MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  foima Structured version   Visualization version   GIF version

Theorem foima 6748
Description: The image of the domain of an onto function. (Contributed by NM, 29-Nov-2002.)
Assertion
Ref Expression
foima (𝐹:𝐴onto𝐵 → (𝐹𝐴) = 𝐵)

Proof of Theorem foima
StepHypRef Expression
1 imadmrn 6026 . 2 (𝐹 “ dom 𝐹) = ran 𝐹
2 fof 6743 . . . 4 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
32fdmd 6669 . . 3 (𝐹:𝐴onto𝐵 → dom 𝐹 = 𝐴)
43imaeq2d 6016 . 2 (𝐹:𝐴onto𝐵 → (𝐹 “ dom 𝐹) = (𝐹𝐴))
5 forn 6746 . 2 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
61, 4, 53eqtr3a 2792 1 (𝐹:𝐴onto𝐵 → (𝐹𝐴) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  dom cdm 5621  ran crn 5622  cima 5624  ontowfo 6487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-xp 5627  df-cnv 5629  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-fn 6492  df-f 6493  df-fo 6495
This theorem is referenced by:  foimacnv  6788  fodomfi  9207  domunfican  9217  fiint  9222  fodomfiOLD  9225  cantnflt2  9574  cantnfp1lem3  9581  enfin1ai  10286  symgfixelsi  19355  dprdf1o  19954  lmimlbs  21782  cncmp  23327  cmpfi  23343  cnconn  23357  qtopval2  23631  elfm3  23885  rnelfm  23888  fmfnfmlem2  23890  fmfnfm  23893  eupthvdres  30236  pjordi  32174  qtophaus  33921  poimirlem1  37734  poimirlem2  37735  poimirlem3  37736  poimirlem4  37737  poimirlem5  37738  poimirlem6  37739  poimirlem7  37740  poimirlem9  37742  poimirlem10  37743  poimirlem11  37744  poimirlem12  37745  poimirlem14  37747  poimirlem16  37749  poimirlem17  37750  poimirlem19  37752  poimirlem20  37753  poimirlem22  37755  poimirlem23  37756  poimirlem24  37757  poimirlem25  37758  poimirlem29  37762  poimirlem31  37764  ovoliunnfl  37775  voliunnfl  37777  volsupnfl  37778  ismtybndlem  37919  riccrng1  42691  ricdrng1  42698  kelac1  43220  gicabl  43256  imasubc  49312
  Copyright terms: Public domain W3C validator