| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > foima | Structured version Visualization version GIF version | ||
| Description: The image of the domain of an onto function. (Contributed by NM, 29-Nov-2002.) |
| Ref | Expression |
|---|---|
| foima | ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹 “ 𝐴) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imadmrn 6041 | . 2 ⊢ (𝐹 “ dom 𝐹) = ran 𝐹 | |
| 2 | fof 6772 | . . . 4 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 3 | 2 | fdmd 6698 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → dom 𝐹 = 𝐴) |
| 4 | 3 | imaeq2d 6031 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹 “ dom 𝐹) = (𝐹 “ 𝐴)) |
| 5 | forn 6775 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) | |
| 6 | 1, 4, 5 | 3eqtr3a 2788 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹 “ 𝐴) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 dom cdm 5638 ran crn 5639 “ cima 5641 –onto→wfo 6509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-fn 6514 df-f 6515 df-fo 6517 |
| This theorem is referenced by: foimacnv 6817 fodomfi 9261 domunfican 9272 fiint 9277 fiintOLD 9278 fodomfiOLD 9281 cantnflt2 9626 cantnfp1lem3 9633 enfin1ai 10337 symgfixelsi 19365 dprdf1o 19964 lmimlbs 21745 cncmp 23279 cmpfi 23295 cnconn 23309 qtopval2 23583 elfm3 23837 rnelfm 23840 fmfnfmlem2 23842 fmfnfm 23845 eupthvdres 30164 pjordi 32102 qtophaus 33826 poimirlem1 37615 poimirlem2 37616 poimirlem3 37617 poimirlem4 37618 poimirlem5 37619 poimirlem6 37620 poimirlem7 37621 poimirlem9 37623 poimirlem10 37624 poimirlem11 37625 poimirlem12 37626 poimirlem14 37628 poimirlem16 37630 poimirlem17 37631 poimirlem19 37633 poimirlem20 37634 poimirlem22 37636 poimirlem23 37637 poimirlem24 37638 poimirlem25 37639 poimirlem29 37643 poimirlem31 37645 ovoliunnfl 37656 voliunnfl 37658 volsupnfl 37659 ismtybndlem 37800 riccrng1 42509 ricdrng1 42516 kelac1 43052 gicabl 43088 imasubc 49140 |
| Copyright terms: Public domain | W3C validator |