MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  foconst Structured version   Visualization version   GIF version

Theorem foconst 6379
Description: A nonzero constant function is onto. (Contributed by NM, 12-Jan-2007.)
Assertion
Ref Expression
foconst ((𝐹:𝐴⟶{𝐵} ∧ 𝐹 ≠ ∅) → 𝐹:𝐴onto→{𝐵})

Proof of Theorem foconst
StepHypRef Expression
1 frel 6296 . . . . 5 (𝐹:𝐴⟶{𝐵} → Rel 𝐹)
2 relrn0 5629 . . . . . 6 (Rel 𝐹 → (𝐹 = ∅ ↔ ran 𝐹 = ∅))
32necon3abid 3005 . . . . 5 (Rel 𝐹 → (𝐹 ≠ ∅ ↔ ¬ ran 𝐹 = ∅))
41, 3syl 17 . . . 4 (𝐹:𝐴⟶{𝐵} → (𝐹 ≠ ∅ ↔ ¬ ran 𝐹 = ∅))
5 frn 6297 . . . . . 6 (𝐹:𝐴⟶{𝐵} → ran 𝐹 ⊆ {𝐵})
6 sssn 4588 . . . . . 6 (ran 𝐹 ⊆ {𝐵} ↔ (ran 𝐹 = ∅ ∨ ran 𝐹 = {𝐵}))
75, 6sylib 210 . . . . 5 (𝐹:𝐴⟶{𝐵} → (ran 𝐹 = ∅ ∨ ran 𝐹 = {𝐵}))
87ord 853 . . . 4 (𝐹:𝐴⟶{𝐵} → (¬ ran 𝐹 = ∅ → ran 𝐹 = {𝐵}))
94, 8sylbid 232 . . 3 (𝐹:𝐴⟶{𝐵} → (𝐹 ≠ ∅ → ran 𝐹 = {𝐵}))
109imdistani 564 . 2 ((𝐹:𝐴⟶{𝐵} ∧ 𝐹 ≠ ∅) → (𝐹:𝐴⟶{𝐵} ∧ ran 𝐹 = {𝐵}))
11 dffo2 6370 . 2 (𝐹:𝐴onto→{𝐵} ↔ (𝐹:𝐴⟶{𝐵} ∧ ran 𝐹 = {𝐵}))
1210, 11sylibr 226 1 ((𝐹:𝐴⟶{𝐵} ∧ 𝐹 ≠ ∅) → 𝐹:𝐴onto→{𝐵})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  wo 836   = wceq 1601  wne 2969  wss 3792  c0 4141  {csn 4398  ran crn 5356  Rel wrel 5360  wf 6131  ontowfo 6133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pr 5138
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-rab 3099  df-v 3400  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-br 4887  df-opab 4949  df-xp 5361  df-rel 5362  df-cnv 5363  df-dm 5365  df-rn 5366  df-fun 6137  df-fn 6138  df-f 6139  df-fo 6141
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator