Step | Hyp | Ref
| Expression |
1 | | elpwi 4543 |
. . . . . 6
⊢ (𝐵 ∈ 𝒫 On →
𝐵 ⊆
On) |
2 | 1 | adantr 481 |
. . . . 5
⊢ ((𝐵 ∈ 𝒫 On ∧ dom
𝐹 ∈ 𝐶) → 𝐵 ⊆ On) |
3 | 2 | ralimi 3088 |
. . . 4
⊢
(∀𝑎 ∈
𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶) → ∀𝑎 ∈ 𝐴 𝐵 ⊆ On) |
4 | | iunss 4976 |
. . . 4
⊢ (∪ 𝑎 ∈ 𝐴 𝐵 ⊆ On ↔ ∀𝑎 ∈ 𝐴 𝐵 ⊆ On) |
5 | 3, 4 | sylibr 233 |
. . 3
⊢
(∀𝑎 ∈
𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶) → ∪
𝑎 ∈ 𝐴 𝐵 ⊆ On) |
6 | 5 | 3ad2ant3 1134 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ On ∧ ∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶)) → ∪ 𝑎 ∈ 𝐴 𝐵 ⊆ On) |
7 | | xpexg 7609 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ On) → (𝐴 × 𝐶) ∈ V) |
8 | 7 | 3adant3 1131 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ On ∧ ∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶)) → (𝐴 × 𝐶) ∈ V) |
9 | | nfv 1918 |
. . . . . . . . 9
⊢
Ⅎ𝑎 𝐶 ∈ On |
10 | | nfra1 3145 |
. . . . . . . . 9
⊢
Ⅎ𝑎∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶) |
11 | 9, 10 | nfan 1903 |
. . . . . . . 8
⊢
Ⅎ𝑎(𝐶 ∈ On ∧ ∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶)) |
12 | | rsp 3132 |
. . . . . . . . 9
⊢
(∀𝑎 ∈
𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶) → (𝑎 ∈ 𝐴 → (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶))) |
13 | | onelss 6312 |
. . . . . . . . . . . . . 14
⊢ (𝐶 ∈ On → (dom 𝐹 ∈ 𝐶 → dom 𝐹 ⊆ 𝐶)) |
14 | 13 | imp 407 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ On ∧ dom 𝐹 ∈ 𝐶) → dom 𝐹 ⊆ 𝐶) |
15 | 14 | adantrl 713 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ On ∧ (𝐵 ∈ 𝒫 On ∧ dom
𝐹 ∈ 𝐶)) → dom 𝐹 ⊆ 𝐶) |
16 | 15 | 3adant3 1131 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ On ∧ (𝐵 ∈ 𝒫 On ∧ dom
𝐹 ∈ 𝐶) ∧ 𝑏 ∈ 𝐵) → dom 𝐹 ⊆ 𝐶) |
17 | | hsmexlem.f |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝐹 = OrdIso( E , 𝐵) |
18 | 17 | oismo 9308 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐵 ⊆ On → (Smo 𝐹 ∧ ran 𝐹 = 𝐵)) |
19 | 1, 18 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐵 ∈ 𝒫 On → (Smo
𝐹 ∧ ran 𝐹 = 𝐵)) |
20 | 19 | ad2antrl 725 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐶 ∈ On ∧ (𝐵 ∈ 𝒫 On ∧ dom
𝐹 ∈ 𝐶)) → (Smo 𝐹 ∧ ran 𝐹 = 𝐵)) |
21 | 20 | simprd 496 |
. . . . . . . . . . . . . . 15
⊢ ((𝐶 ∈ On ∧ (𝐵 ∈ 𝒫 On ∧ dom
𝐹 ∈ 𝐶)) → ran 𝐹 = 𝐵) |
22 | 17 | oif 9298 |
. . . . . . . . . . . . . . 15
⊢ 𝐹:dom 𝐹⟶𝐵 |
23 | 21, 22 | jctil 520 |
. . . . . . . . . . . . . 14
⊢ ((𝐶 ∈ On ∧ (𝐵 ∈ 𝒫 On ∧ dom
𝐹 ∈ 𝐶)) → (𝐹:dom 𝐹⟶𝐵 ∧ ran 𝐹 = 𝐵)) |
24 | | dffo2 6701 |
. . . . . . . . . . . . . 14
⊢ (𝐹:dom 𝐹–onto→𝐵 ↔ (𝐹:dom 𝐹⟶𝐵 ∧ ran 𝐹 = 𝐵)) |
25 | 23, 24 | sylibr 233 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ On ∧ (𝐵 ∈ 𝒫 On ∧ dom
𝐹 ∈ 𝐶)) → 𝐹:dom 𝐹–onto→𝐵) |
26 | | dffo3 6987 |
. . . . . . . . . . . . . 14
⊢ (𝐹:dom 𝐹–onto→𝐵 ↔ (𝐹:dom 𝐹⟶𝐵 ∧ ∀𝑏 ∈ 𝐵 ∃𝑒 ∈ dom 𝐹 𝑏 = (𝐹‘𝑒))) |
27 | 26 | simprbi 497 |
. . . . . . . . . . . . 13
⊢ (𝐹:dom 𝐹–onto→𝐵 → ∀𝑏 ∈ 𝐵 ∃𝑒 ∈ dom 𝐹 𝑏 = (𝐹‘𝑒)) |
28 | | rsp 3132 |
. . . . . . . . . . . . 13
⊢
(∀𝑏 ∈
𝐵 ∃𝑒 ∈ dom 𝐹 𝑏 = (𝐹‘𝑒) → (𝑏 ∈ 𝐵 → ∃𝑒 ∈ dom 𝐹 𝑏 = (𝐹‘𝑒))) |
29 | 25, 27, 28 | 3syl 18 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ On ∧ (𝐵 ∈ 𝒫 On ∧ dom
𝐹 ∈ 𝐶)) → (𝑏 ∈ 𝐵 → ∃𝑒 ∈ dom 𝐹 𝑏 = (𝐹‘𝑒))) |
30 | 29 | 3impia 1116 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ On ∧ (𝐵 ∈ 𝒫 On ∧ dom
𝐹 ∈ 𝐶) ∧ 𝑏 ∈ 𝐵) → ∃𝑒 ∈ dom 𝐹 𝑏 = (𝐹‘𝑒)) |
31 | | ssrexv 3989 |
. . . . . . . . . . 11
⊢ (dom
𝐹 ⊆ 𝐶 → (∃𝑒 ∈ dom 𝐹 𝑏 = (𝐹‘𝑒) → ∃𝑒 ∈ 𝐶 𝑏 = (𝐹‘𝑒))) |
32 | 16, 30, 31 | sylc 65 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ On ∧ (𝐵 ∈ 𝒫 On ∧ dom
𝐹 ∈ 𝐶) ∧ 𝑏 ∈ 𝐵) → ∃𝑒 ∈ 𝐶 𝑏 = (𝐹‘𝑒)) |
33 | 32 | 3exp 1118 |
. . . . . . . . 9
⊢ (𝐶 ∈ On → ((𝐵 ∈ 𝒫 On ∧ dom
𝐹 ∈ 𝐶) → (𝑏 ∈ 𝐵 → ∃𝑒 ∈ 𝐶 𝑏 = (𝐹‘𝑒)))) |
34 | 12, 33 | sylan9r 509 |
. . . . . . . 8
⊢ ((𝐶 ∈ On ∧ ∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶)) → (𝑎 ∈ 𝐴 → (𝑏 ∈ 𝐵 → ∃𝑒 ∈ 𝐶 𝑏 = (𝐹‘𝑒)))) |
35 | 11, 34 | reximdai 3245 |
. . . . . . 7
⊢ ((𝐶 ∈ On ∧ ∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶)) → (∃𝑎 ∈ 𝐴 𝑏 ∈ 𝐵 → ∃𝑎 ∈ 𝐴 ∃𝑒 ∈ 𝐶 𝑏 = (𝐹‘𝑒))) |
36 | 35 | 3adant1 1129 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ On ∧ ∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶)) → (∃𝑎 ∈ 𝐴 𝑏 ∈ 𝐵 → ∃𝑎 ∈ 𝐴 ∃𝑒 ∈ 𝐶 𝑏 = (𝐹‘𝑒))) |
37 | | nfv 1918 |
. . . . . . 7
⊢
Ⅎ𝑑∃𝑒 ∈ 𝐶 𝑏 = (𝐹‘𝑒) |
38 | | nfcv 2908 |
. . . . . . . 8
⊢
Ⅎ𝑎𝐶 |
39 | | nfcv 2908 |
. . . . . . . . . . 11
⊢
Ⅎ𝑎
E |
40 | | nfcsb1v 3858 |
. . . . . . . . . . 11
⊢
Ⅎ𝑎⦋𝑑 / 𝑎⦌𝐵 |
41 | 39, 40 | nfoi 9282 |
. . . . . . . . . 10
⊢
Ⅎ𝑎OrdIso( E , ⦋𝑑 / 𝑎⦌𝐵) |
42 | | nfcv 2908 |
. . . . . . . . . 10
⊢
Ⅎ𝑎𝑒 |
43 | 41, 42 | nffv 6793 |
. . . . . . . . 9
⊢
Ⅎ𝑎(OrdIso( E , ⦋𝑑 / 𝑎⦌𝐵)‘𝑒) |
44 | 43 | nfeq2 2925 |
. . . . . . . 8
⊢
Ⅎ𝑎 𝑏 = (OrdIso( E ,
⦋𝑑 / 𝑎⦌𝐵)‘𝑒) |
45 | 38, 44 | nfrex 3243 |
. . . . . . 7
⊢
Ⅎ𝑎∃𝑒 ∈ 𝐶 𝑏 = (OrdIso( E , ⦋𝑑 / 𝑎⦌𝐵)‘𝑒) |
46 | | csbeq1a 3847 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑑 → 𝐵 = ⦋𝑑 / 𝑎⦌𝐵) |
47 | | oieq2 9281 |
. . . . . . . . . . . 12
⊢ (𝐵 = ⦋𝑑 / 𝑎⦌𝐵 → OrdIso( E , 𝐵) = OrdIso( E , ⦋𝑑 / 𝑎⦌𝐵)) |
48 | 46, 47 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑑 → OrdIso( E , 𝐵) = OrdIso( E , ⦋𝑑 / 𝑎⦌𝐵)) |
49 | 17, 48 | eqtrid 2791 |
. . . . . . . . . 10
⊢ (𝑎 = 𝑑 → 𝐹 = OrdIso( E , ⦋𝑑 / 𝑎⦌𝐵)) |
50 | 49 | fveq1d 6785 |
. . . . . . . . 9
⊢ (𝑎 = 𝑑 → (𝐹‘𝑒) = (OrdIso( E , ⦋𝑑 / 𝑎⦌𝐵)‘𝑒)) |
51 | 50 | eqeq2d 2750 |
. . . . . . . 8
⊢ (𝑎 = 𝑑 → (𝑏 = (𝐹‘𝑒) ↔ 𝑏 = (OrdIso( E , ⦋𝑑 / 𝑎⦌𝐵)‘𝑒))) |
52 | 51 | rexbidv 3227 |
. . . . . . 7
⊢ (𝑎 = 𝑑 → (∃𝑒 ∈ 𝐶 𝑏 = (𝐹‘𝑒) ↔ ∃𝑒 ∈ 𝐶 𝑏 = (OrdIso( E , ⦋𝑑 / 𝑎⦌𝐵)‘𝑒))) |
53 | 37, 45, 52 | cbvrexw 3375 |
. . . . . 6
⊢
(∃𝑎 ∈
𝐴 ∃𝑒 ∈ 𝐶 𝑏 = (𝐹‘𝑒) ↔ ∃𝑑 ∈ 𝐴 ∃𝑒 ∈ 𝐶 𝑏 = (OrdIso( E , ⦋𝑑 / 𝑎⦌𝐵)‘𝑒)) |
54 | 36, 53 | syl6ib 250 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ On ∧ ∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶)) → (∃𝑎 ∈ 𝐴 𝑏 ∈ 𝐵 → ∃𝑑 ∈ 𝐴 ∃𝑒 ∈ 𝐶 𝑏 = (OrdIso( E , ⦋𝑑 / 𝑎⦌𝐵)‘𝑒))) |
55 | | eliun 4929 |
. . . . 5
⊢ (𝑏 ∈ ∪ 𝑎 ∈ 𝐴 𝐵 ↔ ∃𝑎 ∈ 𝐴 𝑏 ∈ 𝐵) |
56 | | vex 3437 |
. . . . . . . . . . 11
⊢ 𝑑 ∈ V |
57 | | vex 3437 |
. . . . . . . . . . 11
⊢ 𝑒 ∈ V |
58 | 56, 57 | op1std 7850 |
. . . . . . . . . 10
⊢ (𝑐 = 〈𝑑, 𝑒〉 → (1st ‘𝑐) = 𝑑) |
59 | 58 | csbeq1d 3837 |
. . . . . . . . 9
⊢ (𝑐 = 〈𝑑, 𝑒〉 → ⦋(1st
‘𝑐) / 𝑎⦌𝐵 = ⦋𝑑 / 𝑎⦌𝐵) |
60 | | oieq2 9281 |
. . . . . . . . 9
⊢
(⦋(1st ‘𝑐) / 𝑎⦌𝐵 = ⦋𝑑 / 𝑎⦌𝐵 → OrdIso( E ,
⦋(1st ‘𝑐) / 𝑎⦌𝐵) = OrdIso( E , ⦋𝑑 / 𝑎⦌𝐵)) |
61 | 59, 60 | syl 17 |
. . . . . . . 8
⊢ (𝑐 = 〈𝑑, 𝑒〉 → OrdIso( E ,
⦋(1st ‘𝑐) / 𝑎⦌𝐵) = OrdIso( E , ⦋𝑑 / 𝑎⦌𝐵)) |
62 | 56, 57 | op2ndd 7851 |
. . . . . . . 8
⊢ (𝑐 = 〈𝑑, 𝑒〉 → (2nd ‘𝑐) = 𝑒) |
63 | 61, 62 | fveq12d 6790 |
. . . . . . 7
⊢ (𝑐 = 〈𝑑, 𝑒〉 → (OrdIso( E ,
⦋(1st ‘𝑐) / 𝑎⦌𝐵)‘(2nd ‘𝑐)) = (OrdIso( E ,
⦋𝑑 / 𝑎⦌𝐵)‘𝑒)) |
64 | 63 | eqeq2d 2750 |
. . . . . 6
⊢ (𝑐 = 〈𝑑, 𝑒〉 → (𝑏 = (OrdIso( E ,
⦋(1st ‘𝑐) / 𝑎⦌𝐵)‘(2nd ‘𝑐)) ↔ 𝑏 = (OrdIso( E , ⦋𝑑 / 𝑎⦌𝐵)‘𝑒))) |
65 | 64 | rexxp 5754 |
. . . . 5
⊢
(∃𝑐 ∈
(𝐴 × 𝐶)𝑏 = (OrdIso( E ,
⦋(1st ‘𝑐) / 𝑎⦌𝐵)‘(2nd ‘𝑐)) ↔ ∃𝑑 ∈ 𝐴 ∃𝑒 ∈ 𝐶 𝑏 = (OrdIso( E , ⦋𝑑 / 𝑎⦌𝐵)‘𝑒)) |
66 | 54, 55, 65 | 3imtr4g 296 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ On ∧ ∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶)) → (𝑏 ∈ ∪
𝑎 ∈ 𝐴 𝐵 → ∃𝑐 ∈ (𝐴 × 𝐶)𝑏 = (OrdIso( E ,
⦋(1st ‘𝑐) / 𝑎⦌𝐵)‘(2nd ‘𝑐)))) |
67 | 66 | imp 407 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ On ∧ ∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶)) ∧ 𝑏 ∈ ∪
𝑎 ∈ 𝐴 𝐵) → ∃𝑐 ∈ (𝐴 × 𝐶)𝑏 = (OrdIso( E ,
⦋(1st ‘𝑐) / 𝑎⦌𝐵)‘(2nd ‘𝑐))) |
68 | 8, 67 | wdomd 9349 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ On ∧ ∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶)) → ∪ 𝑎 ∈ 𝐴 𝐵 ≼* (𝐴 × 𝐶)) |
69 | | hsmexlem.g |
. . 3
⊢ 𝐺 = OrdIso( E , ∪ 𝑎 ∈ 𝐴 𝐵) |
70 | 69 | hsmexlem1 10191 |
. 2
⊢
((∪ 𝑎 ∈ 𝐴 𝐵 ⊆ On ∧ ∪ 𝑎 ∈ 𝐴 𝐵 ≼* (𝐴 × 𝐶)) → dom 𝐺 ∈ (har‘𝒫 (𝐴 × 𝐶))) |
71 | 6, 68, 70 | syl2anc 584 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐶 ∈ On ∧ ∀𝑎 ∈ 𝐴 (𝐵 ∈ 𝒫 On ∧ dom 𝐹 ∈ 𝐶)) → dom 𝐺 ∈ (har‘𝒫 (𝐴 × 𝐶))) |