇)) = 𝑉))) |
| 20 | 19 | simprbda 498 | . . . . . . 7 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑇 ∈ (LSubSp‘𝑊)) |
| 21 | 18, 20 | sseldd 3947 | . . . . . 6 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑇 ∈ (SubGrp‘𝑊)) |
| 22 | 2, 16 | lssss 20842 | . . . . . . . . 9 ⊢ (𝑇 ∈ (LSubSp‘𝑊) → 𝑇 ⊆ 𝑉) |
| 23 | 20, 22 | syl 17 | . . . . . . . 8 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑇 ⊆ 𝑉) |
| 24 | 2, 5, 16 | ocvlss 21581 | . . . . . . . 8 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ⊆ 𝑉) → ((ocv‘𝑊)‘𝑇) ∈ (LSubSp‘𝑊)) |
| 25 | 23, 24 | syldan 591 | . . . . . . 7 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → ((ocv‘𝑊)‘𝑇) ∈ (LSubSp‘𝑊)) |
| 26 | 18, 25 | sseldd 3947 | . . . . . 6 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → ((ocv‘𝑊)‘𝑇) ∈ (SubGrp‘𝑊)) |
| 27 | 5, 16, 12 | ocvin 21583 | . . . . . . 7 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ (LSubSp‘𝑊)) → (𝑇 ∩ ((ocv‘𝑊)‘𝑇)) = {(0g‘𝑊)}) |
| 28 | 20, 27 | syldan 591 | . . . . . 6 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝑇 ∩ ((ocv‘𝑊)‘𝑇)) = {(0g‘𝑊)}) |
| 29 | lmodabl 20815 | . . . . . . . 8 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) | |
| 30 | 15, 29 | syl 17 | . . . . . . 7 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑊 ∈ Abel) |
| 31 | 13, 30, 21, 26 | ablcntzd 19787 | . . . . . 6 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → 𝑇 ⊆ ((Cntz‘𝑊)‘((ocv‘𝑊)‘𝑇))) |
| 32 | 10, 11, 12, 13, 21, 26, 28, 31, 6 | pj1lid 19631 | . . . . 5 ⊢ (((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) ∧ 𝑥 ∈ 𝑇) → ((𝑇(proj1‘𝑊)((ocv‘𝑊)‘𝑇))‘𝑥) = 𝑥) |
| 33 | 9, 32 | eqtrd 2764 | . . . 4 ⊢ (((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) ∧ 𝑥 ∈ 𝑇) → ((𝐾‘𝑇)‘𝑥) = 𝑥) |
| 34 | 3 | ffnd 6689 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝐾‘𝑇) Fn 𝑉) |
| 35 | 23 | sselda 3946 | . . . . 5 ⊢ (((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) ∧ 𝑥 ∈ 𝑇) → 𝑥 ∈ 𝑉) |
| 36 | fnfvelrn 7052 | . . . . 5 ⊢ (((𝐾‘𝑇) Fn 𝑉 ∧ 𝑥 ∈ 𝑉) → ((𝐾‘𝑇)‘𝑥) ∈ ran (𝐾‘𝑇)) | |
| 37 | 34, 35, 36 | syl2an2r 685 | . . . 4 ⊢ (((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) ∧ 𝑥 ∈ 𝑇) → ((𝐾‘𝑇)‘𝑥) ∈ ran (𝐾‘𝑇)) |
| 38 | 33, 37 | eqeltrrd 2829 | . . 3 ⊢ (((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) ∧ 𝑥 ∈ 𝑇) → 𝑥 ∈ ran (𝐾‘𝑇)) |
| 39 | 4, 38 | eqelssd 3968 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → ran (𝐾‘𝑇) = 𝑇) |
| 40 | dffo2 6776 | . 2 ⊢ ((𝐾‘𝑇):𝑉–onto→𝑇 ↔ ((𝐾‘𝑇):𝑉⟶𝑇 ∧ ran (𝐾‘𝑇) = 𝑇)) | |
| 41 | 3, 39, 40 | sylanbrc 583 | 1 ⊢ ((𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾) → (𝐾‘𝑇):𝑉–onto→𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3913 ⊆ wss 3914 {csn 4589 dom cdm 5638 ran crn 5639 Fn wfn 6506 ⟶wf 6507 –onto→wfo 6509 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 +gcplusg 17220 0gc0g 17402 SubGrpcsubg 19052 Cntzccntz 19247 LSSumclsm 19564 proj1cpj1 19565 Abelcabl 19711 LModclmod 20766 LSubSpclss 20837 PreHilcphl 21533 ocvcocv 21569 projcpj 21609 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-sca 17236 df-vsca 17237 df-ip 17238 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-submnd 18711 df-grp 18868 df-minusg 18869 df-sbg 18870 df-subg 19055 df-ghm 19145 df-cntz 19249 df-lsm 19566 df-pj1 19567 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-lmod 20768 df-lss 20838 df-lmhm 20929 df-lvec 21010 df-sra 21080 df-rgmod 21081 df-phl 21535 df-ocv 21572 df-pj 21612 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |