| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > foima | Structured version Visualization version GIF version | ||
| Description: The image of the domain of an onto function. (Contributed by NM, 29-Nov-2002.) |
| Ref | Expression |
|---|---|
| foima | ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹 “ 𝐴) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imadmrn 6025 | . 2 ⊢ (𝐹 “ dom 𝐹) = ran 𝐹 | |
| 2 | fof 6740 | . . . 4 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 3 | 2 | fdmd 6666 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → dom 𝐹 = 𝐴) |
| 4 | 3 | imaeq2d 6015 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹 “ dom 𝐹) = (𝐹 “ 𝐴)) |
| 5 | forn 6743 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) | |
| 6 | 1, 4, 5 | 3eqtr3a 2788 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹 “ 𝐴) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 dom cdm 5623 ran crn 5624 “ cima 5626 –onto→wfo 6484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-xp 5629 df-cnv 5631 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-fn 6489 df-f 6490 df-fo 6492 |
| This theorem is referenced by: foimacnv 6785 fodomfi 9219 domunfican 9230 fiint 9235 fiintOLD 9236 fodomfiOLD 9239 cantnflt2 9588 cantnfp1lem3 9595 enfin1ai 10297 symgfixelsi 19332 dprdf1o 19931 lmimlbs 21761 cncmp 23295 cmpfi 23311 cnconn 23325 qtopval2 23599 elfm3 23853 rnelfm 23856 fmfnfmlem2 23858 fmfnfm 23861 eupthvdres 30197 pjordi 32135 qtophaus 33805 poimirlem1 37603 poimirlem2 37604 poimirlem3 37605 poimirlem4 37606 poimirlem5 37607 poimirlem6 37608 poimirlem7 37609 poimirlem9 37611 poimirlem10 37612 poimirlem11 37613 poimirlem12 37614 poimirlem14 37616 poimirlem16 37618 poimirlem17 37619 poimirlem19 37621 poimirlem20 37622 poimirlem22 37624 poimirlem23 37625 poimirlem24 37626 poimirlem25 37627 poimirlem29 37631 poimirlem31 37633 ovoliunnfl 37644 voliunnfl 37646 volsupnfl 37647 ismtybndlem 37788 riccrng1 42497 ricdrng1 42504 kelac1 43039 gicabl 43075 imasubc 49140 |
| Copyright terms: Public domain | W3C validator |