Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > foima | Structured version Visualization version GIF version |
Description: The image of the domain of an onto function. (Contributed by NM, 29-Nov-2002.) |
Ref | Expression |
---|---|
foima | ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹 “ 𝐴) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imadmrn 5913 | . 2 ⊢ (𝐹 “ dom 𝐹) = ran 𝐹 | |
2 | fof 6592 | . . . 4 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
3 | 2 | fdmd 6515 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → dom 𝐹 = 𝐴) |
4 | 3 | imaeq2d 5903 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹 “ dom 𝐹) = (𝐹 “ 𝐴)) |
5 | forn 6595 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) | |
6 | 1, 4, 5 | 3eqtr3a 2797 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹 “ 𝐴) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 dom cdm 5525 ran crn 5526 “ cima 5528 –onto→wfo 6337 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pr 5296 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2075 df-clab 2717 df-cleq 2730 df-clel 2811 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3400 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-sn 4517 df-pr 4519 df-op 4523 df-br 5031 df-opab 5093 df-xp 5531 df-cnv 5533 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-fn 6342 df-f 6343 df-fo 6345 |
This theorem is referenced by: foimacnv 6637 domunfican 8867 fiint 8871 fodomfi 8872 cantnflt2 9211 cantnfp1lem3 9218 enfin1ai 9886 symgfixelsi 18683 dprdf1o 19275 lmimlbs 20654 cncmp 22145 cmpfi 22161 cnconn 22175 qtopval2 22449 elfm3 22703 rnelfm 22706 fmfnfmlem2 22708 fmfnfm 22711 eupthvdres 28174 pjordi 30110 qtophaus 31360 poimirlem1 35423 poimirlem2 35424 poimirlem3 35425 poimirlem4 35426 poimirlem5 35427 poimirlem6 35428 poimirlem7 35429 poimirlem9 35431 poimirlem10 35432 poimirlem11 35433 poimirlem12 35434 poimirlem14 35436 poimirlem16 35438 poimirlem17 35439 poimirlem19 35441 poimirlem20 35442 poimirlem22 35444 poimirlem23 35445 poimirlem24 35446 poimirlem25 35447 poimirlem29 35451 poimirlem31 35453 ovoliunnfl 35464 voliunnfl 35466 volsupnfl 35467 ismtybndlem 35609 kelac1 40482 gicabl 40518 |
Copyright terms: Public domain | W3C validator |