MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hsmexlem2 Structured version   Visualization version   GIF version

Theorem hsmexlem2 10318
Description: Lemma for hsmex 10323. Bound the order type of a union of sets of ordinals, each of limited order type. Vaguely reminiscent of unictb 10466 but use of order types allows to canonically choose the sub-bijections, removing the choice requirement. (Contributed by Stefan O'Rear, 14-Feb-2015.) (Revised by Mario Carneiro, 26-Jun-2015.) (Revised by AV, 18-Sep-2021.)
Hypotheses
Ref Expression
hsmexlem.f 𝐹 = OrdIso( E , 𝐵)
hsmexlem.g 𝐺 = OrdIso( E , 𝑎𝐴 𝐵)
Assertion
Ref Expression
hsmexlem2 ((𝐴𝑉𝐶 ∈ On ∧ ∀𝑎𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹𝐶)) → dom 𝐺 ∈ (har‘𝒫 (𝐴 × 𝐶)))
Distinct variable groups:   𝐴,𝑎   𝐶,𝑎
Allowed substitution hints:   𝐵(𝑎)   𝐹(𝑎)   𝐺(𝑎)   𝑉(𝑎)

Proof of Theorem hsmexlem2
Dummy variables 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elpwi 4554 . . . . . 6 (𝐵 ∈ 𝒫 On → 𝐵 ⊆ On)
21adantr 480 . . . . 5 ((𝐵 ∈ 𝒫 On ∧ dom 𝐹𝐶) → 𝐵 ⊆ On)
32ralimi 3069 . . . 4 (∀𝑎𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹𝐶) → ∀𝑎𝐴 𝐵 ⊆ On)
4 iunss 4992 . . . 4 ( 𝑎𝐴 𝐵 ⊆ On ↔ ∀𝑎𝐴 𝐵 ⊆ On)
53, 4sylibr 234 . . 3 (∀𝑎𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹𝐶) → 𝑎𝐴 𝐵 ⊆ On)
653ad2ant3 1135 . 2 ((𝐴𝑉𝐶 ∈ On ∧ ∀𝑎𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹𝐶)) → 𝑎𝐴 𝐵 ⊆ On)
7 xpexg 7683 . . . 4 ((𝐴𝑉𝐶 ∈ On) → (𝐴 × 𝐶) ∈ V)
873adant3 1132 . . 3 ((𝐴𝑉𝐶 ∈ On ∧ ∀𝑎𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹𝐶)) → (𝐴 × 𝐶) ∈ V)
9 nfv 1915 . . . . . . . . 9 𝑎 𝐶 ∈ On
10 nfra1 3256 . . . . . . . . 9 𝑎𝑎𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹𝐶)
119, 10nfan 1900 . . . . . . . 8 𝑎(𝐶 ∈ On ∧ ∀𝑎𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹𝐶))
12 rsp 3220 . . . . . . . . 9 (∀𝑎𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹𝐶) → (𝑎𝐴 → (𝐵 ∈ 𝒫 On ∧ dom 𝐹𝐶)))
13 onelss 6348 . . . . . . . . . . . . . 14 (𝐶 ∈ On → (dom 𝐹𝐶 → dom 𝐹𝐶))
1413imp 406 . . . . . . . . . . . . 13 ((𝐶 ∈ On ∧ dom 𝐹𝐶) → dom 𝐹𝐶)
1514adantrl 716 . . . . . . . . . . . 12 ((𝐶 ∈ On ∧ (𝐵 ∈ 𝒫 On ∧ dom 𝐹𝐶)) → dom 𝐹𝐶)
16153adant3 1132 . . . . . . . . . . 11 ((𝐶 ∈ On ∧ (𝐵 ∈ 𝒫 On ∧ dom 𝐹𝐶) ∧ 𝑏𝐵) → dom 𝐹𝐶)
17 hsmexlem.f . . . . . . . . . . . . . . . . . . 19 𝐹 = OrdIso( E , 𝐵)
1817oismo 9426 . . . . . . . . . . . . . . . . . 18 (𝐵 ⊆ On → (Smo 𝐹 ∧ ran 𝐹 = 𝐵))
191, 18syl 17 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ 𝒫 On → (Smo 𝐹 ∧ ran 𝐹 = 𝐵))
2019ad2antrl 728 . . . . . . . . . . . . . . . 16 ((𝐶 ∈ On ∧ (𝐵 ∈ 𝒫 On ∧ dom 𝐹𝐶)) → (Smo 𝐹 ∧ ran 𝐹 = 𝐵))
2120simprd 495 . . . . . . . . . . . . . . 15 ((𝐶 ∈ On ∧ (𝐵 ∈ 𝒫 On ∧ dom 𝐹𝐶)) → ran 𝐹 = 𝐵)
2217oif 9416 . . . . . . . . . . . . . . 15 𝐹:dom 𝐹𝐵
2321, 22jctil 519 . . . . . . . . . . . . . 14 ((𝐶 ∈ On ∧ (𝐵 ∈ 𝒫 On ∧ dom 𝐹𝐶)) → (𝐹:dom 𝐹𝐵 ∧ ran 𝐹 = 𝐵))
24 dffo2 6739 . . . . . . . . . . . . . 14 (𝐹:dom 𝐹onto𝐵 ↔ (𝐹:dom 𝐹𝐵 ∧ ran 𝐹 = 𝐵))
2523, 24sylibr 234 . . . . . . . . . . . . 13 ((𝐶 ∈ On ∧ (𝐵 ∈ 𝒫 On ∧ dom 𝐹𝐶)) → 𝐹:dom 𝐹onto𝐵)
26 dffo3 7035 . . . . . . . . . . . . . 14 (𝐹:dom 𝐹onto𝐵 ↔ (𝐹:dom 𝐹𝐵 ∧ ∀𝑏𝐵𝑒 ∈ dom 𝐹 𝑏 = (𝐹𝑒)))
2726simprbi 496 . . . . . . . . . . . . 13 (𝐹:dom 𝐹onto𝐵 → ∀𝑏𝐵𝑒 ∈ dom 𝐹 𝑏 = (𝐹𝑒))
28 rsp 3220 . . . . . . . . . . . . 13 (∀𝑏𝐵𝑒 ∈ dom 𝐹 𝑏 = (𝐹𝑒) → (𝑏𝐵 → ∃𝑒 ∈ dom 𝐹 𝑏 = (𝐹𝑒)))
2925, 27, 283syl 18 . . . . . . . . . . . 12 ((𝐶 ∈ On ∧ (𝐵 ∈ 𝒫 On ∧ dom 𝐹𝐶)) → (𝑏𝐵 → ∃𝑒 ∈ dom 𝐹 𝑏 = (𝐹𝑒)))
30293impia 1117 . . . . . . . . . . 11 ((𝐶 ∈ On ∧ (𝐵 ∈ 𝒫 On ∧ dom 𝐹𝐶) ∧ 𝑏𝐵) → ∃𝑒 ∈ dom 𝐹 𝑏 = (𝐹𝑒))
31 ssrexv 3999 . . . . . . . . . . 11 (dom 𝐹𝐶 → (∃𝑒 ∈ dom 𝐹 𝑏 = (𝐹𝑒) → ∃𝑒𝐶 𝑏 = (𝐹𝑒)))
3216, 30, 31sylc 65 . . . . . . . . . 10 ((𝐶 ∈ On ∧ (𝐵 ∈ 𝒫 On ∧ dom 𝐹𝐶) ∧ 𝑏𝐵) → ∃𝑒𝐶 𝑏 = (𝐹𝑒))
33323exp 1119 . . . . . . . . 9 (𝐶 ∈ On → ((𝐵 ∈ 𝒫 On ∧ dom 𝐹𝐶) → (𝑏𝐵 → ∃𝑒𝐶 𝑏 = (𝐹𝑒))))
3412, 33sylan9r 508 . . . . . . . 8 ((𝐶 ∈ On ∧ ∀𝑎𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹𝐶)) → (𝑎𝐴 → (𝑏𝐵 → ∃𝑒𝐶 𝑏 = (𝐹𝑒))))
3511, 34reximdai 3234 . . . . . . 7 ((𝐶 ∈ On ∧ ∀𝑎𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹𝐶)) → (∃𝑎𝐴 𝑏𝐵 → ∃𝑎𝐴𝑒𝐶 𝑏 = (𝐹𝑒)))
36353adant1 1130 . . . . . 6 ((𝐴𝑉𝐶 ∈ On ∧ ∀𝑎𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹𝐶)) → (∃𝑎𝐴 𝑏𝐵 → ∃𝑎𝐴𝑒𝐶 𝑏 = (𝐹𝑒)))
37 nfv 1915 . . . . . . 7 𝑑𝑒𝐶 𝑏 = (𝐹𝑒)
38 nfcv 2894 . . . . . . . 8 𝑎𝐶
39 nfcv 2894 . . . . . . . . . . 11 𝑎 E
40 nfcsb1v 3869 . . . . . . . . . . 11 𝑎𝑑 / 𝑎𝐵
4139, 40nfoi 9400 . . . . . . . . . 10 𝑎OrdIso( E , 𝑑 / 𝑎𝐵)
42 nfcv 2894 . . . . . . . . . 10 𝑎𝑒
4341, 42nffv 6832 . . . . . . . . 9 𝑎(OrdIso( E , 𝑑 / 𝑎𝐵)‘𝑒)
4443nfeq2 2912 . . . . . . . 8 𝑎 𝑏 = (OrdIso( E , 𝑑 / 𝑎𝐵)‘𝑒)
4538, 44nfrexw 3280 . . . . . . 7 𝑎𝑒𝐶 𝑏 = (OrdIso( E , 𝑑 / 𝑎𝐵)‘𝑒)
46 csbeq1a 3859 . . . . . . . . . . . 12 (𝑎 = 𝑑𝐵 = 𝑑 / 𝑎𝐵)
47 oieq2 9399 . . . . . . . . . . . 12 (𝐵 = 𝑑 / 𝑎𝐵 → OrdIso( E , 𝐵) = OrdIso( E , 𝑑 / 𝑎𝐵))
4846, 47syl 17 . . . . . . . . . . 11 (𝑎 = 𝑑 → OrdIso( E , 𝐵) = OrdIso( E , 𝑑 / 𝑎𝐵))
4917, 48eqtrid 2778 . . . . . . . . . 10 (𝑎 = 𝑑𝐹 = OrdIso( E , 𝑑 / 𝑎𝐵))
5049fveq1d 6824 . . . . . . . . 9 (𝑎 = 𝑑 → (𝐹𝑒) = (OrdIso( E , 𝑑 / 𝑎𝐵)‘𝑒))
5150eqeq2d 2742 . . . . . . . 8 (𝑎 = 𝑑 → (𝑏 = (𝐹𝑒) ↔ 𝑏 = (OrdIso( E , 𝑑 / 𝑎𝐵)‘𝑒)))
5251rexbidv 3156 . . . . . . 7 (𝑎 = 𝑑 → (∃𝑒𝐶 𝑏 = (𝐹𝑒) ↔ ∃𝑒𝐶 𝑏 = (OrdIso( E , 𝑑 / 𝑎𝐵)‘𝑒)))
5337, 45, 52cbvrexw 3275 . . . . . 6 (∃𝑎𝐴𝑒𝐶 𝑏 = (𝐹𝑒) ↔ ∃𝑑𝐴𝑒𝐶 𝑏 = (OrdIso( E , 𝑑 / 𝑎𝐵)‘𝑒))
5436, 53imbitrdi 251 . . . . 5 ((𝐴𝑉𝐶 ∈ On ∧ ∀𝑎𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹𝐶)) → (∃𝑎𝐴 𝑏𝐵 → ∃𝑑𝐴𝑒𝐶 𝑏 = (OrdIso( E , 𝑑 / 𝑎𝐵)‘𝑒)))
55 eliun 4943 . . . . 5 (𝑏 𝑎𝐴 𝐵 ↔ ∃𝑎𝐴 𝑏𝐵)
56 vex 3440 . . . . . . . . . . 11 𝑑 ∈ V
57 vex 3440 . . . . . . . . . . 11 𝑒 ∈ V
5856, 57op1std 7931 . . . . . . . . . 10 (𝑐 = ⟨𝑑, 𝑒⟩ → (1st𝑐) = 𝑑)
5958csbeq1d 3849 . . . . . . . . 9 (𝑐 = ⟨𝑑, 𝑒⟩ → (1st𝑐) / 𝑎𝐵 = 𝑑 / 𝑎𝐵)
60 oieq2 9399 . . . . . . . . 9 ((1st𝑐) / 𝑎𝐵 = 𝑑 / 𝑎𝐵 → OrdIso( E , (1st𝑐) / 𝑎𝐵) = OrdIso( E , 𝑑 / 𝑎𝐵))
6159, 60syl 17 . . . . . . . 8 (𝑐 = ⟨𝑑, 𝑒⟩ → OrdIso( E , (1st𝑐) / 𝑎𝐵) = OrdIso( E , 𝑑 / 𝑎𝐵))
6256, 57op2ndd 7932 . . . . . . . 8 (𝑐 = ⟨𝑑, 𝑒⟩ → (2nd𝑐) = 𝑒)
6361, 62fveq12d 6829 . . . . . . 7 (𝑐 = ⟨𝑑, 𝑒⟩ → (OrdIso( E , (1st𝑐) / 𝑎𝐵)‘(2nd𝑐)) = (OrdIso( E , 𝑑 / 𝑎𝐵)‘𝑒))
6463eqeq2d 2742 . . . . . 6 (𝑐 = ⟨𝑑, 𝑒⟩ → (𝑏 = (OrdIso( E , (1st𝑐) / 𝑎𝐵)‘(2nd𝑐)) ↔ 𝑏 = (OrdIso( E , 𝑑 / 𝑎𝐵)‘𝑒)))
6564rexxp 5781 . . . . 5 (∃𝑐 ∈ (𝐴 × 𝐶)𝑏 = (OrdIso( E , (1st𝑐) / 𝑎𝐵)‘(2nd𝑐)) ↔ ∃𝑑𝐴𝑒𝐶 𝑏 = (OrdIso( E , 𝑑 / 𝑎𝐵)‘𝑒))
6654, 55, 653imtr4g 296 . . . 4 ((𝐴𝑉𝐶 ∈ On ∧ ∀𝑎𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹𝐶)) → (𝑏 𝑎𝐴 𝐵 → ∃𝑐 ∈ (𝐴 × 𝐶)𝑏 = (OrdIso( E , (1st𝑐) / 𝑎𝐵)‘(2nd𝑐))))
6766imp 406 . . 3 (((𝐴𝑉𝐶 ∈ On ∧ ∀𝑎𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹𝐶)) ∧ 𝑏 𝑎𝐴 𝐵) → ∃𝑐 ∈ (𝐴 × 𝐶)𝑏 = (OrdIso( E , (1st𝑐) / 𝑎𝐵)‘(2nd𝑐)))
688, 67wdomd 9467 . 2 ((𝐴𝑉𝐶 ∈ On ∧ ∀𝑎𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹𝐶)) → 𝑎𝐴 𝐵* (𝐴 × 𝐶))
69 hsmexlem.g . . 3 𝐺 = OrdIso( E , 𝑎𝐴 𝐵)
7069hsmexlem1 10317 . 2 (( 𝑎𝐴 𝐵 ⊆ On ∧ 𝑎𝐴 𝐵* (𝐴 × 𝐶)) → dom 𝐺 ∈ (har‘𝒫 (𝐴 × 𝐶)))
716, 68, 70syl2anc 584 1 ((𝐴𝑉𝐶 ∈ On ∧ ∀𝑎𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹𝐶)) → dom 𝐺 ∈ (har‘𝒫 (𝐴 × 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wrex 3056  Vcvv 3436  csb 3845  wss 3897  𝒫 cpw 4547  cop 4579   ciun 4939   class class class wbr 5089   E cep 5513   × cxp 5612  dom cdm 5614  ran crn 5615  Oncon0 6306  wf 6477  ontowfo 6479  cfv 6481  1st c1st 7919  2nd c2nd 7920  Smo wsmo 8265  OrdIsocoi 9395  harchar 9442  * cwdom 9450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-smo 8266  df-recs 8291  df-en 8870  df-dom 8871  df-sdom 8872  df-oi 9396  df-har 9443  df-wdom 9451
This theorem is referenced by:  hsmexlem3  10319
  Copyright terms: Public domain W3C validator