| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > foima | Structured version Visualization version GIF version | ||
| Description: The image of the domain of an onto function. (Contributed by NM, 29-Nov-2002.) |
| Ref | Expression |
|---|---|
| foima | ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹 “ 𝐴) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imadmrn 6014 | . 2 ⊢ (𝐹 “ dom 𝐹) = ran 𝐹 | |
| 2 | fof 6730 | . . . 4 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 3 | 2 | fdmd 6656 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → dom 𝐹 = 𝐴) |
| 4 | 3 | imaeq2d 6004 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹 “ dom 𝐹) = (𝐹 “ 𝐴)) |
| 5 | forn 6733 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) | |
| 6 | 1, 4, 5 | 3eqtr3a 2790 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹 “ 𝐴) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 dom cdm 5611 ran crn 5612 “ cima 5614 –onto→wfo 6474 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-xp 5617 df-cnv 5619 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-fn 6479 df-f 6480 df-fo 6482 |
| This theorem is referenced by: foimacnv 6775 fodomfi 9191 domunfican 9201 fiint 9206 fodomfiOLD 9209 cantnflt2 9558 cantnfp1lem3 9565 enfin1ai 10270 symgfixelsi 19342 dprdf1o 19941 lmimlbs 21768 cncmp 23302 cmpfi 23318 cnconn 23332 qtopval2 23606 elfm3 23860 rnelfm 23863 fmfnfmlem2 23865 fmfnfm 23868 eupthvdres 30207 pjordi 32145 qtophaus 33841 poimirlem1 37661 poimirlem2 37662 poimirlem3 37663 poimirlem4 37664 poimirlem5 37665 poimirlem6 37666 poimirlem7 37667 poimirlem9 37669 poimirlem10 37670 poimirlem11 37671 poimirlem12 37672 poimirlem14 37674 poimirlem16 37676 poimirlem17 37677 poimirlem19 37679 poimirlem20 37680 poimirlem22 37682 poimirlem23 37683 poimirlem24 37684 poimirlem25 37685 poimirlem29 37689 poimirlem31 37691 ovoliunnfl 37702 voliunnfl 37704 volsupnfl 37705 ismtybndlem 37846 riccrng1 42554 ricdrng1 42561 kelac1 43096 gicabl 43132 imasubc 49183 |
| Copyright terms: Public domain | W3C validator |