MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setcepi Structured version   Visualization version   GIF version

Theorem setcepi 18013
Description: An epimorphism of sets is a surjection. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
setcmon.c 𝐶 = (SetCat‘𝑈)
setcmon.u (𝜑𝑈𝑉)
setcmon.x (𝜑𝑋𝑈)
setcmon.y (𝜑𝑌𝑈)
setcepi.h 𝐸 = (Epi‘𝐶)
setcepi.2 (𝜑 → 2o𝑈)
Assertion
Ref Expression
setcepi (𝜑 → (𝐹 ∈ (𝑋𝐸𝑌) ↔ 𝐹:𝑋onto𝑌))

Proof of Theorem setcepi
Dummy variables 𝑥 𝑔 𝑎 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
2 eqid 2729 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
3 eqid 2729 . . . . . 6 (comp‘𝐶) = (comp‘𝐶)
4 setcepi.h . . . . . 6 𝐸 = (Epi‘𝐶)
5 setcmon.u . . . . . . 7 (𝜑𝑈𝑉)
6 setcmon.c . . . . . . . 8 𝐶 = (SetCat‘𝑈)
76setccat 18010 . . . . . . 7 (𝑈𝑉𝐶 ∈ Cat)
85, 7syl 17 . . . . . 6 (𝜑𝐶 ∈ Cat)
9 setcmon.x . . . . . . 7 (𝜑𝑋𝑈)
106, 5setcbas 18003 . . . . . . 7 (𝜑𝑈 = (Base‘𝐶))
119, 10eleqtrd 2830 . . . . . 6 (𝜑𝑋 ∈ (Base‘𝐶))
12 setcmon.y . . . . . . 7 (𝜑𝑌𝑈)
1312, 10eleqtrd 2830 . . . . . 6 (𝜑𝑌 ∈ (Base‘𝐶))
141, 2, 3, 4, 8, 11, 13epihom 17667 . . . . 5 (𝜑 → (𝑋𝐸𝑌) ⊆ (𝑋(Hom ‘𝐶)𝑌))
1514sselda 3937 . . . 4 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌))
166, 5, 2, 9, 12elsetchom 18006 . . . . 5 (𝜑 → (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ↔ 𝐹:𝑋𝑌))
1716biimpa 476 . . . 4 ((𝜑𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌)) → 𝐹:𝑋𝑌)
1815, 17syldan 591 . . 3 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → 𝐹:𝑋𝑌)
1918frnd 6664 . . . 4 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → ran 𝐹𝑌)
2018ffnd 6657 . . . . . . . . . . . . . 14 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → 𝐹 Fn 𝑋)
21 fnfvelrn 7018 . . . . . . . . . . . . . 14 ((𝐹 Fn 𝑋𝑥𝑋) → (𝐹𝑥) ∈ ran 𝐹)
2220, 21sylan 580 . . . . . . . . . . . . 13 (((𝜑𝐹 ∈ (𝑋𝐸𝑌)) ∧ 𝑥𝑋) → (𝐹𝑥) ∈ ran 𝐹)
2322iftrued 4486 . . . . . . . . . . . 12 (((𝜑𝐹 ∈ (𝑋𝐸𝑌)) ∧ 𝑥𝑋) → if((𝐹𝑥) ∈ ran 𝐹, 1o, ∅) = 1o)
2423mpteq2dva 5188 . . . . . . . . . . 11 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → (𝑥𝑋 ↦ if((𝐹𝑥) ∈ ran 𝐹, 1o, ∅)) = (𝑥𝑋 ↦ 1o))
2518ffvelcdmda 7022 . . . . . . . . . . . 12 (((𝜑𝐹 ∈ (𝑋𝐸𝑌)) ∧ 𝑥𝑋) → (𝐹𝑥) ∈ 𝑌)
2618feqmptd 6895 . . . . . . . . . . . 12 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → 𝐹 = (𝑥𝑋 ↦ (𝐹𝑥)))
27 eqidd 2730 . . . . . . . . . . . 12 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → (𝑎𝑌 ↦ if(𝑎 ∈ ran 𝐹, 1o, ∅)) = (𝑎𝑌 ↦ if(𝑎 ∈ ran 𝐹, 1o, ∅)))
28 eleq1 2816 . . . . . . . . . . . . 13 (𝑎 = (𝐹𝑥) → (𝑎 ∈ ran 𝐹 ↔ (𝐹𝑥) ∈ ran 𝐹))
2928ifbid 4502 . . . . . . . . . . . 12 (𝑎 = (𝐹𝑥) → if(𝑎 ∈ ran 𝐹, 1o, ∅) = if((𝐹𝑥) ∈ ran 𝐹, 1o, ∅))
3025, 26, 27, 29fmptco 7067 . . . . . . . . . . 11 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → ((𝑎𝑌 ↦ if(𝑎 ∈ ran 𝐹, 1o, ∅)) ∘ 𝐹) = (𝑥𝑋 ↦ if((𝐹𝑥) ∈ ran 𝐹, 1o, ∅)))
31 fconstmpt 5685 . . . . . . . . . . . . 13 (𝑌 × {1o}) = (𝑎𝑌 ↦ 1o)
3231a1i 11 . . . . . . . . . . . 12 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → (𝑌 × {1o}) = (𝑎𝑌 ↦ 1o))
33 eqidd 2730 . . . . . . . . . . . 12 (𝑎 = (𝐹𝑥) → 1o = 1o)
3425, 26, 32, 33fmptco 7067 . . . . . . . . . . 11 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → ((𝑌 × {1o}) ∘ 𝐹) = (𝑥𝑋 ↦ 1o))
3524, 30, 343eqtr4d 2774 . . . . . . . . . 10 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → ((𝑎𝑌 ↦ if(𝑎 ∈ ran 𝐹, 1o, ∅)) ∘ 𝐹) = ((𝑌 × {1o}) ∘ 𝐹))
365adantr 480 . . . . . . . . . . 11 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → 𝑈𝑉)
379adantr 480 . . . . . . . . . . 11 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → 𝑋𝑈)
3812adantr 480 . . . . . . . . . . 11 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → 𝑌𝑈)
39 setcepi.2 . . . . . . . . . . . 12 (𝜑 → 2o𝑈)
4039adantr 480 . . . . . . . . . . 11 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → 2o𝑈)
41 eqid 2729 . . . . . . . . . . . . 13 (𝑎𝑌 ↦ if(𝑎 ∈ ran 𝐹, 1o, ∅)) = (𝑎𝑌 ↦ if(𝑎 ∈ ran 𝐹, 1o, ∅))
42 1oex 8405 . . . . . . . . . . . . . . . . 17 1o ∈ V
4342prid2 4717 . . . . . . . . . . . . . . . 16 1o ∈ {∅, 1o}
44 df2o3 8403 . . . . . . . . . . . . . . . 16 2o = {∅, 1o}
4543, 44eleqtrri 2827 . . . . . . . . . . . . . . 15 1o ∈ 2o
46 0ex 5249 . . . . . . . . . . . . . . . . 17 ∅ ∈ V
4746prid1 4716 . . . . . . . . . . . . . . . 16 ∅ ∈ {∅, 1o}
4847, 44eleqtrri 2827 . . . . . . . . . . . . . . 15 ∅ ∈ 2o
4945, 48ifcli 4526 . . . . . . . . . . . . . 14 if(𝑎 ∈ ran 𝐹, 1o, ∅) ∈ 2o
5049a1i 11 . . . . . . . . . . . . 13 (𝑎𝑌 → if(𝑎 ∈ ran 𝐹, 1o, ∅) ∈ 2o)
5141, 50fmpti 7050 . . . . . . . . . . . 12 (𝑎𝑌 ↦ if(𝑎 ∈ ran 𝐹, 1o, ∅)):𝑌⟶2o
5251a1i 11 . . . . . . . . . . 11 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → (𝑎𝑌 ↦ if(𝑎 ∈ ran 𝐹, 1o, ∅)):𝑌⟶2o)
536, 36, 3, 37, 38, 40, 18, 52setcco 18008 . . . . . . . . . 10 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → ((𝑎𝑌 ↦ if(𝑎 ∈ ran 𝐹, 1o, ∅))(⟨𝑋, 𝑌⟩(comp‘𝐶)2o)𝐹) = ((𝑎𝑌 ↦ if(𝑎 ∈ ran 𝐹, 1o, ∅)) ∘ 𝐹))
54 fconst6g 6717 . . . . . . . . . . . 12 (1o ∈ 2o → (𝑌 × {1o}):𝑌⟶2o)
5545, 54mp1i 13 . . . . . . . . . . 11 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → (𝑌 × {1o}):𝑌⟶2o)
566, 36, 3, 37, 38, 40, 18, 55setcco 18008 . . . . . . . . . 10 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → ((𝑌 × {1o})(⟨𝑋, 𝑌⟩(comp‘𝐶)2o)𝐹) = ((𝑌 × {1o}) ∘ 𝐹))
5735, 53, 563eqtr4d 2774 . . . . . . . . 9 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → ((𝑎𝑌 ↦ if(𝑎 ∈ ran 𝐹, 1o, ∅))(⟨𝑋, 𝑌⟩(comp‘𝐶)2o)𝐹) = ((𝑌 × {1o})(⟨𝑋, 𝑌⟩(comp‘𝐶)2o)𝐹))
588adantr 480 . . . . . . . . . 10 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → 𝐶 ∈ Cat)
5911adantr 480 . . . . . . . . . 10 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → 𝑋 ∈ (Base‘𝐶))
6013adantr 480 . . . . . . . . . 10 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → 𝑌 ∈ (Base‘𝐶))
6139, 10eleqtrd 2830 . . . . . . . . . . 11 (𝜑 → 2o ∈ (Base‘𝐶))
6261adantr 480 . . . . . . . . . 10 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → 2o ∈ (Base‘𝐶))
63 simpr 484 . . . . . . . . . 10 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → 𝐹 ∈ (𝑋𝐸𝑌))
646, 36, 2, 38, 40elsetchom 18006 . . . . . . . . . . 11 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → ((𝑎𝑌 ↦ if(𝑎 ∈ ran 𝐹, 1o, ∅)) ∈ (𝑌(Hom ‘𝐶)2o) ↔ (𝑎𝑌 ↦ if(𝑎 ∈ ran 𝐹, 1o, ∅)):𝑌⟶2o))
6552, 64mpbird 257 . . . . . . . . . 10 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → (𝑎𝑌 ↦ if(𝑎 ∈ ran 𝐹, 1o, ∅)) ∈ (𝑌(Hom ‘𝐶)2o))
666, 36, 2, 38, 40elsetchom 18006 . . . . . . . . . . 11 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → ((𝑌 × {1o}) ∈ (𝑌(Hom ‘𝐶)2o) ↔ (𝑌 × {1o}):𝑌⟶2o))
6755, 66mpbird 257 . . . . . . . . . 10 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → (𝑌 × {1o}) ∈ (𝑌(Hom ‘𝐶)2o))
681, 2, 3, 4, 58, 59, 60, 62, 63, 65, 67epii 17668 . . . . . . . . 9 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → (((𝑎𝑌 ↦ if(𝑎 ∈ ran 𝐹, 1o, ∅))(⟨𝑋, 𝑌⟩(comp‘𝐶)2o)𝐹) = ((𝑌 × {1o})(⟨𝑋, 𝑌⟩(comp‘𝐶)2o)𝐹) ↔ (𝑎𝑌 ↦ if(𝑎 ∈ ran 𝐹, 1o, ∅)) = (𝑌 × {1o})))
6957, 68mpbid 232 . . . . . . . 8 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → (𝑎𝑌 ↦ if(𝑎 ∈ ran 𝐹, 1o, ∅)) = (𝑌 × {1o}))
7069, 31eqtrdi 2780 . . . . . . 7 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → (𝑎𝑌 ↦ if(𝑎 ∈ ran 𝐹, 1o, ∅)) = (𝑎𝑌 ↦ 1o))
7149rgenw 3048 . . . . . . . 8 𝑎𝑌 if(𝑎 ∈ ran 𝐹, 1o, ∅) ∈ 2o
72 mpteqb 6953 . . . . . . . 8 (∀𝑎𝑌 if(𝑎 ∈ ran 𝐹, 1o, ∅) ∈ 2o → ((𝑎𝑌 ↦ if(𝑎 ∈ ran 𝐹, 1o, ∅)) = (𝑎𝑌 ↦ 1o) ↔ ∀𝑎𝑌 if(𝑎 ∈ ran 𝐹, 1o, ∅) = 1o))
7371, 72ax-mp 5 . . . . . . 7 ((𝑎𝑌 ↦ if(𝑎 ∈ ran 𝐹, 1o, ∅)) = (𝑎𝑌 ↦ 1o) ↔ ∀𝑎𝑌 if(𝑎 ∈ ran 𝐹, 1o, ∅) = 1o)
7470, 73sylib 218 . . . . . 6 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → ∀𝑎𝑌 if(𝑎 ∈ ran 𝐹, 1o, ∅) = 1o)
75 1n0 8413 . . . . . . . . . 10 1o ≠ ∅
7675nesymi 2982 . . . . . . . . 9 ¬ ∅ = 1o
77 iffalse 4487 . . . . . . . . . 10 𝑎 ∈ ran 𝐹 → if(𝑎 ∈ ran 𝐹, 1o, ∅) = ∅)
7877eqeq1d 2731 . . . . . . . . 9 𝑎 ∈ ran 𝐹 → (if(𝑎 ∈ ran 𝐹, 1o, ∅) = 1o ↔ ∅ = 1o))
7976, 78mtbiri 327 . . . . . . . 8 𝑎 ∈ ran 𝐹 → ¬ if(𝑎 ∈ ran 𝐹, 1o, ∅) = 1o)
8079con4i 114 . . . . . . 7 (if(𝑎 ∈ ran 𝐹, 1o, ∅) = 1o𝑎 ∈ ran 𝐹)
8180ralimi 3066 . . . . . 6 (∀𝑎𝑌 if(𝑎 ∈ ran 𝐹, 1o, ∅) = 1o → ∀𝑎𝑌 𝑎 ∈ ran 𝐹)
8274, 81syl 17 . . . . 5 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → ∀𝑎𝑌 𝑎 ∈ ran 𝐹)
83 dfss3 3926 . . . . 5 (𝑌 ⊆ ran 𝐹 ↔ ∀𝑎𝑌 𝑎 ∈ ran 𝐹)
8482, 83sylibr 234 . . . 4 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → 𝑌 ⊆ ran 𝐹)
8519, 84eqssd 3955 . . 3 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → ran 𝐹 = 𝑌)
86 dffo2 6744 . . 3 (𝐹:𝑋onto𝑌 ↔ (𝐹:𝑋𝑌 ∧ ran 𝐹 = 𝑌))
8718, 85, 86sylanbrc 583 . 2 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → 𝐹:𝑋onto𝑌)
88 fof 6740 . . . . 5 (𝐹:𝑋onto𝑌𝐹:𝑋𝑌)
8988adantl 481 . . . 4 ((𝜑𝐹:𝑋onto𝑌) → 𝐹:𝑋𝑌)
9016biimpar 477 . . . 4 ((𝜑𝐹:𝑋𝑌) → 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌))
9189, 90syldan 591 . . 3 ((𝜑𝐹:𝑋onto𝑌) → 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌))
9210adantr 480 . . . . . 6 ((𝜑𝐹:𝑋onto𝑌) → 𝑈 = (Base‘𝐶))
9392eleq2d 2814 . . . . 5 ((𝜑𝐹:𝑋onto𝑌) → (𝑧𝑈𝑧 ∈ (Base‘𝐶)))
945ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝐹:𝑋onto𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧) ∧ ∈ (𝑌(Hom ‘𝐶)𝑧)))) → 𝑈𝑉)
959ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝐹:𝑋onto𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧) ∧ ∈ (𝑌(Hom ‘𝐶)𝑧)))) → 𝑋𝑈)
9612ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝐹:𝑋onto𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧) ∧ ∈ (𝑌(Hom ‘𝐶)𝑧)))) → 𝑌𝑈)
97 simprl 770 . . . . . . . . . . 11 (((𝜑𝐹:𝑋onto𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧) ∧ ∈ (𝑌(Hom ‘𝐶)𝑧)))) → 𝑧𝑈)
9889adantr 480 . . . . . . . . . . 11 (((𝜑𝐹:𝑋onto𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧) ∧ ∈ (𝑌(Hom ‘𝐶)𝑧)))) → 𝐹:𝑋𝑌)
99 simprrl 780 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋onto𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧) ∧ ∈ (𝑌(Hom ‘𝐶)𝑧)))) → 𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧))
1006, 94, 2, 96, 97elsetchom 18006 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋onto𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧) ∧ ∈ (𝑌(Hom ‘𝐶)𝑧)))) → (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧) ↔ 𝑔:𝑌𝑧))
10199, 100mpbid 232 . . . . . . . . . . 11 (((𝜑𝐹:𝑋onto𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧) ∧ ∈ (𝑌(Hom ‘𝐶)𝑧)))) → 𝑔:𝑌𝑧)
1026, 94, 3, 95, 96, 97, 98, 101setcco 18008 . . . . . . . . . 10 (((𝜑𝐹:𝑋onto𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧) ∧ ∈ (𝑌(Hom ‘𝐶)𝑧)))) → (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑧)𝐹) = (𝑔𝐹))
103 simprrr 781 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋onto𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧) ∧ ∈ (𝑌(Hom ‘𝐶)𝑧)))) → ∈ (𝑌(Hom ‘𝐶)𝑧))
1046, 94, 2, 96, 97elsetchom 18006 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋onto𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧) ∧ ∈ (𝑌(Hom ‘𝐶)𝑧)))) → ( ∈ (𝑌(Hom ‘𝐶)𝑧) ↔ :𝑌𝑧))
105103, 104mpbid 232 . . . . . . . . . . 11 (((𝜑𝐹:𝑋onto𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧) ∧ ∈ (𝑌(Hom ‘𝐶)𝑧)))) → :𝑌𝑧)
1066, 94, 3, 95, 96, 97, 98, 105setcco 18008 . . . . . . . . . 10 (((𝜑𝐹:𝑋onto𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧) ∧ ∈ (𝑌(Hom ‘𝐶)𝑧)))) → ((⟨𝑋, 𝑌⟩(comp‘𝐶)𝑧)𝐹) = (𝐹))
107102, 106eqeq12d 2745 . . . . . . . . 9 (((𝜑𝐹:𝑋onto𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧) ∧ ∈ (𝑌(Hom ‘𝐶)𝑧)))) → ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑧)𝐹) = ((⟨𝑋, 𝑌⟩(comp‘𝐶)𝑧)𝐹) ↔ (𝑔𝐹) = (𝐹)))
108 simplr 768 . . . . . . . . . . 11 (((𝜑𝐹:𝑋onto𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧) ∧ ∈ (𝑌(Hom ‘𝐶)𝑧)))) → 𝐹:𝑋onto𝑌)
109101ffnd 6657 . . . . . . . . . . 11 (((𝜑𝐹:𝑋onto𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧) ∧ ∈ (𝑌(Hom ‘𝐶)𝑧)))) → 𝑔 Fn 𝑌)
110105ffnd 6657 . . . . . . . . . . 11 (((𝜑𝐹:𝑋onto𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧) ∧ ∈ (𝑌(Hom ‘𝐶)𝑧)))) → Fn 𝑌)
111 cocan2 7233 . . . . . . . . . . 11 ((𝐹:𝑋onto𝑌𝑔 Fn 𝑌 Fn 𝑌) → ((𝑔𝐹) = (𝐹) ↔ 𝑔 = ))
112108, 109, 110, 111syl3anc 1373 . . . . . . . . . 10 (((𝜑𝐹:𝑋onto𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧) ∧ ∈ (𝑌(Hom ‘𝐶)𝑧)))) → ((𝑔𝐹) = (𝐹) ↔ 𝑔 = ))
113112biimpd 229 . . . . . . . . 9 (((𝜑𝐹:𝑋onto𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧) ∧ ∈ (𝑌(Hom ‘𝐶)𝑧)))) → ((𝑔𝐹) = (𝐹) → 𝑔 = ))
114107, 113sylbid 240 . . . . . . . 8 (((𝜑𝐹:𝑋onto𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧) ∧ ∈ (𝑌(Hom ‘𝐶)𝑧)))) → ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑧)𝐹) = ((⟨𝑋, 𝑌⟩(comp‘𝐶)𝑧)𝐹) → 𝑔 = ))
115114anassrs 467 . . . . . . 7 ((((𝜑𝐹:𝑋onto𝑌) ∧ 𝑧𝑈) ∧ (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧) ∧ ∈ (𝑌(Hom ‘𝐶)𝑧))) → ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑧)𝐹) = ((⟨𝑋, 𝑌⟩(comp‘𝐶)𝑧)𝐹) → 𝑔 = ))
116115ralrimivva 3172 . . . . . 6 (((𝜑𝐹:𝑋onto𝑌) ∧ 𝑧𝑈) → ∀𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧)∀ ∈ (𝑌(Hom ‘𝐶)𝑧)((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑧)𝐹) = ((⟨𝑋, 𝑌⟩(comp‘𝐶)𝑧)𝐹) → 𝑔 = ))
117116ex 412 . . . . 5 ((𝜑𝐹:𝑋onto𝑌) → (𝑧𝑈 → ∀𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧)∀ ∈ (𝑌(Hom ‘𝐶)𝑧)((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑧)𝐹) = ((⟨𝑋, 𝑌⟩(comp‘𝐶)𝑧)𝐹) → 𝑔 = )))
11893, 117sylbird 260 . . . 4 ((𝜑𝐹:𝑋onto𝑌) → (𝑧 ∈ (Base‘𝐶) → ∀𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧)∀ ∈ (𝑌(Hom ‘𝐶)𝑧)((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑧)𝐹) = ((⟨𝑋, 𝑌⟩(comp‘𝐶)𝑧)𝐹) → 𝑔 = )))
119118ralrimiv 3120 . . 3 ((𝜑𝐹:𝑋onto𝑌) → ∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧)∀ ∈ (𝑌(Hom ‘𝐶)𝑧)((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑧)𝐹) = ((⟨𝑋, 𝑌⟩(comp‘𝐶)𝑧)𝐹) → 𝑔 = ))
1201, 2, 3, 4, 8, 11, 13isepi2 17666 . . . 4 (𝜑 → (𝐹 ∈ (𝑋𝐸𝑌) ↔ (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ ∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧)∀ ∈ (𝑌(Hom ‘𝐶)𝑧)((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑧)𝐹) = ((⟨𝑋, 𝑌⟩(comp‘𝐶)𝑧)𝐹) → 𝑔 = ))))
121120adantr 480 . . 3 ((𝜑𝐹:𝑋onto𝑌) → (𝐹 ∈ (𝑋𝐸𝑌) ↔ (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ ∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧)∀ ∈ (𝑌(Hom ‘𝐶)𝑧)((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑧)𝐹) = ((⟨𝑋, 𝑌⟩(comp‘𝐶)𝑧)𝐹) → 𝑔 = ))))
12291, 119, 121mpbir2and 713 . 2 ((𝜑𝐹:𝑋onto𝑌) → 𝐹 ∈ (𝑋𝐸𝑌))
12387, 122impbida 800 1 (𝜑 → (𝐹 ∈ (𝑋𝐸𝑌) ↔ 𝐹:𝑋onto𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wss 3905  c0 4286  ifcif 4478  {csn 4579  {cpr 4581  cop 4585  cmpt 5176   × cxp 5621  ran crn 5624  ccom 5627   Fn wfn 6481  wf 6482  ontowfo 6484  cfv 6486  (class class class)co 7353  1oc1o 8388  2oc2o 8389  Basecbs 17138  Hom chom 17190  compcco 17191  Catccat 17588  Epicepi 17654  SetCatcsetc 18000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-fz 13429  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-hom 17203  df-cco 17204  df-cat 17592  df-cid 17593  df-oppc 17636  df-mon 17655  df-epi 17656  df-setc 18001
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator