| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > foima | Structured version Visualization version GIF version | ||
| Description: The image of the domain of an onto function. (Contributed by NM, 29-Nov-2002.) |
| Ref | Expression |
|---|---|
| foima | ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹 “ 𝐴) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imadmrn 6055 | . 2 ⊢ (𝐹 “ dom 𝐹) = ran 𝐹 | |
| 2 | fof 6787 | . . . 4 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 3 | 2 | fdmd 6713 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → dom 𝐹 = 𝐴) |
| 4 | 3 | imaeq2d 6045 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹 “ dom 𝐹) = (𝐹 “ 𝐴)) |
| 5 | forn 6790 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) | |
| 6 | 1, 4, 5 | 3eqtr3a 2793 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹 “ 𝐴) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 dom cdm 5652 ran crn 5653 “ cima 5655 –onto→wfo 6526 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5264 ax-nul 5274 ax-pr 5400 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-br 5118 df-opab 5180 df-xp 5658 df-cnv 5660 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-fn 6531 df-f 6532 df-fo 6534 |
| This theorem is referenced by: foimacnv 6832 fodomfi 9317 domunfican 9328 fiint 9333 fiintOLD 9334 fodomfiOLD 9337 cantnflt2 9680 cantnfp1lem3 9687 enfin1ai 10391 symgfixelsi 19403 dprdf1o 20002 lmimlbs 21783 cncmp 23317 cmpfi 23333 cnconn 23347 qtopval2 23621 elfm3 23875 rnelfm 23878 fmfnfmlem2 23880 fmfnfm 23883 eupthvdres 30150 pjordi 32088 qtophaus 33796 poimirlem1 37574 poimirlem2 37575 poimirlem3 37576 poimirlem4 37577 poimirlem5 37578 poimirlem6 37579 poimirlem7 37580 poimirlem9 37582 poimirlem10 37583 poimirlem11 37584 poimirlem12 37585 poimirlem14 37587 poimirlem16 37589 poimirlem17 37590 poimirlem19 37592 poimirlem20 37593 poimirlem22 37595 poimirlem23 37596 poimirlem24 37597 poimirlem25 37598 poimirlem29 37602 poimirlem31 37604 ovoliunnfl 37615 voliunnfl 37617 volsupnfl 37618 ismtybndlem 37759 riccrng1 42476 ricdrng1 42483 kelac1 43019 gicabl 43055 imasubc 48961 |
| Copyright terms: Public domain | W3C validator |