![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > foima | Structured version Visualization version GIF version |
Description: The image of the domain of an onto function. (Contributed by NM, 29-Nov-2002.) |
Ref | Expression |
---|---|
foima | ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹 “ 𝐴) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imadmrn 6070 | . 2 ⊢ (𝐹 “ dom 𝐹) = ran 𝐹 | |
2 | fof 6806 | . . . 4 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
3 | 2 | fdmd 6729 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → dom 𝐹 = 𝐴) |
4 | 3 | imaeq2d 6060 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹 “ dom 𝐹) = (𝐹 “ 𝐴)) |
5 | forn 6809 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) | |
6 | 1, 4, 5 | 3eqtr3a 2797 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹 “ 𝐴) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 dom cdm 5677 ran crn 5678 “ cima 5680 –onto→wfo 6542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-xp 5683 df-cnv 5685 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-fn 6547 df-f 6548 df-fo 6550 |
This theorem is referenced by: foimacnv 6851 domunfican 9320 fiint 9324 fodomfi 9325 cantnflt2 9668 cantnfp1lem3 9675 enfin1ai 10379 symgfixelsi 19303 dprdf1o 19902 lmimlbs 21391 cncmp 22896 cmpfi 22912 cnconn 22926 qtopval2 23200 elfm3 23454 rnelfm 23457 fmfnfmlem2 23459 fmfnfm 23462 eupthvdres 29488 pjordi 31426 qtophaus 32816 poimirlem1 36489 poimirlem2 36490 poimirlem3 36491 poimirlem4 36492 poimirlem5 36493 poimirlem6 36494 poimirlem7 36495 poimirlem9 36497 poimirlem10 36498 poimirlem11 36499 poimirlem12 36500 poimirlem14 36502 poimirlem16 36504 poimirlem17 36505 poimirlem19 36507 poimirlem20 36508 poimirlem22 36510 poimirlem23 36511 poimirlem24 36512 poimirlem25 36513 poimirlem29 36517 poimirlem31 36519 ovoliunnfl 36530 voliunnfl 36532 volsupnfl 36533 ismtybndlem 36674 riccrng1 41096 ricdrng1 41102 kelac1 41805 gicabl 41841 |
Copyright terms: Public domain | W3C validator |