MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odf1o1 Structured version   Visualization version   GIF version

Theorem odf1o1 19590
Description: An element with zero order has infinitely many multiples. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Hypotheses
Ref Expression
odf1o1.x 𝑋 = (Base‘𝐺)
odf1o1.t · = (.g𝐺)
odf1o1.o 𝑂 = (od‘𝐺)
odf1o1.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
Assertion
Ref Expression
odf1o1 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) → (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)):ℤ–1-1-onto→(𝐾‘{𝐴}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝑥,𝐾   𝑥,𝑂   𝑥, ·   𝑥,𝑋

Proof of Theorem odf1o1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1192 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ 𝑥 ∈ ℤ) → 𝐺 ∈ Grp)
2 odf1o1.x . . . . . . . 8 𝑋 = (Base‘𝐺)
32subgacs 19179 . . . . . . 7 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘𝑋))
4 acsmre 17695 . . . . . . 7 ((SubGrp‘𝐺) ∈ (ACS‘𝑋) → (SubGrp‘𝐺) ∈ (Moore‘𝑋))
51, 3, 43syl 18 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ 𝑥 ∈ ℤ) → (SubGrp‘𝐺) ∈ (Moore‘𝑋))
6 simpl2 1193 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ 𝑥 ∈ ℤ) → 𝐴𝑋)
76snssd 4809 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ 𝑥 ∈ ℤ) → {𝐴} ⊆ 𝑋)
8 odf1o1.k . . . . . . 7 𝐾 = (mrCls‘(SubGrp‘𝐺))
98mrccl 17654 . . . . . 6 (((SubGrp‘𝐺) ∈ (Moore‘𝑋) ∧ {𝐴} ⊆ 𝑋) → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺))
105, 7, 9syl2anc 584 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ 𝑥 ∈ ℤ) → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺))
11 simpr 484 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℤ)
125, 8, 7mrcssidd 17668 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ 𝑥 ∈ ℤ) → {𝐴} ⊆ (𝐾‘{𝐴}))
13 snidg 4660 . . . . . . 7 (𝐴𝑋𝐴 ∈ {𝐴})
146, 13syl 17 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ 𝑥 ∈ ℤ) → 𝐴 ∈ {𝐴})
1512, 14sseldd 3984 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ 𝑥 ∈ ℤ) → 𝐴 ∈ (𝐾‘{𝐴}))
16 odf1o1.t . . . . . 6 · = (.g𝐺)
1716subgmulgcl 19157 . . . . 5 (((𝐾‘{𝐴}) ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ ℤ ∧ 𝐴 ∈ (𝐾‘{𝐴})) → (𝑥 · 𝐴) ∈ (𝐾‘{𝐴}))
1810, 11, 15, 17syl3anc 1373 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ 𝑥 ∈ ℤ) → (𝑥 · 𝐴) ∈ (𝐾‘{𝐴}))
1918ex 412 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) → (𝑥 ∈ ℤ → (𝑥 · 𝐴) ∈ (𝐾‘{𝐴})))
20 simpl3 1194 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑂𝐴) = 0)
2120breq1d 5153 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑂𝐴) ∥ (𝑥𝑦) ↔ 0 ∥ (𝑥𝑦)))
22 zsubcl 12659 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥𝑦) ∈ ℤ)
2322adantl 481 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥𝑦) ∈ ℤ)
24 0dvds 16314 . . . . . . 7 ((𝑥𝑦) ∈ ℤ → (0 ∥ (𝑥𝑦) ↔ (𝑥𝑦) = 0))
2523, 24syl 17 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (0 ∥ (𝑥𝑦) ↔ (𝑥𝑦) = 0))
2621, 25bitrd 279 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑂𝐴) ∥ (𝑥𝑦) ↔ (𝑥𝑦) = 0))
27 simpl1 1192 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐺 ∈ Grp)
28 simpl2 1193 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐴𝑋)
29 simprl 771 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℤ)
30 simprr 773 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℤ)
31 odf1o1.o . . . . . . 7 𝑂 = (od‘𝐺)
32 eqid 2737 . . . . . . 7 (0g𝐺) = (0g𝐺)
332, 31, 16, 32odcong 19567 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑂𝐴) ∥ (𝑥𝑦) ↔ (𝑥 · 𝐴) = (𝑦 · 𝐴)))
3427, 28, 29, 30, 33syl112anc 1376 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑂𝐴) ∥ (𝑥𝑦) ↔ (𝑥 · 𝐴) = (𝑦 · 𝐴)))
35 zcn 12618 . . . . . . 7 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
36 zcn 12618 . . . . . . 7 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
37 subeq0 11535 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑥𝑦) = 0 ↔ 𝑥 = 𝑦))
3835, 36, 37syl2an 596 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑥𝑦) = 0 ↔ 𝑥 = 𝑦))
3938adantl 481 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥𝑦) = 0 ↔ 𝑥 = 𝑦))
4026, 34, 393bitr3d 309 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝐴) = (𝑦 · 𝐴) ↔ 𝑥 = 𝑦))
4140ex 412 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) → ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑥 · 𝐴) = (𝑦 · 𝐴) ↔ 𝑥 = 𝑦)))
4219, 41dom2lem 9032 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) → (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)):ℤ–1-1→(𝐾‘{𝐴}))
4318fmpttd 7135 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) → (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)):ℤ⟶(𝐾‘{𝐴}))
44 eqid 2737 . . . . . 6 (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴))
452, 16, 44, 8cycsubg2 19228 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐾‘{𝐴}) = ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)))
46453adant3 1133 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) → (𝐾‘{𝐴}) = ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)))
4746eqcomd 2743 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) → ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) = (𝐾‘{𝐴}))
48 dffo2 6824 . . 3 ((𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)):ℤ–onto→(𝐾‘{𝐴}) ↔ ((𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)):ℤ⟶(𝐾‘{𝐴}) ∧ ran (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) = (𝐾‘{𝐴})))
4943, 47, 48sylanbrc 583 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) → (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)):ℤ–onto→(𝐾‘{𝐴}))
50 df-f1o 6568 . 2 ((𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)):ℤ–1-1-onto→(𝐾‘{𝐴}) ↔ ((𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)):ℤ–1-1→(𝐾‘{𝐴}) ∧ (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)):ℤ–onto→(𝐾‘{𝐴})))
5142, 49, 50sylanbrc 583 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) → (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)):ℤ–1-1-onto→(𝐾‘{𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wss 3951  {csn 4626   class class class wbr 5143  cmpt 5225  ran crn 5686  wf 6557  1-1wf1 6558  ontowfo 6559  1-1-ontowf1o 6560  cfv 6561  (class class class)co 7431  cc 11153  0cc0 11155  cmin 11492  cz 12613  cdvds 16290  Basecbs 17247  0gc0g 17484  Moorecmre 17625  mrClscmrc 17626  ACScacs 17628  Grpcgrp 18951  .gcmg 19085  SubGrpcsubg 19138  odcod 19542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-dvds 16291  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-0g 17486  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mulg 19086  df-subg 19141  df-od 19546
This theorem is referenced by:  odhash  19592
  Copyright terms: Public domain W3C validator