Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > foima | Structured version Visualization version GIF version |
Description: The image of the domain of an onto function. (Contributed by NM, 29-Nov-2002.) |
Ref | Expression |
---|---|
foima | ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹 “ 𝐴) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imadmrn 5968 | . 2 ⊢ (𝐹 “ dom 𝐹) = ran 𝐹 | |
2 | fof 6672 | . . . 4 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
3 | 2 | fdmd 6595 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → dom 𝐹 = 𝐴) |
4 | 3 | imaeq2d 5958 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹 “ dom 𝐹) = (𝐹 “ 𝐴)) |
5 | forn 6675 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) | |
6 | 1, 4, 5 | 3eqtr3a 2803 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹 “ 𝐴) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 dom cdm 5580 ran crn 5581 “ cima 5583 –onto→wfo 6416 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-fn 6421 df-f 6422 df-fo 6424 |
This theorem is referenced by: foimacnv 6717 domunfican 9017 fiint 9021 fodomfi 9022 cantnflt2 9361 cantnfp1lem3 9368 enfin1ai 10071 symgfixelsi 18958 dprdf1o 19550 lmimlbs 20953 cncmp 22451 cmpfi 22467 cnconn 22481 qtopval2 22755 elfm3 23009 rnelfm 23012 fmfnfmlem2 23014 fmfnfm 23017 eupthvdres 28500 pjordi 30436 qtophaus 31688 poimirlem1 35705 poimirlem2 35706 poimirlem3 35707 poimirlem4 35708 poimirlem5 35709 poimirlem6 35710 poimirlem7 35711 poimirlem9 35713 poimirlem10 35714 poimirlem11 35715 poimirlem12 35716 poimirlem14 35718 poimirlem16 35720 poimirlem17 35721 poimirlem19 35723 poimirlem20 35724 poimirlem22 35726 poimirlem23 35727 poimirlem24 35728 poimirlem25 35729 poimirlem29 35733 poimirlem31 35735 ovoliunnfl 35746 voliunnfl 35748 volsupnfl 35749 ismtybndlem 35891 kelac1 40804 gicabl 40840 |
Copyright terms: Public domain | W3C validator |