MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  foima Structured version   Visualization version   GIF version

Theorem foima 6677
Description: The image of the domain of an onto function. (Contributed by NM, 29-Nov-2002.)
Assertion
Ref Expression
foima (𝐹:𝐴onto𝐵 → (𝐹𝐴) = 𝐵)

Proof of Theorem foima
StepHypRef Expression
1 imadmrn 5968 . 2 (𝐹 “ dom 𝐹) = ran 𝐹
2 fof 6672 . . . 4 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
32fdmd 6595 . . 3 (𝐹:𝐴onto𝐵 → dom 𝐹 = 𝐴)
43imaeq2d 5958 . 2 (𝐹:𝐴onto𝐵 → (𝐹 “ dom 𝐹) = (𝐹𝐴))
5 forn 6675 . 2 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
61, 4, 53eqtr3a 2803 1 (𝐹:𝐴onto𝐵 → (𝐹𝐴) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  dom cdm 5580  ran crn 5581  cima 5583  ontowfo 6416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-fn 6421  df-f 6422  df-fo 6424
This theorem is referenced by:  foimacnv  6717  domunfican  9017  fiint  9021  fodomfi  9022  cantnflt2  9361  cantnfp1lem3  9368  enfin1ai  10071  symgfixelsi  18958  dprdf1o  19550  lmimlbs  20953  cncmp  22451  cmpfi  22467  cnconn  22481  qtopval2  22755  elfm3  23009  rnelfm  23012  fmfnfmlem2  23014  fmfnfm  23017  eupthvdres  28500  pjordi  30436  qtophaus  31688  poimirlem1  35705  poimirlem2  35706  poimirlem3  35707  poimirlem4  35708  poimirlem5  35709  poimirlem6  35710  poimirlem7  35711  poimirlem9  35713  poimirlem10  35714  poimirlem11  35715  poimirlem12  35716  poimirlem14  35718  poimirlem16  35720  poimirlem17  35721  poimirlem19  35723  poimirlem20  35724  poimirlem22  35726  poimirlem23  35727  poimirlem24  35728  poimirlem25  35729  poimirlem29  35733  poimirlem31  35735  ovoliunnfl  35746  voliunnfl  35748  volsupnfl  35749  ismtybndlem  35891  kelac1  40804  gicabl  40840
  Copyright terms: Public domain W3C validator