MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  foima Structured version   Visualization version   GIF version

Theorem foima 6839
Description: The image of the domain of an onto function. (Contributed by NM, 29-Nov-2002.)
Assertion
Ref Expression
foima (𝐹:𝐴onto𝐵 → (𝐹𝐴) = 𝐵)

Proof of Theorem foima
StepHypRef Expression
1 imadmrn 6099 . 2 (𝐹 “ dom 𝐹) = ran 𝐹
2 fof 6834 . . . 4 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
32fdmd 6757 . . 3 (𝐹:𝐴onto𝐵 → dom 𝐹 = 𝐴)
43imaeq2d 6089 . 2 (𝐹:𝐴onto𝐵 → (𝐹 “ dom 𝐹) = (𝐹𝐴))
5 forn 6837 . 2 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
61, 4, 53eqtr3a 2804 1 (𝐹:𝐴onto𝐵 → (𝐹𝐴) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  dom cdm 5700  ran crn 5701  cima 5703  ontowfo 6571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-fn 6576  df-f 6577  df-fo 6579
This theorem is referenced by:  foimacnv  6879  fodomfi  9378  domunfican  9389  fiint  9394  fiintOLD  9395  fodomfiOLD  9398  cantnflt2  9742  cantnfp1lem3  9749  enfin1ai  10453  symgfixelsi  19477  dprdf1o  20076  lmimlbs  21879  cncmp  23421  cmpfi  23437  cnconn  23451  qtopval2  23725  elfm3  23979  rnelfm  23982  fmfnfmlem2  23984  fmfnfm  23987  eupthvdres  30267  pjordi  32205  qtophaus  33782  poimirlem1  37581  poimirlem2  37582  poimirlem3  37583  poimirlem4  37584  poimirlem5  37585  poimirlem6  37586  poimirlem7  37587  poimirlem9  37589  poimirlem10  37590  poimirlem11  37591  poimirlem12  37592  poimirlem14  37594  poimirlem16  37596  poimirlem17  37597  poimirlem19  37599  poimirlem20  37600  poimirlem22  37602  poimirlem23  37603  poimirlem24  37604  poimirlem25  37605  poimirlem29  37609  poimirlem31  37611  ovoliunnfl  37622  voliunnfl  37624  volsupnfl  37625  ismtybndlem  37766  riccrng1  42476  ricdrng1  42483  kelac1  43020  gicabl  43056
  Copyright terms: Public domain W3C validator