![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpofo | Structured version Visualization version GIF version |
Description: A group operation maps onto the group's underlying set. (Contributed by NM, 30-Oct-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
grpfo.1 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
grpofo | ⊢ (𝐺 ∈ GrpOp → 𝐺:(𝑋 × 𝑋)–onto→𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpfo.1 | . . . . . 6 ⊢ 𝑋 = ran 𝐺 | |
2 | 1 | isgrpo 30005 | . . . . 5 ⊢ (𝐺 ∈ GrpOp → (𝐺 ∈ GrpOp ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑢)))) |
3 | 2 | ibi 266 | . . . 4 ⊢ (𝐺 ∈ GrpOp → (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑢))) |
4 | 3 | simp1d 1142 | . . 3 ⊢ (𝐺 ∈ GrpOp → 𝐺:(𝑋 × 𝑋)⟶𝑋) |
5 | 1 | eqcomi 2741 | . . 3 ⊢ ran 𝐺 = 𝑋 |
6 | 4, 5 | jctir 521 | . 2 ⊢ (𝐺 ∈ GrpOp → (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ran 𝐺 = 𝑋)) |
7 | dffo2 6809 | . 2 ⊢ (𝐺:(𝑋 × 𝑋)–onto→𝑋 ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ran 𝐺 = 𝑋)) | |
8 | 6, 7 | sylibr 233 | 1 ⊢ (𝐺 ∈ GrpOp → 𝐺:(𝑋 × 𝑋)–onto→𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∀wral 3061 ∃wrex 3070 × cxp 5674 ran crn 5677 ⟶wf 6539 –onto→wfo 6541 (class class class)co 7411 GrpOpcgr 29997 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fo 6549 df-fv 6551 df-ov 7414 df-grpo 30001 |
This theorem is referenced by: grpocl 30008 grporndm 30018 grporn 30029 nvgf 30126 hhssabloilem 30769 rngosn3 37095 rngodm1dm2 37103 |
Copyright terms: Public domain | W3C validator |