MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fo1stres Structured version   Visualization version   GIF version

Theorem fo1stres 7707
Description: Onto mapping of a restriction of the 1st (first member of an ordered pair) function. (Contributed by NM, 14-Dec-2008.)
Assertion
Ref Expression
fo1stres (𝐵 ≠ ∅ → (1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)–onto𝐴)

Proof of Theorem fo1stres
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 4308 . . . . . . 7 (𝐵 ≠ ∅ ↔ ∃𝑦 𝑦𝐵)
2 opelxp 5584 . . . . . . . . . 10 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) ↔ (𝑥𝐴𝑦𝐵))
3 fvres 6682 . . . . . . . . . . . 12 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → ((1st ↾ (𝐴 × 𝐵))‘⟨𝑥, 𝑦⟩) = (1st ‘⟨𝑥, 𝑦⟩))
4 vex 3496 . . . . . . . . . . . . 13 𝑥 ∈ V
5 vex 3496 . . . . . . . . . . . . 13 𝑦 ∈ V
64, 5op1st 7689 . . . . . . . . . . . 12 (1st ‘⟨𝑥, 𝑦⟩) = 𝑥
73, 6syl6req 2871 . . . . . . . . . . 11 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → 𝑥 = ((1st ↾ (𝐴 × 𝐵))‘⟨𝑥, 𝑦⟩))
8 f1stres 7705 . . . . . . . . . . . . 13 (1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐴
9 ffn 6507 . . . . . . . . . . . . 13 ((1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐴 → (1st ↾ (𝐴 × 𝐵)) Fn (𝐴 × 𝐵))
108, 9ax-mp 5 . . . . . . . . . . . 12 (1st ↾ (𝐴 × 𝐵)) Fn (𝐴 × 𝐵)
11 fnfvelrn 6841 . . . . . . . . . . . 12 (((1st ↾ (𝐴 × 𝐵)) Fn (𝐴 × 𝐵) ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵)) → ((1st ↾ (𝐴 × 𝐵))‘⟨𝑥, 𝑦⟩) ∈ ran (1st ↾ (𝐴 × 𝐵)))
1210, 11mpan 688 . . . . . . . . . . 11 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → ((1st ↾ (𝐴 × 𝐵))‘⟨𝑥, 𝑦⟩) ∈ ran (1st ↾ (𝐴 × 𝐵)))
137, 12eqeltrd 2911 . . . . . . . . . 10 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → 𝑥 ∈ ran (1st ↾ (𝐴 × 𝐵)))
142, 13sylbir 237 . . . . . . . . 9 ((𝑥𝐴𝑦𝐵) → 𝑥 ∈ ran (1st ↾ (𝐴 × 𝐵)))
1514expcom 416 . . . . . . . 8 (𝑦𝐵 → (𝑥𝐴𝑥 ∈ ran (1st ↾ (𝐴 × 𝐵))))
1615exlimiv 1925 . . . . . . 7 (∃𝑦 𝑦𝐵 → (𝑥𝐴𝑥 ∈ ran (1st ↾ (𝐴 × 𝐵))))
171, 16sylbi 219 . . . . . 6 (𝐵 ≠ ∅ → (𝑥𝐴𝑥 ∈ ran (1st ↾ (𝐴 × 𝐵))))
1817ssrdv 3971 . . . . 5 (𝐵 ≠ ∅ → 𝐴 ⊆ ran (1st ↾ (𝐴 × 𝐵)))
19 frn 6513 . . . . . 6 ((1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐴 → ran (1st ↾ (𝐴 × 𝐵)) ⊆ 𝐴)
208, 19ax-mp 5 . . . . 5 ran (1st ↾ (𝐴 × 𝐵)) ⊆ 𝐴
2118, 20jctil 522 . . . 4 (𝐵 ≠ ∅ → (ran (1st ↾ (𝐴 × 𝐵)) ⊆ 𝐴𝐴 ⊆ ran (1st ↾ (𝐴 × 𝐵))))
22 eqss 3980 . . . 4 (ran (1st ↾ (𝐴 × 𝐵)) = 𝐴 ↔ (ran (1st ↾ (𝐴 × 𝐵)) ⊆ 𝐴𝐴 ⊆ ran (1st ↾ (𝐴 × 𝐵))))
2321, 22sylibr 236 . . 3 (𝐵 ≠ ∅ → ran (1st ↾ (𝐴 × 𝐵)) = 𝐴)
2423, 8jctil 522 . 2 (𝐵 ≠ ∅ → ((1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐴 ∧ ran (1st ↾ (𝐴 × 𝐵)) = 𝐴))
25 dffo2 6587 . 2 ((1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)–onto𝐴 ↔ ((1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐴 ∧ ran (1st ↾ (𝐴 × 𝐵)) = 𝐴))
2624, 25sylibr 236 1 (𝐵 ≠ ∅ → (1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)–onto𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1531  wex 1774  wcel 2108  wne 3014  wss 3934  c0 4289  cop 4565   × cxp 5546  ran crn 5549  cres 5550   Fn wfn 6343  wf 6344  ontowfo 6346  cfv 6348  1st c1st 7679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-fo 6354  df-fv 6356  df-1st 7681
This theorem is referenced by:  1stconst  7787  txcmpb  22244
  Copyright terms: Public domain W3C validator