MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  foima Structured version   Visualization version   GIF version

Theorem foima 6745
Description: The image of the domain of an onto function. (Contributed by NM, 29-Nov-2002.)
Assertion
Ref Expression
foima (𝐹:𝐴onto𝐵 → (𝐹𝐴) = 𝐵)

Proof of Theorem foima
StepHypRef Expression
1 imadmrn 6025 . 2 (𝐹 “ dom 𝐹) = ran 𝐹
2 fof 6740 . . . 4 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
32fdmd 6666 . . 3 (𝐹:𝐴onto𝐵 → dom 𝐹 = 𝐴)
43imaeq2d 6015 . 2 (𝐹:𝐴onto𝐵 → (𝐹 “ dom 𝐹) = (𝐹𝐴))
5 forn 6743 . 2 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
61, 4, 53eqtr3a 2788 1 (𝐹:𝐴onto𝐵 → (𝐹𝐴) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  dom cdm 5623  ran crn 5624  cima 5626  ontowfo 6484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-opab 5158  df-xp 5629  df-cnv 5631  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-fn 6489  df-f 6490  df-fo 6492
This theorem is referenced by:  foimacnv  6785  fodomfi  9219  domunfican  9230  fiint  9235  fiintOLD  9236  fodomfiOLD  9239  cantnflt2  9588  cantnfp1lem3  9595  enfin1ai  10297  symgfixelsi  19332  dprdf1o  19931  lmimlbs  21761  cncmp  23295  cmpfi  23311  cnconn  23325  qtopval2  23599  elfm3  23853  rnelfm  23856  fmfnfmlem2  23858  fmfnfm  23861  eupthvdres  30197  pjordi  32135  qtophaus  33805  poimirlem1  37603  poimirlem2  37604  poimirlem3  37605  poimirlem4  37606  poimirlem5  37607  poimirlem6  37608  poimirlem7  37609  poimirlem9  37611  poimirlem10  37612  poimirlem11  37613  poimirlem12  37614  poimirlem14  37616  poimirlem16  37618  poimirlem17  37619  poimirlem19  37621  poimirlem20  37622  poimirlem22  37624  poimirlem23  37625  poimirlem24  37626  poimirlem25  37627  poimirlem29  37631  poimirlem31  37633  ovoliunnfl  37644  voliunnfl  37646  volsupnfl  37647  ismtybndlem  37788  riccrng1  42497  ricdrng1  42504  kelac1  43039  gicabl  43075  imasubc  49140
  Copyright terms: Public domain W3C validator