![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > foima | Structured version Visualization version GIF version |
Description: The image of the domain of an onto function. (Contributed by NM, 29-Nov-2002.) |
Ref | Expression |
---|---|
foima | ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹 “ 𝐴) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imadmrn 6059 | . 2 ⊢ (𝐹 “ dom 𝐹) = ran 𝐹 | |
2 | fof 6795 | . . . 4 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
3 | 2 | fdmd 6718 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → dom 𝐹 = 𝐴) |
4 | 3 | imaeq2d 6049 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹 “ dom 𝐹) = (𝐹 “ 𝐴)) |
5 | forn 6798 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) | |
6 | 1, 4, 5 | 3eqtr3a 2788 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹 “ 𝐴) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 dom cdm 5666 ran crn 5667 “ cima 5669 –onto→wfo 6531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-br 5139 df-opab 5201 df-xp 5672 df-cnv 5674 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-fn 6536 df-f 6537 df-fo 6539 |
This theorem is referenced by: foimacnv 6840 domunfican 9315 fiint 9319 fodomfi 9320 cantnflt2 9663 cantnfp1lem3 9670 enfin1ai 10374 symgfixelsi 19344 dprdf1o 19943 lmimlbs 21698 cncmp 23217 cmpfi 23233 cnconn 23247 qtopval2 23521 elfm3 23775 rnelfm 23778 fmfnfmlem2 23780 fmfnfm 23783 eupthvdres 29923 pjordi 31861 qtophaus 33271 poimirlem1 36945 poimirlem2 36946 poimirlem3 36947 poimirlem4 36948 poimirlem5 36949 poimirlem6 36950 poimirlem7 36951 poimirlem9 36953 poimirlem10 36954 poimirlem11 36955 poimirlem12 36956 poimirlem14 36958 poimirlem16 36960 poimirlem17 36961 poimirlem19 36963 poimirlem20 36964 poimirlem22 36966 poimirlem23 36967 poimirlem24 36968 poimirlem25 36969 poimirlem29 36973 poimirlem31 36975 ovoliunnfl 36986 voliunnfl 36988 volsupnfl 36989 ismtybndlem 37130 riccrng1 41553 ricdrng1 41559 kelac1 42260 gicabl 42296 |
Copyright terms: Public domain | W3C validator |