MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odf1o1 Structured version   Visualization version   GIF version

Theorem odf1o1 19509
Description: An element with zero order has infinitely many multiples. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Hypotheses
Ref Expression
odf1o1.x 𝑋 = (Base‘𝐺)
odf1o1.t · = (.g𝐺)
odf1o1.o 𝑂 = (od‘𝐺)
odf1o1.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
Assertion
Ref Expression
odf1o1 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) → (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)):ℤ–1-1-onto→(𝐾‘{𝐴}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝑥,𝐾   𝑥,𝑂   𝑥, ·   𝑥,𝑋

Proof of Theorem odf1o1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1192 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ 𝑥 ∈ ℤ) → 𝐺 ∈ Grp)
2 odf1o1.x . . . . . . . 8 𝑋 = (Base‘𝐺)
32subgacs 19100 . . . . . . 7 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘𝑋))
4 acsmre 17620 . . . . . . 7 ((SubGrp‘𝐺) ∈ (ACS‘𝑋) → (SubGrp‘𝐺) ∈ (Moore‘𝑋))
51, 3, 43syl 18 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ 𝑥 ∈ ℤ) → (SubGrp‘𝐺) ∈ (Moore‘𝑋))
6 simpl2 1193 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ 𝑥 ∈ ℤ) → 𝐴𝑋)
76snssd 4776 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ 𝑥 ∈ ℤ) → {𝐴} ⊆ 𝑋)
8 odf1o1.k . . . . . . 7 𝐾 = (mrCls‘(SubGrp‘𝐺))
98mrccl 17579 . . . . . 6 (((SubGrp‘𝐺) ∈ (Moore‘𝑋) ∧ {𝐴} ⊆ 𝑋) → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺))
105, 7, 9syl2anc 584 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ 𝑥 ∈ ℤ) → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺))
11 simpr 484 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℤ)
125, 8, 7mrcssidd 17593 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ 𝑥 ∈ ℤ) → {𝐴} ⊆ (𝐾‘{𝐴}))
13 snidg 4627 . . . . . . 7 (𝐴𝑋𝐴 ∈ {𝐴})
146, 13syl 17 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ 𝑥 ∈ ℤ) → 𝐴 ∈ {𝐴})
1512, 14sseldd 3950 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ 𝑥 ∈ ℤ) → 𝐴 ∈ (𝐾‘{𝐴}))
16 odf1o1.t . . . . . 6 · = (.g𝐺)
1716subgmulgcl 19078 . . . . 5 (((𝐾‘{𝐴}) ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ ℤ ∧ 𝐴 ∈ (𝐾‘{𝐴})) → (𝑥 · 𝐴) ∈ (𝐾‘{𝐴}))
1810, 11, 15, 17syl3anc 1373 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ 𝑥 ∈ ℤ) → (𝑥 · 𝐴) ∈ (𝐾‘{𝐴}))
1918ex 412 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) → (𝑥 ∈ ℤ → (𝑥 · 𝐴) ∈ (𝐾‘{𝐴})))
20 simpl3 1194 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑂𝐴) = 0)
2120breq1d 5120 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑂𝐴) ∥ (𝑥𝑦) ↔ 0 ∥ (𝑥𝑦)))
22 zsubcl 12582 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥𝑦) ∈ ℤ)
2322adantl 481 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥𝑦) ∈ ℤ)
24 0dvds 16253 . . . . . . 7 ((𝑥𝑦) ∈ ℤ → (0 ∥ (𝑥𝑦) ↔ (𝑥𝑦) = 0))
2523, 24syl 17 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (0 ∥ (𝑥𝑦) ↔ (𝑥𝑦) = 0))
2621, 25bitrd 279 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑂𝐴) ∥ (𝑥𝑦) ↔ (𝑥𝑦) = 0))
27 simpl1 1192 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐺 ∈ Grp)
28 simpl2 1193 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐴𝑋)
29 simprl 770 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℤ)
30 simprr 772 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℤ)
31 odf1o1.o . . . . . . 7 𝑂 = (od‘𝐺)
32 eqid 2730 . . . . . . 7 (0g𝐺) = (0g𝐺)
332, 31, 16, 32odcong 19486 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑂𝐴) ∥ (𝑥𝑦) ↔ (𝑥 · 𝐴) = (𝑦 · 𝐴)))
3427, 28, 29, 30, 33syl112anc 1376 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑂𝐴) ∥ (𝑥𝑦) ↔ (𝑥 · 𝐴) = (𝑦 · 𝐴)))
35 zcn 12541 . . . . . . 7 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
36 zcn 12541 . . . . . . 7 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
37 subeq0 11455 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑥𝑦) = 0 ↔ 𝑥 = 𝑦))
3835, 36, 37syl2an 596 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑥𝑦) = 0 ↔ 𝑥 = 𝑦))
3938adantl 481 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥𝑦) = 0 ↔ 𝑥 = 𝑦))
4026, 34, 393bitr3d 309 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝐴) = (𝑦 · 𝐴) ↔ 𝑥 = 𝑦))
4140ex 412 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) → ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑥 · 𝐴) = (𝑦 · 𝐴) ↔ 𝑥 = 𝑦)))
4219, 41dom2lem 8966 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) → (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)):ℤ–1-1→(𝐾‘{𝐴}))
4318fmpttd 7090 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) → (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)):ℤ⟶(𝐾‘{𝐴}))
44 eqid 2730 . . . . . 6 (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴))
452, 16, 44, 8cycsubg2 19149 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐾‘{𝐴}) = ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)))
46453adant3 1132 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) → (𝐾‘{𝐴}) = ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)))
4746eqcomd 2736 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) → ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) = (𝐾‘{𝐴}))
48 dffo2 6779 . . 3 ((𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)):ℤ–onto→(𝐾‘{𝐴}) ↔ ((𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)):ℤ⟶(𝐾‘{𝐴}) ∧ ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) = (𝐾‘{𝐴})))
4943, 47, 48sylanbrc 583 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) → (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)):ℤ–onto→(𝐾‘{𝐴}))
50 df-f1o 6521 . 2 ((𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)):ℤ–1-1-onto→(𝐾‘{𝐴}) ↔ ((𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)):ℤ–1-1→(𝐾‘{𝐴}) ∧ (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)):ℤ–onto→(𝐾‘{𝐴})))
5142, 49, 50sylanbrc 583 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) → (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)):ℤ–1-1-onto→(𝐾‘{𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3917  {csn 4592   class class class wbr 5110  cmpt 5191  ran crn 5642  wf 6510  1-1wf1 6511  ontowfo 6512  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  cc 11073  0cc0 11075  cmin 11412  cz 12536  cdvds 16229  Basecbs 17186  0gc0g 17409  Moorecmre 17550  mrClscmrc 17551  ACScacs 17553  Grpcgrp 18872  .gcmg 19006  SubGrpcsubg 19059  odcod 19461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-dvds 16230  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-0g 17411  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-od 19465
This theorem is referenced by:  odhash  19511
  Copyright terms: Public domain W3C validator