| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > foima | Structured version Visualization version GIF version | ||
| Description: The image of the domain of an onto function. (Contributed by NM, 29-Nov-2002.) |
| Ref | Expression |
|---|---|
| foima | ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹 “ 𝐴) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imadmrn 6044 | . 2 ⊢ (𝐹 “ dom 𝐹) = ran 𝐹 | |
| 2 | fof 6775 | . . . 4 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 3 | 2 | fdmd 6701 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → dom 𝐹 = 𝐴) |
| 4 | 3 | imaeq2d 6034 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹 “ dom 𝐹) = (𝐹 “ 𝐴)) |
| 5 | forn 6778 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) | |
| 6 | 1, 4, 5 | 3eqtr3a 2789 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹 “ 𝐴) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 dom cdm 5641 ran crn 5642 “ cima 5644 –onto→wfo 6512 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-fn 6517 df-f 6518 df-fo 6520 |
| This theorem is referenced by: foimacnv 6820 fodomfi 9268 domunfican 9279 fiint 9284 fiintOLD 9285 fodomfiOLD 9288 cantnflt2 9633 cantnfp1lem3 9640 enfin1ai 10344 symgfixelsi 19372 dprdf1o 19971 lmimlbs 21752 cncmp 23286 cmpfi 23302 cnconn 23316 qtopval2 23590 elfm3 23844 rnelfm 23847 fmfnfmlem2 23849 fmfnfm 23852 eupthvdres 30171 pjordi 32109 qtophaus 33833 poimirlem1 37622 poimirlem2 37623 poimirlem3 37624 poimirlem4 37625 poimirlem5 37626 poimirlem6 37627 poimirlem7 37628 poimirlem9 37630 poimirlem10 37631 poimirlem11 37632 poimirlem12 37633 poimirlem14 37635 poimirlem16 37637 poimirlem17 37638 poimirlem19 37640 poimirlem20 37641 poimirlem22 37643 poimirlem23 37644 poimirlem24 37645 poimirlem25 37646 poimirlem29 37650 poimirlem31 37652 ovoliunnfl 37663 voliunnfl 37665 volsupnfl 37666 ismtybndlem 37807 riccrng1 42516 ricdrng1 42523 kelac1 43059 gicabl 43095 imasubc 49144 |
| Copyright terms: Public domain | W3C validator |