Proof of Theorem dffo4
| Step | Hyp | Ref
| Expression |
| 1 | | dffo2 6824 |
. . 3
⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ran 𝐹 = 𝐵)) |
| 2 | | simpl 482 |
. . . 4
⊢ ((𝐹:𝐴⟶𝐵 ∧ ran 𝐹 = 𝐵) → 𝐹:𝐴⟶𝐵) |
| 3 | | vex 3484 |
. . . . . . . . . 10
⊢ 𝑦 ∈ V |
| 4 | 3 | elrn 5904 |
. . . . . . . . 9
⊢ (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 𝑥𝐹𝑦) |
| 5 | | eleq2 2830 |
. . . . . . . . 9
⊢ (ran
𝐹 = 𝐵 → (𝑦 ∈ ran 𝐹 ↔ 𝑦 ∈ 𝐵)) |
| 6 | 4, 5 | bitr3id 285 |
. . . . . . . 8
⊢ (ran
𝐹 = 𝐵 → (∃𝑥 𝑥𝐹𝑦 ↔ 𝑦 ∈ 𝐵)) |
| 7 | 6 | biimpar 477 |
. . . . . . 7
⊢ ((ran
𝐹 = 𝐵 ∧ 𝑦 ∈ 𝐵) → ∃𝑥 𝑥𝐹𝑦) |
| 8 | 7 | adantll 714 |
. . . . . 6
⊢ (((𝐹:𝐴⟶𝐵 ∧ ran 𝐹 = 𝐵) ∧ 𝑦 ∈ 𝐵) → ∃𝑥 𝑥𝐹𝑦) |
| 9 | | ffn 6736 |
. . . . . . . . . . 11
⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) |
| 10 | | fnbr 6676 |
. . . . . . . . . . . 12
⊢ ((𝐹 Fn 𝐴 ∧ 𝑥𝐹𝑦) → 𝑥 ∈ 𝐴) |
| 11 | 10 | ex 412 |
. . . . . . . . . . 11
⊢ (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 → 𝑥 ∈ 𝐴)) |
| 12 | 9, 11 | syl 17 |
. . . . . . . . . 10
⊢ (𝐹:𝐴⟶𝐵 → (𝑥𝐹𝑦 → 𝑥 ∈ 𝐴)) |
| 13 | 12 | ancrd 551 |
. . . . . . . . 9
⊢ (𝐹:𝐴⟶𝐵 → (𝑥𝐹𝑦 → (𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦))) |
| 14 | 13 | eximdv 1917 |
. . . . . . . 8
⊢ (𝐹:𝐴⟶𝐵 → (∃𝑥 𝑥𝐹𝑦 → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦))) |
| 15 | | df-rex 3071 |
. . . . . . . 8
⊢
(∃𝑥 ∈
𝐴 𝑥𝐹𝑦 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦)) |
| 16 | 14, 15 | imbitrrdi 252 |
. . . . . . 7
⊢ (𝐹:𝐴⟶𝐵 → (∃𝑥 𝑥𝐹𝑦 → ∃𝑥 ∈ 𝐴 𝑥𝐹𝑦)) |
| 17 | 16 | ad2antrr 726 |
. . . . . 6
⊢ (((𝐹:𝐴⟶𝐵 ∧ ran 𝐹 = 𝐵) ∧ 𝑦 ∈ 𝐵) → (∃𝑥 𝑥𝐹𝑦 → ∃𝑥 ∈ 𝐴 𝑥𝐹𝑦)) |
| 18 | 8, 17 | mpd 15 |
. . . . 5
⊢ (((𝐹:𝐴⟶𝐵 ∧ ran 𝐹 = 𝐵) ∧ 𝑦 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 𝑥𝐹𝑦) |
| 19 | 18 | ralrimiva 3146 |
. . . 4
⊢ ((𝐹:𝐴⟶𝐵 ∧ ran 𝐹 = 𝐵) → ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑥𝐹𝑦) |
| 20 | 2, 19 | jca 511 |
. . 3
⊢ ((𝐹:𝐴⟶𝐵 ∧ ran 𝐹 = 𝐵) → (𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑥𝐹𝑦)) |
| 21 | 1, 20 | sylbi 217 |
. 2
⊢ (𝐹:𝐴–onto→𝐵 → (𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑥𝐹𝑦)) |
| 22 | | fnbrfvb 6959 |
. . . . . . . . 9
⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = 𝑦 ↔ 𝑥𝐹𝑦)) |
| 23 | 22 | biimprd 248 |
. . . . . . . 8
⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑥𝐹𝑦 → (𝐹‘𝑥) = 𝑦)) |
| 24 | | eqcom 2744 |
. . . . . . . 8
⊢ ((𝐹‘𝑥) = 𝑦 ↔ 𝑦 = (𝐹‘𝑥)) |
| 25 | 23, 24 | imbitrdi 251 |
. . . . . . 7
⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑥𝐹𝑦 → 𝑦 = (𝐹‘𝑥))) |
| 26 | 9, 25 | sylan 580 |
. . . . . 6
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → (𝑥𝐹𝑦 → 𝑦 = (𝐹‘𝑥))) |
| 27 | 26 | reximdva 3168 |
. . . . 5
⊢ (𝐹:𝐴⟶𝐵 → (∃𝑥 ∈ 𝐴 𝑥𝐹𝑦 → ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥))) |
| 28 | 27 | ralimdv 3169 |
. . . 4
⊢ (𝐹:𝐴⟶𝐵 → (∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑥𝐹𝑦 → ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥))) |
| 29 | 28 | imdistani 568 |
. . 3
⊢ ((𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑥𝐹𝑦) → (𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥))) |
| 30 | | dffo3 7122 |
. . 3
⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥))) |
| 31 | 29, 30 | sylibr 234 |
. 2
⊢ ((𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑥𝐹𝑦) → 𝐹:𝐴–onto→𝐵) |
| 32 | 21, 31 | impbii 209 |
1
⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑥𝐹𝑦)) |