MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  foima Structured version   Visualization version   GIF version

Theorem foima 6811
Description: The image of the domain of an onto function. (Contributed by NM, 29-Nov-2002.)
Assertion
Ref Expression
foima (𝐹:𝐴onto𝐵 → (𝐹𝐴) = 𝐵)

Proof of Theorem foima
StepHypRef Expression
1 imadmrn 6070 . 2 (𝐹 “ dom 𝐹) = ran 𝐹
2 fof 6806 . . . 4 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
32fdmd 6729 . . 3 (𝐹:𝐴onto𝐵 → dom 𝐹 = 𝐴)
43imaeq2d 6060 . 2 (𝐹:𝐴onto𝐵 → (𝐹 “ dom 𝐹) = (𝐹𝐴))
5 forn 6809 . 2 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
61, 4, 53eqtr3a 2797 1 (𝐹:𝐴onto𝐵 → (𝐹𝐴) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  dom cdm 5677  ran crn 5678  cima 5680  ontowfo 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-xp 5683  df-cnv 5685  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-fn 6547  df-f 6548  df-fo 6550
This theorem is referenced by:  foimacnv  6851  domunfican  9320  fiint  9324  fodomfi  9325  cantnflt2  9668  cantnfp1lem3  9675  enfin1ai  10379  symgfixelsi  19303  dprdf1o  19902  lmimlbs  21391  cncmp  22896  cmpfi  22912  cnconn  22926  qtopval2  23200  elfm3  23454  rnelfm  23457  fmfnfmlem2  23459  fmfnfm  23462  eupthvdres  29488  pjordi  31426  qtophaus  32816  poimirlem1  36489  poimirlem2  36490  poimirlem3  36491  poimirlem4  36492  poimirlem5  36493  poimirlem6  36494  poimirlem7  36495  poimirlem9  36497  poimirlem10  36498  poimirlem11  36499  poimirlem12  36500  poimirlem14  36502  poimirlem16  36504  poimirlem17  36505  poimirlem19  36507  poimirlem20  36508  poimirlem22  36510  poimirlem23  36511  poimirlem24  36512  poimirlem25  36513  poimirlem29  36517  poimirlem31  36519  ovoliunnfl  36530  voliunnfl  36532  volsupnfl  36533  ismtybndlem  36674  riccrng1  41096  ricdrng1  41102  kelac1  41805  gicabl  41841
  Copyright terms: Public domain W3C validator