MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  foconst Structured version   Visualization version   GIF version

Theorem foconst 6836
Description: A nonzero constant function is onto. (Contributed by NM, 12-Jan-2007.)
Assertion
Ref Expression
foconst ((𝐹:𝐴⟶{𝐵} ∧ 𝐹 ≠ ∅) → 𝐹:𝐴onto→{𝐵})

Proof of Theorem foconst
StepHypRef Expression
1 frel 6742 . . . . 5 (𝐹:𝐴⟶{𝐵} → Rel 𝐹)
2 relrn0 5986 . . . . . 6 (Rel 𝐹 → (𝐹 = ∅ ↔ ran 𝐹 = ∅))
32necon3abid 2975 . . . . 5 (Rel 𝐹 → (𝐹 ≠ ∅ ↔ ¬ ran 𝐹 = ∅))
41, 3syl 17 . . . 4 (𝐹:𝐴⟶{𝐵} → (𝐹 ≠ ∅ ↔ ¬ ran 𝐹 = ∅))
5 frn 6744 . . . . . 6 (𝐹:𝐴⟶{𝐵} → ran 𝐹 ⊆ {𝐵})
6 sssn 4831 . . . . . 6 (ran 𝐹 ⊆ {𝐵} ↔ (ran 𝐹 = ∅ ∨ ran 𝐹 = {𝐵}))
75, 6sylib 218 . . . . 5 (𝐹:𝐴⟶{𝐵} → (ran 𝐹 = ∅ ∨ ran 𝐹 = {𝐵}))
87ord 864 . . . 4 (𝐹:𝐴⟶{𝐵} → (¬ ran 𝐹 = ∅ → ran 𝐹 = {𝐵}))
94, 8sylbid 240 . . 3 (𝐹:𝐴⟶{𝐵} → (𝐹 ≠ ∅ → ran 𝐹 = {𝐵}))
109imdistani 568 . 2 ((𝐹:𝐴⟶{𝐵} ∧ 𝐹 ≠ ∅) → (𝐹:𝐴⟶{𝐵} ∧ ran 𝐹 = {𝐵}))
11 dffo2 6825 . 2 (𝐹:𝐴onto→{𝐵} ↔ (𝐹:𝐴⟶{𝐵} ∧ ran 𝐹 = {𝐵}))
1210, 11sylibr 234 1 ((𝐹:𝐴⟶{𝐵} ∧ 𝐹 ≠ ∅) → 𝐹:𝐴onto→{𝐵})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1537  wne 2938  wss 3963  c0 4339  {csn 4631  ran crn 5690  Rel wrel 5694  wf 6559  ontowfo 6561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-xp 5695  df-rel 5696  df-cnv 5697  df-dm 5699  df-rn 5700  df-fun 6565  df-fn 6566  df-f 6567  df-fo 6569
This theorem is referenced by:  dif1enlem  9195  dif1enlemOLD  9196  fullthinc  48846
  Copyright terms: Public domain W3C validator