MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffo4 Structured version   Visualization version   GIF version

Theorem dffo4 7036
Description: Alternate definition of an onto mapping. (Contributed by NM, 20-Mar-2007.)
Assertion
Ref Expression
dffo4 (𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑥𝐹𝑦))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦

Proof of Theorem dffo4
StepHypRef Expression
1 dffo2 6739 . . 3 (𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵))
2 simpl 482 . . . 4 ((𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵) → 𝐹:𝐴𝐵)
3 vex 3440 . . . . . . . . . 10 𝑦 ∈ V
43elrn 5833 . . . . . . . . 9 (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 𝑥𝐹𝑦)
5 eleq2 2820 . . . . . . . . 9 (ran 𝐹 = 𝐵 → (𝑦 ∈ ran 𝐹𝑦𝐵))
64, 5bitr3id 285 . . . . . . . 8 (ran 𝐹 = 𝐵 → (∃𝑥 𝑥𝐹𝑦𝑦𝐵))
76biimpar 477 . . . . . . 7 ((ran 𝐹 = 𝐵𝑦𝐵) → ∃𝑥 𝑥𝐹𝑦)
87adantll 714 . . . . . 6 (((𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵) ∧ 𝑦𝐵) → ∃𝑥 𝑥𝐹𝑦)
9 ffn 6651 . . . . . . . . . . 11 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
10 fnbr 6589 . . . . . . . . . . . 12 ((𝐹 Fn 𝐴𝑥𝐹𝑦) → 𝑥𝐴)
1110ex 412 . . . . . . . . . . 11 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦𝑥𝐴))
129, 11syl 17 . . . . . . . . . 10 (𝐹:𝐴𝐵 → (𝑥𝐹𝑦𝑥𝐴))
1312ancrd 551 . . . . . . . . 9 (𝐹:𝐴𝐵 → (𝑥𝐹𝑦 → (𝑥𝐴𝑥𝐹𝑦)))
1413eximdv 1918 . . . . . . . 8 (𝐹:𝐴𝐵 → (∃𝑥 𝑥𝐹𝑦 → ∃𝑥(𝑥𝐴𝑥𝐹𝑦)))
15 df-rex 3057 . . . . . . . 8 (∃𝑥𝐴 𝑥𝐹𝑦 ↔ ∃𝑥(𝑥𝐴𝑥𝐹𝑦))
1614, 15imbitrrdi 252 . . . . . . 7 (𝐹:𝐴𝐵 → (∃𝑥 𝑥𝐹𝑦 → ∃𝑥𝐴 𝑥𝐹𝑦))
1716ad2antrr 726 . . . . . 6 (((𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵) ∧ 𝑦𝐵) → (∃𝑥 𝑥𝐹𝑦 → ∃𝑥𝐴 𝑥𝐹𝑦))
188, 17mpd 15 . . . . 5 (((𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵) ∧ 𝑦𝐵) → ∃𝑥𝐴 𝑥𝐹𝑦)
1918ralrimiva 3124 . . . 4 ((𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵) → ∀𝑦𝐵𝑥𝐴 𝑥𝐹𝑦)
202, 19jca 511 . . 3 ((𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵) → (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑥𝐹𝑦))
211, 20sylbi 217 . 2 (𝐹:𝐴onto𝐵 → (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑥𝐹𝑦))
22 fnbrfvb 6872 . . . . . . . . 9 ((𝐹 Fn 𝐴𝑥𝐴) → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦))
2322biimprd 248 . . . . . . . 8 ((𝐹 Fn 𝐴𝑥𝐴) → (𝑥𝐹𝑦 → (𝐹𝑥) = 𝑦))
24 eqcom 2738 . . . . . . . 8 ((𝐹𝑥) = 𝑦𝑦 = (𝐹𝑥))
2523, 24imbitrdi 251 . . . . . . 7 ((𝐹 Fn 𝐴𝑥𝐴) → (𝑥𝐹𝑦𝑦 = (𝐹𝑥)))
269, 25sylan 580 . . . . . 6 ((𝐹:𝐴𝐵𝑥𝐴) → (𝑥𝐹𝑦𝑦 = (𝐹𝑥)))
2726reximdva 3145 . . . . 5 (𝐹:𝐴𝐵 → (∃𝑥𝐴 𝑥𝐹𝑦 → ∃𝑥𝐴 𝑦 = (𝐹𝑥)))
2827ralimdv 3146 . . . 4 (𝐹:𝐴𝐵 → (∀𝑦𝐵𝑥𝐴 𝑥𝐹𝑦 → ∀𝑦𝐵𝑥𝐴 𝑦 = (𝐹𝑥)))
2928imdistani 568 . . 3 ((𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑥𝐹𝑦) → (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑦 = (𝐹𝑥)))
30 dffo3 7035 . . 3 (𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑦 = (𝐹𝑥)))
3129, 30sylibr 234 . 2 ((𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑥𝐹𝑦) → 𝐹:𝐴onto𝐵)
3221, 31impbii 209 1 (𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑥𝐹𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111  wral 3047  wrex 3056   class class class wbr 5091  ran crn 5617   Fn wfn 6476  wf 6477  ontowfo 6479  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fo 6487  df-fv 6489
This theorem is referenced by:  dffo5  7037  exfo  7038  brdom3  10419  phpreu  37650  poimirlem26  37692
  Copyright terms: Public domain W3C validator