| Step | Hyp | Ref
| Expression |
| 1 | | elpwi 4607 |
. . . . . 6
⊢ (𝐵 ∈ 𝒫 On →
𝐵 ⊆
On) |
| 2 | 1 | adantr 480 |
. . . . 5
⊢ ((𝐵 ∈ 𝒫 On ∧ dom
𝐹 ∈ 𝐶) → 𝐵 ⊆ On) |
| 3 | 2 | ralimi 3083 |
. . . 4
⊢
(∀𝑎 ∈
𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶) → ∀𝑎 ∈ 𝐴 𝐵 ⊆ On) |
| 4 | | iunss 5045 |
. . . 4
⊢ (∪ 𝑎 ∈ 𝐴 𝐵 ⊆ On ↔ ∀𝑎 ∈ 𝐴 𝐵 ⊆ On) |
| 5 | 3, 4 | sylibr 234 |
. . 3
⊢
(∀𝑎 ∈
𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶) → ∪
𝑎 ∈ 𝐴 𝐵 ⊆ On) |
| 6 | 5 | 3ad2ant3 1136 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ On ∧ ∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶)) → ∪ 𝑎 ∈ 𝐴 𝐵 ⊆ On) |
| 7 | | xpexg 7770 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ On) → (𝐴 × 𝐶) ∈ V) |
| 8 | 7 | 3adant3 1133 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ On ∧ ∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶)) → (𝐴 × 𝐶) ∈ V) |
| 9 | | nfv 1914 |
. . . . . . . . 9
⊢
Ⅎ𝑎 𝐶 ∈ On |
| 10 | | nfra1 3284 |
. . . . . . . . 9
⊢
Ⅎ𝑎∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶) |
| 11 | 9, 10 | nfan 1899 |
. . . . . . . 8
⊢
Ⅎ𝑎(𝐶 ∈ On ∧ ∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶)) |
| 12 | | rsp 3247 |
. . . . . . . . 9
⊢
(∀𝑎 ∈
𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶) → (𝑎 ∈ 𝐴 → (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶))) |
| 13 | | onelss 6426 |
. . . . . . . . . . . . . 14
⊢ (𝐶 ∈ On → (dom 𝐹 ∈ 𝐶 → dom 𝐹 ⊆ 𝐶)) |
| 14 | 13 | imp 406 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ On ∧ dom 𝐹 ∈ 𝐶) → dom 𝐹 ⊆ 𝐶) |
| 15 | 14 | adantrl 716 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ On ∧ (𝐵 ∈ 𝒫 On ∧ dom
𝐹 ∈ 𝐶)) → dom 𝐹 ⊆ 𝐶) |
| 16 | 15 | 3adant3 1133 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ On ∧ (𝐵 ∈ 𝒫 On ∧ dom
𝐹 ∈ 𝐶) ∧ 𝑏 ∈ 𝐵) → dom 𝐹 ⊆ 𝐶) |
| 17 | | hsmexlem.f |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝐹 = OrdIso( E , 𝐵) |
| 18 | 17 | oismo 9580 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐵 ⊆ On → (Smo 𝐹 ∧ ran 𝐹 = 𝐵)) |
| 19 | 1, 18 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐵 ∈ 𝒫 On → (Smo
𝐹 ∧ ran 𝐹 = 𝐵)) |
| 20 | 19 | ad2antrl 728 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐶 ∈ On ∧ (𝐵 ∈ 𝒫 On ∧ dom
𝐹 ∈ 𝐶)) → (Smo 𝐹 ∧ ran 𝐹 = 𝐵)) |
| 21 | 20 | simprd 495 |
. . . . . . . . . . . . . . 15
⊢ ((𝐶 ∈ On ∧ (𝐵 ∈ 𝒫 On ∧ dom
𝐹 ∈ 𝐶)) → ran 𝐹 = 𝐵) |
| 22 | 17 | oif 9570 |
. . . . . . . . . . . . . . 15
⊢ 𝐹:dom 𝐹⟶𝐵 |
| 23 | 21, 22 | jctil 519 |
. . . . . . . . . . . . . 14
⊢ ((𝐶 ∈ On ∧ (𝐵 ∈ 𝒫 On ∧ dom
𝐹 ∈ 𝐶)) → (𝐹:dom 𝐹⟶𝐵 ∧ ran 𝐹 = 𝐵)) |
| 24 | | dffo2 6824 |
. . . . . . . . . . . . . 14
⊢ (𝐹:dom 𝐹–onto→𝐵 ↔ (𝐹:dom 𝐹⟶𝐵 ∧ ran 𝐹 = 𝐵)) |
| 25 | 23, 24 | sylibr 234 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ On ∧ (𝐵 ∈ 𝒫 On ∧ dom
𝐹 ∈ 𝐶)) → 𝐹:dom 𝐹–onto→𝐵) |
| 26 | | dffo3 7122 |
. . . . . . . . . . . . . 14
⊢ (𝐹:dom 𝐹–onto→𝐵 ↔ (𝐹:dom 𝐹⟶𝐵 ∧ ∀𝑏 ∈ 𝐵 ∃𝑒 ∈ dom 𝐹 𝑏 = (𝐹‘𝑒))) |
| 27 | 26 | simprbi 496 |
. . . . . . . . . . . . 13
⊢ (𝐹:dom 𝐹–onto→𝐵 → ∀𝑏 ∈ 𝐵 ∃𝑒 ∈ dom 𝐹 𝑏 = (𝐹‘𝑒)) |
| 28 | | rsp 3247 |
. . . . . . . . . . . . 13
⊢
(∀𝑏 ∈
𝐵 ∃𝑒 ∈ dom 𝐹 𝑏 = (𝐹‘𝑒) → (𝑏 ∈ 𝐵 → ∃𝑒 ∈ dom 𝐹 𝑏 = (𝐹‘𝑒))) |
| 29 | 25, 27, 28 | 3syl 18 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ On ∧ (𝐵 ∈ 𝒫 On ∧ dom
𝐹 ∈ 𝐶)) → (𝑏 ∈ 𝐵 → ∃𝑒 ∈ dom 𝐹 𝑏 = (𝐹‘𝑒))) |
| 30 | 29 | 3impia 1118 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ On ∧ (𝐵 ∈ 𝒫 On ∧ dom
𝐹 ∈ 𝐶) ∧ 𝑏 ∈ 𝐵) → ∃𝑒 ∈ dom 𝐹 𝑏 = (𝐹‘𝑒)) |
| 31 | | ssrexv 4053 |
. . . . . . . . . . 11
⊢ (dom
𝐹 ⊆ 𝐶 → (∃𝑒 ∈ dom 𝐹 𝑏 = (𝐹‘𝑒) → ∃𝑒 ∈ 𝐶 𝑏 = (𝐹‘𝑒))) |
| 32 | 16, 30, 31 | sylc 65 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ On ∧ (𝐵 ∈ 𝒫 On ∧ dom
𝐹 ∈ 𝐶) ∧ 𝑏 ∈ 𝐵) → ∃𝑒 ∈ 𝐶 𝑏 = (𝐹‘𝑒)) |
| 33 | 32 | 3exp 1120 |
. . . . . . . . 9
⊢ (𝐶 ∈ On → ((𝐵 ∈ 𝒫 On ∧ dom
𝐹 ∈ 𝐶) → (𝑏 ∈ 𝐵 → ∃𝑒 ∈ 𝐶 𝑏 = (𝐹‘𝑒)))) |
| 34 | 12, 33 | sylan9r 508 |
. . . . . . . 8
⊢ ((𝐶 ∈ On ∧ ∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶)) → (𝑎 ∈ 𝐴 → (𝑏 ∈ 𝐵 → ∃𝑒 ∈ 𝐶 𝑏 = (𝐹‘𝑒)))) |
| 35 | 11, 34 | reximdai 3261 |
. . . . . . 7
⊢ ((𝐶 ∈ On ∧ ∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶)) → (∃𝑎 ∈ 𝐴 𝑏 ∈ 𝐵 → ∃𝑎 ∈ 𝐴 ∃𝑒 ∈ 𝐶 𝑏 = (𝐹‘𝑒))) |
| 36 | 35 | 3adant1 1131 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ On ∧ ∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶)) → (∃𝑎 ∈ 𝐴 𝑏 ∈ 𝐵 → ∃𝑎 ∈ 𝐴 ∃𝑒 ∈ 𝐶 𝑏 = (𝐹‘𝑒))) |
| 37 | | nfv 1914 |
. . . . . . 7
⊢
Ⅎ𝑑∃𝑒 ∈ 𝐶 𝑏 = (𝐹‘𝑒) |
| 38 | | nfcv 2905 |
. . . . . . . 8
⊢
Ⅎ𝑎𝐶 |
| 39 | | nfcv 2905 |
. . . . . . . . . . 11
⊢
Ⅎ𝑎
E |
| 40 | | nfcsb1v 3923 |
. . . . . . . . . . 11
⊢
Ⅎ𝑎⦋𝑑 / 𝑎⦌𝐵 |
| 41 | 39, 40 | nfoi 9554 |
. . . . . . . . . 10
⊢
Ⅎ𝑎OrdIso( E , ⦋𝑑 / 𝑎⦌𝐵) |
| 42 | | nfcv 2905 |
. . . . . . . . . 10
⊢
Ⅎ𝑎𝑒 |
| 43 | 41, 42 | nffv 6916 |
. . . . . . . . 9
⊢
Ⅎ𝑎(OrdIso( E , ⦋𝑑 / 𝑎⦌𝐵)‘𝑒) |
| 44 | 43 | nfeq2 2923 |
. . . . . . . 8
⊢
Ⅎ𝑎 𝑏 = (OrdIso( E ,
⦋𝑑 / 𝑎⦌𝐵)‘𝑒) |
| 45 | 38, 44 | nfrexw 3313 |
. . . . . . 7
⊢
Ⅎ𝑎∃𝑒 ∈ 𝐶 𝑏 = (OrdIso( E , ⦋𝑑 / 𝑎⦌𝐵)‘𝑒) |
| 46 | | csbeq1a 3913 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑑 → 𝐵 = ⦋𝑑 / 𝑎⦌𝐵) |
| 47 | | oieq2 9553 |
. . . . . . . . . . . 12
⊢ (𝐵 = ⦋𝑑 / 𝑎⦌𝐵 → OrdIso( E , 𝐵) = OrdIso( E , ⦋𝑑 / 𝑎⦌𝐵)) |
| 48 | 46, 47 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑑 → OrdIso( E , 𝐵) = OrdIso( E , ⦋𝑑 / 𝑎⦌𝐵)) |
| 49 | 17, 48 | eqtrid 2789 |
. . . . . . . . . 10
⊢ (𝑎 = 𝑑 → 𝐹 = OrdIso( E , ⦋𝑑 / 𝑎⦌𝐵)) |
| 50 | 49 | fveq1d 6908 |
. . . . . . . . 9
⊢ (𝑎 = 𝑑 → (𝐹‘𝑒) = (OrdIso( E , ⦋𝑑 / 𝑎⦌𝐵)‘𝑒)) |
| 51 | 50 | eqeq2d 2748 |
. . . . . . . 8
⊢ (𝑎 = 𝑑 → (𝑏 = (𝐹‘𝑒) ↔ 𝑏 = (OrdIso( E , ⦋𝑑 / 𝑎⦌𝐵)‘𝑒))) |
| 52 | 51 | rexbidv 3179 |
. . . . . . 7
⊢ (𝑎 = 𝑑 → (∃𝑒 ∈ 𝐶 𝑏 = (𝐹‘𝑒) ↔ ∃𝑒 ∈ 𝐶 𝑏 = (OrdIso( E , ⦋𝑑 / 𝑎⦌𝐵)‘𝑒))) |
| 53 | 37, 45, 52 | cbvrexw 3307 |
. . . . . 6
⊢
(∃𝑎 ∈
𝐴 ∃𝑒 ∈ 𝐶 𝑏 = (𝐹‘𝑒) ↔ ∃𝑑 ∈ 𝐴 ∃𝑒 ∈ 𝐶 𝑏 = (OrdIso( E , ⦋𝑑 / 𝑎⦌𝐵)‘𝑒)) |
| 54 | 36, 53 | imbitrdi 251 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ On ∧ ∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶)) → (∃𝑎 ∈ 𝐴 𝑏 ∈ 𝐵 → ∃𝑑 ∈ 𝐴 ∃𝑒 ∈ 𝐶 𝑏 = (OrdIso( E , ⦋𝑑 / 𝑎⦌𝐵)‘𝑒))) |
| 55 | | eliun 4995 |
. . . . 5
⊢ (𝑏 ∈ ∪ 𝑎 ∈ 𝐴 𝐵 ↔ ∃𝑎 ∈ 𝐴 𝑏 ∈ 𝐵) |
| 56 | | vex 3484 |
. . . . . . . . . . 11
⊢ 𝑑 ∈ V |
| 57 | | vex 3484 |
. . . . . . . . . . 11
⊢ 𝑒 ∈ V |
| 58 | 56, 57 | op1std 8024 |
. . . . . . . . . 10
⊢ (𝑐 = 〈𝑑, 𝑒〉 → (1st ‘𝑐) = 𝑑) |
| 59 | 58 | csbeq1d 3903 |
. . . . . . . . 9
⊢ (𝑐 = 〈𝑑, 𝑒〉 → ⦋(1st
‘𝑐) / 𝑎⦌𝐵 = ⦋𝑑 / 𝑎⦌𝐵) |
| 60 | | oieq2 9553 |
. . . . . . . . 9
⊢
(⦋(1st ‘𝑐) / 𝑎⦌𝐵 = ⦋𝑑 / 𝑎⦌𝐵 → OrdIso( E ,
⦋(1st ‘𝑐) / 𝑎⦌𝐵) = OrdIso( E , ⦋𝑑 / 𝑎⦌𝐵)) |
| 61 | 59, 60 | syl 17 |
. . . . . . . 8
⊢ (𝑐 = 〈𝑑, 𝑒〉 → OrdIso( E ,
⦋(1st ‘𝑐) / 𝑎⦌𝐵) = OrdIso( E , ⦋𝑑 / 𝑎⦌𝐵)) |
| 62 | 56, 57 | op2ndd 8025 |
. . . . . . . 8
⊢ (𝑐 = 〈𝑑, 𝑒〉 → (2nd ‘𝑐) = 𝑒) |
| 63 | 61, 62 | fveq12d 6913 |
. . . . . . 7
⊢ (𝑐 = 〈𝑑, 𝑒〉 → (OrdIso( E ,
⦋(1st ‘𝑐) / 𝑎⦌𝐵)‘(2nd ‘𝑐)) = (OrdIso( E ,
⦋𝑑 / 𝑎⦌𝐵)‘𝑒)) |
| 64 | 63 | eqeq2d 2748 |
. . . . . 6
⊢ (𝑐 = 〈𝑑, 𝑒〉 → (𝑏 = (OrdIso( E ,
⦋(1st ‘𝑐) / 𝑎⦌𝐵)‘(2nd ‘𝑐)) ↔ 𝑏 = (OrdIso( E , ⦋𝑑 / 𝑎⦌𝐵)‘𝑒))) |
| 65 | 64 | rexxp 5853 |
. . . . 5
⊢
(∃𝑐 ∈
(𝐴 × 𝐶)𝑏 = (OrdIso( E ,
⦋(1st ‘𝑐) / 𝑎⦌𝐵)‘(2nd ‘𝑐)) ↔ ∃𝑑 ∈ 𝐴 ∃𝑒 ∈ 𝐶 𝑏 = (OrdIso( E , ⦋𝑑 / 𝑎⦌𝐵)‘𝑒)) |
| 66 | 54, 55, 65 | 3imtr4g 296 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ On ∧ ∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶)) → (𝑏 ∈ ∪
𝑎 ∈ 𝐴 𝐵 → ∃𝑐 ∈ (𝐴 × 𝐶)𝑏 = (OrdIso( E ,
⦋(1st ‘𝑐) / 𝑎⦌𝐵)‘(2nd ‘𝑐)))) |
| 67 | 66 | imp 406 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ On ∧ ∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶)) ∧ 𝑏 ∈ ∪
𝑎 ∈ 𝐴 𝐵) → ∃𝑐 ∈ (𝐴 × 𝐶)𝑏 = (OrdIso( E ,
⦋(1st ‘𝑐) / 𝑎⦌𝐵)‘(2nd ‘𝑐))) |
| 68 | 8, 67 | wdomd 9621 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ On ∧ ∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶)) → ∪ 𝑎 ∈ 𝐴 𝐵 ≼* (𝐴 × 𝐶)) |
| 69 | | hsmexlem.g |
. . 3
⊢ 𝐺 = OrdIso( E , ∪ 𝑎 ∈ 𝐴 𝐵) |
| 70 | 69 | hsmexlem1 10466 |
. 2
⊢
((∪ 𝑎 ∈ 𝐴 𝐵 ⊆ On ∧ ∪ 𝑎 ∈ 𝐴 𝐵 ≼* (𝐴 × 𝐶)) → dom 𝐺 ∈ (har‘𝒫 (𝐴 × 𝐶))) |
| 71 | 6, 68, 70 | syl2anc 584 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ On ∧ ∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶)) → dom 𝐺 ∈ (har‘𝒫 (𝐴 × 𝐶))) |