| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > foima | Structured version Visualization version GIF version | ||
| Description: The image of the domain of an onto function. (Contributed by NM, 29-Nov-2002.) |
| Ref | Expression |
|---|---|
| foima | ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹 “ 𝐴) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imadmrn 6026 | . 2 ⊢ (𝐹 “ dom 𝐹) = ran 𝐹 | |
| 2 | fof 6743 | . . . 4 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 3 | 2 | fdmd 6669 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → dom 𝐹 = 𝐴) |
| 4 | 3 | imaeq2d 6016 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹 “ dom 𝐹) = (𝐹 “ 𝐴)) |
| 5 | forn 6746 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) | |
| 6 | 1, 4, 5 | 3eqtr3a 2792 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹 “ 𝐴) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 dom cdm 5621 ran crn 5622 “ cima 5624 –onto→wfo 6487 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-xp 5627 df-cnv 5629 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-fn 6492 df-f 6493 df-fo 6495 |
| This theorem is referenced by: foimacnv 6788 fodomfi 9207 domunfican 9217 fiint 9222 fodomfiOLD 9225 cantnflt2 9574 cantnfp1lem3 9581 enfin1ai 10286 symgfixelsi 19355 dprdf1o 19954 lmimlbs 21782 cncmp 23327 cmpfi 23343 cnconn 23357 qtopval2 23631 elfm3 23885 rnelfm 23888 fmfnfmlem2 23890 fmfnfm 23893 eupthvdres 30236 pjordi 32174 qtophaus 33921 poimirlem1 37734 poimirlem2 37735 poimirlem3 37736 poimirlem4 37737 poimirlem5 37738 poimirlem6 37739 poimirlem7 37740 poimirlem9 37742 poimirlem10 37743 poimirlem11 37744 poimirlem12 37745 poimirlem14 37747 poimirlem16 37749 poimirlem17 37750 poimirlem19 37752 poimirlem20 37753 poimirlem22 37755 poimirlem23 37756 poimirlem24 37757 poimirlem25 37758 poimirlem29 37762 poimirlem31 37764 ovoliunnfl 37775 voliunnfl 37777 volsupnfl 37778 ismtybndlem 37919 riccrng1 42691 ricdrng1 42698 kelac1 43220 gicabl 43256 imasubc 49312 |
| Copyright terms: Public domain | W3C validator |