MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpofo Structured version   Visualization version   GIF version

Theorem grpofo 28861
Description: A group operation maps onto the group's underlying set. (Contributed by NM, 30-Oct-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
grpfo.1 𝑋 = ran 𝐺
Assertion
Ref Expression
grpofo (𝐺 ∈ GrpOp → 𝐺:(𝑋 × 𝑋)–onto𝑋)

Proof of Theorem grpofo
Dummy variables 𝑥 𝑦 𝑧 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpfo.1 . . . . . 6 𝑋 = ran 𝐺
21isgrpo 28859 . . . . 5 (𝐺 ∈ GrpOp → (𝐺 ∈ GrpOp ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑢))))
32ibi 266 . . . 4 (𝐺 ∈ GrpOp → (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑢)))
43simp1d 1141 . . 3 (𝐺 ∈ GrpOp → 𝐺:(𝑋 × 𝑋)⟶𝑋)
51eqcomi 2747 . . 3 ran 𝐺 = 𝑋
64, 5jctir 521 . 2 (𝐺 ∈ GrpOp → (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ran 𝐺 = 𝑋))
7 dffo2 6692 . 2 (𝐺:(𝑋 × 𝑋)–onto𝑋 ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ran 𝐺 = 𝑋))
86, 7sylibr 233 1 (𝐺 ∈ GrpOp → 𝐺:(𝑋 × 𝑋)–onto𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wrex 3065   × cxp 5587  ran crn 5590  wf 6429  ontowfo 6431  (class class class)co 7275  GrpOpcgr 28851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fo 6439  df-fv 6441  df-ov 7278  df-grpo 28855
This theorem is referenced by:  grpocl  28862  grporndm  28872  grporn  28883  nvgf  28980  hhssabloilem  29623  rngosn3  36082  rngodm1dm2  36090
  Copyright terms: Public domain W3C validator