![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > foima | Structured version Visualization version GIF version |
Description: The image of the domain of an onto function. (Contributed by NM, 29-Nov-2002.) |
Ref | Expression |
---|---|
foima | ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹 “ 𝐴) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imadmrn 6099 | . 2 ⊢ (𝐹 “ dom 𝐹) = ran 𝐹 | |
2 | fof 6834 | . . . 4 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
3 | 2 | fdmd 6757 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → dom 𝐹 = 𝐴) |
4 | 3 | imaeq2d 6089 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹 “ dom 𝐹) = (𝐹 “ 𝐴)) |
5 | forn 6837 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) | |
6 | 1, 4, 5 | 3eqtr3a 2804 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹 “ 𝐴) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 dom cdm 5700 ran crn 5701 “ cima 5703 –onto→wfo 6571 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-fn 6576 df-f 6577 df-fo 6579 |
This theorem is referenced by: foimacnv 6879 fodomfi 9378 domunfican 9389 fiint 9394 fiintOLD 9395 fodomfiOLD 9398 cantnflt2 9742 cantnfp1lem3 9749 enfin1ai 10453 symgfixelsi 19477 dprdf1o 20076 lmimlbs 21879 cncmp 23421 cmpfi 23437 cnconn 23451 qtopval2 23725 elfm3 23979 rnelfm 23982 fmfnfmlem2 23984 fmfnfm 23987 eupthvdres 30267 pjordi 32205 qtophaus 33782 poimirlem1 37581 poimirlem2 37582 poimirlem3 37583 poimirlem4 37584 poimirlem5 37585 poimirlem6 37586 poimirlem7 37587 poimirlem9 37589 poimirlem10 37590 poimirlem11 37591 poimirlem12 37592 poimirlem14 37594 poimirlem16 37596 poimirlem17 37597 poimirlem19 37599 poimirlem20 37600 poimirlem22 37602 poimirlem23 37603 poimirlem24 37604 poimirlem25 37605 poimirlem29 37609 poimirlem31 37611 ovoliunnfl 37622 voliunnfl 37624 volsupnfl 37625 ismtybndlem 37766 riccrng1 42476 ricdrng1 42483 kelac1 43020 gicabl 43056 |
Copyright terms: Public domain | W3C validator |