![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > foconst | Structured version Visualization version GIF version |
Description: A nonzero constant function is onto. (Contributed by NM, 12-Jan-2007.) |
Ref | Expression |
---|---|
foconst | ⊢ ((𝐹:𝐴⟶{𝐵} ∧ 𝐹 ≠ ∅) → 𝐹:𝐴–onto→{𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frel 6715 | . . . . 5 ⊢ (𝐹:𝐴⟶{𝐵} → Rel 𝐹) | |
2 | relrn0 5961 | . . . . . 6 ⊢ (Rel 𝐹 → (𝐹 = ∅ ↔ ran 𝐹 = ∅)) | |
3 | 2 | necon3abid 2971 | . . . . 5 ⊢ (Rel 𝐹 → (𝐹 ≠ ∅ ↔ ¬ ran 𝐹 = ∅)) |
4 | 1, 3 | syl 17 | . . . 4 ⊢ (𝐹:𝐴⟶{𝐵} → (𝐹 ≠ ∅ ↔ ¬ ran 𝐹 = ∅)) |
5 | frn 6717 | . . . . . 6 ⊢ (𝐹:𝐴⟶{𝐵} → ran 𝐹 ⊆ {𝐵}) | |
6 | sssn 4824 | . . . . . 6 ⊢ (ran 𝐹 ⊆ {𝐵} ↔ (ran 𝐹 = ∅ ∨ ran 𝐹 = {𝐵})) | |
7 | 5, 6 | sylib 217 | . . . . 5 ⊢ (𝐹:𝐴⟶{𝐵} → (ran 𝐹 = ∅ ∨ ran 𝐹 = {𝐵})) |
8 | 7 | ord 861 | . . . 4 ⊢ (𝐹:𝐴⟶{𝐵} → (¬ ran 𝐹 = ∅ → ran 𝐹 = {𝐵})) |
9 | 4, 8 | sylbid 239 | . . 3 ⊢ (𝐹:𝐴⟶{𝐵} → (𝐹 ≠ ∅ → ran 𝐹 = {𝐵})) |
10 | 9 | imdistani 568 | . 2 ⊢ ((𝐹:𝐴⟶{𝐵} ∧ 𝐹 ≠ ∅) → (𝐹:𝐴⟶{𝐵} ∧ ran 𝐹 = {𝐵})) |
11 | dffo2 6802 | . 2 ⊢ (𝐹:𝐴–onto→{𝐵} ↔ (𝐹:𝐴⟶{𝐵} ∧ ran 𝐹 = {𝐵})) | |
12 | 10, 11 | sylibr 233 | 1 ⊢ ((𝐹:𝐴⟶{𝐵} ∧ 𝐹 ≠ ∅) → 𝐹:𝐴–onto→{𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 844 = wceq 1533 ≠ wne 2934 ⊆ wss 3943 ∅c0 4317 {csn 4623 ran crn 5670 Rel wrel 5674 ⟶wf 6532 –onto→wfo 6534 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ne 2935 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-br 5142 df-opab 5204 df-xp 5675 df-rel 5676 df-cnv 5677 df-dm 5679 df-rn 5680 df-fun 6538 df-fn 6539 df-f 6540 df-fo 6542 |
This theorem is referenced by: dif1enlem 9155 dif1enlemOLD 9156 fullthinc 47922 |
Copyright terms: Public domain | W3C validator |