MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fo1stres Structured version   Visualization version   GIF version

Theorem fo1stres 7994
Description: Onto mapping of a restriction of the 1st (first member of an ordered pair) function. (Contributed by NM, 14-Dec-2008.)
Assertion
Ref Expression
fo1stres (𝐵 ≠ ∅ → (1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)–onto𝐴)

Proof of Theorem fo1stres
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 4316 . . . . . . 7 (𝐵 ≠ ∅ ↔ ∃𝑦 𝑦𝐵)
2 opelxp 5674 . . . . . . . . . 10 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) ↔ (𝑥𝐴𝑦𝐵))
3 fvres 6877 . . . . . . . . . . . 12 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → ((1st ↾ (𝐴 × 𝐵))‘⟨𝑥, 𝑦⟩) = (1st ‘⟨𝑥, 𝑦⟩))
4 vex 3451 . . . . . . . . . . . . 13 𝑥 ∈ V
5 vex 3451 . . . . . . . . . . . . 13 𝑦 ∈ V
64, 5op1st 7976 . . . . . . . . . . . 12 (1st ‘⟨𝑥, 𝑦⟩) = 𝑥
73, 6eqtr2di 2781 . . . . . . . . . . 11 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → 𝑥 = ((1st ↾ (𝐴 × 𝐵))‘⟨𝑥, 𝑦⟩))
8 f1stres 7992 . . . . . . . . . . . . 13 (1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐴
9 ffn 6688 . . . . . . . . . . . . 13 ((1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐴 → (1st ↾ (𝐴 × 𝐵)) Fn (𝐴 × 𝐵))
108, 9ax-mp 5 . . . . . . . . . . . 12 (1st ↾ (𝐴 × 𝐵)) Fn (𝐴 × 𝐵)
11 fnfvelrn 7052 . . . . . . . . . . . 12 (((1st ↾ (𝐴 × 𝐵)) Fn (𝐴 × 𝐵) ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵)) → ((1st ↾ (𝐴 × 𝐵))‘⟨𝑥, 𝑦⟩) ∈ ran (1st ↾ (𝐴 × 𝐵)))
1210, 11mpan 690 . . . . . . . . . . 11 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → ((1st ↾ (𝐴 × 𝐵))‘⟨𝑥, 𝑦⟩) ∈ ran (1st ↾ (𝐴 × 𝐵)))
137, 12eqeltrd 2828 . . . . . . . . . 10 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → 𝑥 ∈ ran (1st ↾ (𝐴 × 𝐵)))
142, 13sylbir 235 . . . . . . . . 9 ((𝑥𝐴𝑦𝐵) → 𝑥 ∈ ran (1st ↾ (𝐴 × 𝐵)))
1514expcom 413 . . . . . . . 8 (𝑦𝐵 → (𝑥𝐴𝑥 ∈ ran (1st ↾ (𝐴 × 𝐵))))
1615exlimiv 1930 . . . . . . 7 (∃𝑦 𝑦𝐵 → (𝑥𝐴𝑥 ∈ ran (1st ↾ (𝐴 × 𝐵))))
171, 16sylbi 217 . . . . . 6 (𝐵 ≠ ∅ → (𝑥𝐴𝑥 ∈ ran (1st ↾ (𝐴 × 𝐵))))
1817ssrdv 3952 . . . . 5 (𝐵 ≠ ∅ → 𝐴 ⊆ ran (1st ↾ (𝐴 × 𝐵)))
19 frn 6695 . . . . . 6 ((1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐴 → ran (1st ↾ (𝐴 × 𝐵)) ⊆ 𝐴)
208, 19ax-mp 5 . . . . 5 ran (1st ↾ (𝐴 × 𝐵)) ⊆ 𝐴
2118, 20jctil 519 . . . 4 (𝐵 ≠ ∅ → (ran (1st ↾ (𝐴 × 𝐵)) ⊆ 𝐴𝐴 ⊆ ran (1st ↾ (𝐴 × 𝐵))))
22 eqss 3962 . . . 4 (ran (1st ↾ (𝐴 × 𝐵)) = 𝐴 ↔ (ran (1st ↾ (𝐴 × 𝐵)) ⊆ 𝐴𝐴 ⊆ ran (1st ↾ (𝐴 × 𝐵))))
2321, 22sylibr 234 . . 3 (𝐵 ≠ ∅ → ran (1st ↾ (𝐴 × 𝐵)) = 𝐴)
2423, 8jctil 519 . 2 (𝐵 ≠ ∅ → ((1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐴 ∧ ran (1st ↾ (𝐴 × 𝐵)) = 𝐴))
25 dffo2 6776 . 2 ((1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)–onto𝐴 ↔ ((1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)⟶𝐴 ∧ ran (1st ↾ (𝐴 × 𝐵)) = 𝐴))
2624, 25sylibr 234 1 (𝐵 ≠ ∅ → (1st ↾ (𝐴 × 𝐵)):(𝐴 × 𝐵)–onto𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2925  wss 3914  c0 4296  cop 4595   × cxp 5636  ran crn 5639  cres 5640   Fn wfn 6506  wf 6507  ontowfo 6509  cfv 6511  1st c1st 7966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fo 6517  df-fv 6519  df-1st 7968
This theorem is referenced by:  1stconst  8079  txcmpb  23531
  Copyright terms: Public domain W3C validator