Step | Hyp | Ref
| Expression |
1 | | simpl1 1189 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) ∧ 𝑥 ∈ ℤ) → 𝐺 ∈ Grp) |
2 | | odf1o1.x |
. . . . . . . 8
⊢ 𝑋 = (Base‘𝐺) |
3 | 2 | subgacs 18704 |
. . . . . . 7
⊢ (𝐺 ∈ Grp →
(SubGrp‘𝐺) ∈
(ACS‘𝑋)) |
4 | | acsmre 17278 |
. . . . . . 7
⊢
((SubGrp‘𝐺)
∈ (ACS‘𝑋) →
(SubGrp‘𝐺) ∈
(Moore‘𝑋)) |
5 | 1, 3, 4 | 3syl 18 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) ∧ 𝑥 ∈ ℤ) → (SubGrp‘𝐺) ∈ (Moore‘𝑋)) |
6 | | simpl2 1190 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) ∧ 𝑥 ∈ ℤ) → 𝐴 ∈ 𝑋) |
7 | 6 | snssd 4739 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) ∧ 𝑥 ∈ ℤ) → {𝐴} ⊆ 𝑋) |
8 | | odf1o1.k |
. . . . . . 7
⊢ 𝐾 =
(mrCls‘(SubGrp‘𝐺)) |
9 | 8 | mrccl 17237 |
. . . . . 6
⊢
(((SubGrp‘𝐺)
∈ (Moore‘𝑋)
∧ {𝐴} ⊆ 𝑋) → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺)) |
10 | 5, 7, 9 | syl2anc 583 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) ∧ 𝑥 ∈ ℤ) → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺)) |
11 | | simpr 484 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℤ) |
12 | 5, 8, 7 | mrcssidd 17251 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) ∧ 𝑥 ∈ ℤ) → {𝐴} ⊆ (𝐾‘{𝐴})) |
13 | | snidg 4592 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑋 → 𝐴 ∈ {𝐴}) |
14 | 6, 13 | syl 17 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) ∧ 𝑥 ∈ ℤ) → 𝐴 ∈ {𝐴}) |
15 | 12, 14 | sseldd 3918 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) ∧ 𝑥 ∈ ℤ) → 𝐴 ∈ (𝐾‘{𝐴})) |
16 | | odf1o1.t |
. . . . . 6
⊢ · =
(.g‘𝐺) |
17 | 16 | subgmulgcl 18683 |
. . . . 5
⊢ (((𝐾‘{𝐴}) ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ ℤ ∧ 𝐴 ∈ (𝐾‘{𝐴})) → (𝑥 · 𝐴) ∈ (𝐾‘{𝐴})) |
18 | 10, 11, 15, 17 | syl3anc 1369 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) ∧ 𝑥 ∈ ℤ) → (𝑥 · 𝐴) ∈ (𝐾‘{𝐴})) |
19 | 18 | ex 412 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → (𝑥 ∈ ℤ → (𝑥 · 𝐴) ∈ (𝐾‘{𝐴}))) |
20 | | simpl3 1191 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑂‘𝐴) = 0) |
21 | 20 | breq1d 5080 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑂‘𝐴) ∥ (𝑥 − 𝑦) ↔ 0 ∥ (𝑥 − 𝑦))) |
22 | | zsubcl 12292 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 − 𝑦) ∈ ℤ) |
23 | 22 | adantl 481 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 − 𝑦) ∈ ℤ) |
24 | | 0dvds 15914 |
. . . . . . 7
⊢ ((𝑥 − 𝑦) ∈ ℤ → (0 ∥ (𝑥 − 𝑦) ↔ (𝑥 − 𝑦) = 0)) |
25 | 23, 24 | syl 17 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (0 ∥ (𝑥 − 𝑦) ↔ (𝑥 − 𝑦) = 0)) |
26 | 21, 25 | bitrd 278 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑂‘𝐴) ∥ (𝑥 − 𝑦) ↔ (𝑥 − 𝑦) = 0)) |
27 | | simpl1 1189 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐺 ∈ Grp) |
28 | | simpl2 1190 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐴 ∈ 𝑋) |
29 | | simprl 767 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℤ) |
30 | | simprr 769 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℤ) |
31 | | odf1o1.o |
. . . . . . 7
⊢ 𝑂 = (od‘𝐺) |
32 | | eqid 2738 |
. . . . . . 7
⊢
(0g‘𝐺) = (0g‘𝐺) |
33 | 2, 31, 16, 32 | odcong 19072 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑂‘𝐴) ∥ (𝑥 − 𝑦) ↔ (𝑥 · 𝐴) = (𝑦 · 𝐴))) |
34 | 27, 28, 29, 30, 33 | syl112anc 1372 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑂‘𝐴) ∥ (𝑥 − 𝑦) ↔ (𝑥 · 𝐴) = (𝑦 · 𝐴))) |
35 | | zcn 12254 |
. . . . . . 7
⊢ (𝑥 ∈ ℤ → 𝑥 ∈
ℂ) |
36 | | zcn 12254 |
. . . . . . 7
⊢ (𝑦 ∈ ℤ → 𝑦 ∈
ℂ) |
37 | | subeq0 11177 |
. . . . . . 7
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑥 − 𝑦) = 0 ↔ 𝑥 = 𝑦)) |
38 | 35, 36, 37 | syl2an 595 |
. . . . . 6
⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑥 − 𝑦) = 0 ↔ 𝑥 = 𝑦)) |
39 | 38 | adantl 481 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 − 𝑦) = 0 ↔ 𝑥 = 𝑦)) |
40 | 26, 34, 39 | 3bitr3d 308 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝐴) = (𝑦 · 𝐴) ↔ 𝑥 = 𝑦)) |
41 | 40 | ex 412 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑥 · 𝐴) = (𝑦 · 𝐴) ↔ 𝑥 = 𝑦))) |
42 | 19, 41 | dom2lem 8735 |
. 2
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)):ℤ–1-1→(𝐾‘{𝐴})) |
43 | 18 | fmpttd 6971 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)):ℤ⟶(𝐾‘{𝐴})) |
44 | | eqid 2738 |
. . . . . 6
⊢ (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) |
45 | 2, 16, 44, 8 | cycsubg2 18744 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐾‘{𝐴}) = ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴))) |
46 | 45 | 3adant3 1130 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → (𝐾‘{𝐴}) = ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴))) |
47 | 46 | eqcomd 2744 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) = (𝐾‘{𝐴})) |
48 | | dffo2 6676 |
. . 3
⊢ ((𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)):ℤ–onto→(𝐾‘{𝐴}) ↔ ((𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)):ℤ⟶(𝐾‘{𝐴}) ∧ ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) = (𝐾‘{𝐴}))) |
49 | 43, 47, 48 | sylanbrc 582 |
. 2
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)):ℤ–onto→(𝐾‘{𝐴})) |
50 | | df-f1o 6425 |
. 2
⊢ ((𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)):ℤ–1-1-onto→(𝐾‘{𝐴}) ↔ ((𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)):ℤ–1-1→(𝐾‘{𝐴}) ∧ (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)):ℤ–onto→(𝐾‘{𝐴}))) |
51 | 42, 49, 50 | sylanbrc 582 |
1
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)):ℤ–1-1-onto→(𝐾‘{𝐴})) |