MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgsfo Structured version   Visualization version   GIF version

Theorem efgsfo 19669
Description: For any word, there is a sequence of extensions starting at a reduced word and ending at the target word, such that each word in the chain is an extension of the previous (inserting an element and its inverse at adjacent indices somewhere in the sequence). (Contributed by Mario Carneiro, 27-Sep-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
Assertion
Ref Expression
efgsfo 𝑆:dom 𝑆onto𝑊
Distinct variable groups:   𝑦,𝑧   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧,𝑚,𝑥   𝑚,𝑀   𝑥,𝑛,𝑀,𝑡,𝑣,𝑤   𝑘,𝑚,𝑡,𝑥,𝑇   𝑘,𝑛,𝑣,𝑤,𝑦,𝑧,𝑊,𝑚,𝑡,𝑥   ,𝑚,𝑡,𝑥,𝑦,𝑧   𝑚,𝐼,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑚,𝑡
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐼(𝑘)   𝑀(𝑦,𝑧,𝑘)

Proof of Theorem efgsfo
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑖 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . 4 𝑊 = ( I ‘Word (𝐼 × 2o))
2 efgval.r . . . 4 = ( ~FG𝐼)
3 efgval2.m . . . 4 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
4 efgval2.t . . . 4 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
5 efgred.d . . . 4 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
6 efgred.s . . . 4 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
71, 2, 3, 4, 5, 6efgsf 19659 . . 3 𝑆:{𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))}⟶𝑊
87fdmi 6699 . . . 4 dom 𝑆 = {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))}
98feq2i 6680 . . 3 (𝑆:dom 𝑆𝑊𝑆:{𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))}⟶𝑊)
107, 9mpbir 231 . 2 𝑆:dom 𝑆𝑊
11 frn 6695 . . . 4 (𝑆:dom 𝑆𝑊 → ran 𝑆𝑊)
1210, 11ax-mp 5 . . 3 ran 𝑆𝑊
13 fviss 6938 . . . . . . . . 9 ( I ‘Word (𝐼 × 2o)) ⊆ Word (𝐼 × 2o)
141, 13eqsstri 3993 . . . . . . . 8 𝑊 ⊆ Word (𝐼 × 2o)
1514sseli 3942 . . . . . . 7 (𝑐𝑊𝑐 ∈ Word (𝐼 × 2o))
16 lencl 14498 . . . . . . 7 (𝑐 ∈ Word (𝐼 × 2o) → (♯‘𝑐) ∈ ℕ0)
1715, 16syl 17 . . . . . 6 (𝑐𝑊 → (♯‘𝑐) ∈ ℕ0)
18 peano2nn0 12482 . . . . . 6 ((♯‘𝑐) ∈ ℕ0 → ((♯‘𝑐) + 1) ∈ ℕ0)
1914sseli 3942 . . . . . . . . . . . 12 (𝑎𝑊𝑎 ∈ Word (𝐼 × 2o))
20 lencl 14498 . . . . . . . . . . . 12 (𝑎 ∈ Word (𝐼 × 2o) → (♯‘𝑎) ∈ ℕ0)
2119, 20syl 17 . . . . . . . . . . 11 (𝑎𝑊 → (♯‘𝑎) ∈ ℕ0)
22 nn0nlt0 12468 . . . . . . . . . . . 12 ((♯‘𝑎) ∈ ℕ0 → ¬ (♯‘𝑎) < 0)
23 breq2 5111 . . . . . . . . . . . . 13 (𝑏 = 0 → ((♯‘𝑎) < 𝑏 ↔ (♯‘𝑎) < 0))
2423notbid 318 . . . . . . . . . . . 12 (𝑏 = 0 → (¬ (♯‘𝑎) < 𝑏 ↔ ¬ (♯‘𝑎) < 0))
2522, 24imbitrrid 246 . . . . . . . . . . 11 (𝑏 = 0 → ((♯‘𝑎) ∈ ℕ0 → ¬ (♯‘𝑎) < 𝑏))
2621, 25syl5 34 . . . . . . . . . 10 (𝑏 = 0 → (𝑎𝑊 → ¬ (♯‘𝑎) < 𝑏))
2726ralrimiv 3124 . . . . . . . . 9 (𝑏 = 0 → ∀𝑎𝑊 ¬ (♯‘𝑎) < 𝑏)
28 rabeq0 4351 . . . . . . . . 9 ({𝑎𝑊 ∣ (♯‘𝑎) < 𝑏} = ∅ ↔ ∀𝑎𝑊 ¬ (♯‘𝑎) < 𝑏)
2927, 28sylibr 234 . . . . . . . 8 (𝑏 = 0 → {𝑎𝑊 ∣ (♯‘𝑎) < 𝑏} = ∅)
3029sseq1d 3978 . . . . . . 7 (𝑏 = 0 → ({𝑎𝑊 ∣ (♯‘𝑎) < 𝑏} ⊆ ran 𝑆 ↔ ∅ ⊆ ran 𝑆))
31 breq2 5111 . . . . . . . . 9 (𝑏 = 𝑑 → ((♯‘𝑎) < 𝑏 ↔ (♯‘𝑎) < 𝑑))
3231rabbidv 3413 . . . . . . . 8 (𝑏 = 𝑑 → {𝑎𝑊 ∣ (♯‘𝑎) < 𝑏} = {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑})
3332sseq1d 3978 . . . . . . 7 (𝑏 = 𝑑 → ({𝑎𝑊 ∣ (♯‘𝑎) < 𝑏} ⊆ ran 𝑆 ↔ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆))
34 breq2 5111 . . . . . . . . 9 (𝑏 = (𝑑 + 1) → ((♯‘𝑎) < 𝑏 ↔ (♯‘𝑎) < (𝑑 + 1)))
3534rabbidv 3413 . . . . . . . 8 (𝑏 = (𝑑 + 1) → {𝑎𝑊 ∣ (♯‘𝑎) < 𝑏} = {𝑎𝑊 ∣ (♯‘𝑎) < (𝑑 + 1)})
3635sseq1d 3978 . . . . . . 7 (𝑏 = (𝑑 + 1) → ({𝑎𝑊 ∣ (♯‘𝑎) < 𝑏} ⊆ ran 𝑆 ↔ {𝑎𝑊 ∣ (♯‘𝑎) < (𝑑 + 1)} ⊆ ran 𝑆))
37 breq2 5111 . . . . . . . . 9 (𝑏 = ((♯‘𝑐) + 1) → ((♯‘𝑎) < 𝑏 ↔ (♯‘𝑎) < ((♯‘𝑐) + 1)))
3837rabbidv 3413 . . . . . . . 8 (𝑏 = ((♯‘𝑐) + 1) → {𝑎𝑊 ∣ (♯‘𝑎) < 𝑏} = {𝑎𝑊 ∣ (♯‘𝑎) < ((♯‘𝑐) + 1)})
3938sseq1d 3978 . . . . . . 7 (𝑏 = ((♯‘𝑐) + 1) → ({𝑎𝑊 ∣ (♯‘𝑎) < 𝑏} ⊆ ran 𝑆 ↔ {𝑎𝑊 ∣ (♯‘𝑎) < ((♯‘𝑐) + 1)} ⊆ ran 𝑆))
40 0ss 4363 . . . . . . 7 ∅ ⊆ ran 𝑆
41 simpr 484 . . . . . . . . . 10 ((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) → {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆)
42 fveqeq2 6867 . . . . . . . . . . . 12 (𝑎 = 𝑐 → ((♯‘𝑎) = 𝑑 ↔ (♯‘𝑐) = 𝑑))
4342cbvrabv 3416 . . . . . . . . . . 11 {𝑎𝑊 ∣ (♯‘𝑎) = 𝑑} = {𝑐𝑊 ∣ (♯‘𝑐) = 𝑑}
44 eliun 4959 . . . . . . . . . . . . . . 15 (𝑐 𝑥𝑊 ran (𝑇𝑥) ↔ ∃𝑥𝑊 𝑐 ∈ ran (𝑇𝑥))
45 fveq2 6858 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑏 → (𝑇𝑥) = (𝑇𝑏))
4645rneqd 5902 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑏 → ran (𝑇𝑥) = ran (𝑇𝑏))
4746eleq2d 2814 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑏 → (𝑐 ∈ ran (𝑇𝑥) ↔ 𝑐 ∈ ran (𝑇𝑏)))
4847cbvrexvw 3216 . . . . . . . . . . . . . . 15 (∃𝑥𝑊 𝑐 ∈ ran (𝑇𝑥) ↔ ∃𝑏𝑊 𝑐 ∈ ran (𝑇𝑏))
4944, 48bitri 275 . . . . . . . . . . . . . 14 (𝑐 𝑥𝑊 ran (𝑇𝑥) ↔ ∃𝑏𝑊 𝑐 ∈ ran (𝑇𝑏))
50 simpl1r 1226 . . . . . . . . . . . . . . . . . 18 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ (𝑏𝑊𝑐 ∈ ran (𝑇𝑏))) → {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆)
51 fveq2 6858 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝑏 → (♯‘𝑎) = (♯‘𝑏))
5251breq1d 5117 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝑏 → ((♯‘𝑎) < 𝑑 ↔ (♯‘𝑏) < 𝑑))
53 simprl 770 . . . . . . . . . . . . . . . . . . 19 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ (𝑏𝑊𝑐 ∈ ran (𝑇𝑏))) → 𝑏𝑊)
5414, 53sselid 3944 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ (𝑏𝑊𝑐 ∈ ran (𝑇𝑏))) → 𝑏 ∈ Word (𝐼 × 2o))
55 lencl 14498 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 ∈ Word (𝐼 × 2o) → (♯‘𝑏) ∈ ℕ0)
5654, 55syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ (𝑏𝑊𝑐 ∈ ran (𝑇𝑏))) → (♯‘𝑏) ∈ ℕ0)
5756nn0red 12504 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ (𝑏𝑊𝑐 ∈ ran (𝑇𝑏))) → (♯‘𝑏) ∈ ℝ)
58 2rp 12956 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℝ+
59 ltaddrp 12990 . . . . . . . . . . . . . . . . . . . . 21 (((♯‘𝑏) ∈ ℝ ∧ 2 ∈ ℝ+) → (♯‘𝑏) < ((♯‘𝑏) + 2))
6057, 58, 59sylancl 586 . . . . . . . . . . . . . . . . . . . 20 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ (𝑏𝑊𝑐 ∈ ran (𝑇𝑏))) → (♯‘𝑏) < ((♯‘𝑏) + 2))
611, 2, 3, 4efgtlen 19656 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑏𝑊𝑐 ∈ ran (𝑇𝑏)) → (♯‘𝑐) = ((♯‘𝑏) + 2))
6261adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ (𝑏𝑊𝑐 ∈ ran (𝑇𝑏))) → (♯‘𝑐) = ((♯‘𝑏) + 2))
63 simpl3 1194 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ (𝑏𝑊𝑐 ∈ ran (𝑇𝑏))) → (♯‘𝑐) = 𝑑)
6462, 63eqtr3d 2766 . . . . . . . . . . . . . . . . . . . 20 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ (𝑏𝑊𝑐 ∈ ran (𝑇𝑏))) → ((♯‘𝑏) + 2) = 𝑑)
6560, 64breqtrd 5133 . . . . . . . . . . . . . . . . . . 19 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ (𝑏𝑊𝑐 ∈ ran (𝑇𝑏))) → (♯‘𝑏) < 𝑑)
6652, 53, 65elrabd 3661 . . . . . . . . . . . . . . . . . 18 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ (𝑏𝑊𝑐 ∈ ran (𝑇𝑏))) → 𝑏 ∈ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑})
6750, 66sseldd 3947 . . . . . . . . . . . . . . . . 17 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ (𝑏𝑊𝑐 ∈ ran (𝑇𝑏))) → 𝑏 ∈ ran 𝑆)
68 ffn 6688 . . . . . . . . . . . . . . . . . . 19 (𝑆:dom 𝑆𝑊𝑆 Fn dom 𝑆)
6910, 68ax-mp 5 . . . . . . . . . . . . . . . . . 18 𝑆 Fn dom 𝑆
70 fvelrnb 6921 . . . . . . . . . . . . . . . . . 18 (𝑆 Fn dom 𝑆 → (𝑏 ∈ ran 𝑆 ↔ ∃𝑜 ∈ dom 𝑆(𝑆𝑜) = 𝑏))
7169, 70ax-mp 5 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ ran 𝑆 ↔ ∃𝑜 ∈ dom 𝑆(𝑆𝑜) = 𝑏)
7267, 71sylib 218 . . . . . . . . . . . . . . . 16 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ (𝑏𝑊𝑐 ∈ ran (𝑇𝑏))) → ∃𝑜 ∈ dom 𝑆(𝑆𝑜) = 𝑏)
73 simprrl 780 . . . . . . . . . . . . . . . . . . . 20 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ ((𝑏𝑊𝑐 ∈ ran (𝑇𝑏)) ∧ (𝑜 ∈ dom 𝑆 ∧ (𝑆𝑜) = 𝑏))) → 𝑜 ∈ dom 𝑆)
741, 2, 3, 4, 5, 6efgsdm 19660 . . . . . . . . . . . . . . . . . . . . 21 (𝑜 ∈ dom 𝑆 ↔ (𝑜 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝑜‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝑜))(𝑜𝑖) ∈ ran (𝑇‘(𝑜‘(𝑖 − 1)))))
7574simp1bi 1145 . . . . . . . . . . . . . . . . . . . 20 (𝑜 ∈ dom 𝑆𝑜 ∈ (Word 𝑊 ∖ {∅}))
76 eldifi 4094 . . . . . . . . . . . . . . . . . . . 20 (𝑜 ∈ (Word 𝑊 ∖ {∅}) → 𝑜 ∈ Word 𝑊)
7773, 75, 763syl 18 . . . . . . . . . . . . . . . . . . 19 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ ((𝑏𝑊𝑐 ∈ ran (𝑇𝑏)) ∧ (𝑜 ∈ dom 𝑆 ∧ (𝑆𝑜) = 𝑏))) → 𝑜 ∈ Word 𝑊)
78 simpl2 1193 . . . . . . . . . . . . . . . . . . 19 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ ((𝑏𝑊𝑐 ∈ ran (𝑇𝑏)) ∧ (𝑜 ∈ dom 𝑆 ∧ (𝑆𝑜) = 𝑏))) → 𝑐𝑊)
79 simprlr 779 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ ((𝑏𝑊𝑐 ∈ ran (𝑇𝑏)) ∧ (𝑜 ∈ dom 𝑆 ∧ (𝑆𝑜) = 𝑏))) → 𝑐 ∈ ran (𝑇𝑏))
80 simprrr 781 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ ((𝑏𝑊𝑐 ∈ ran (𝑇𝑏)) ∧ (𝑜 ∈ dom 𝑆 ∧ (𝑆𝑜) = 𝑏))) → (𝑆𝑜) = 𝑏)
8180fveq2d 6862 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ ((𝑏𝑊𝑐 ∈ ran (𝑇𝑏)) ∧ (𝑜 ∈ dom 𝑆 ∧ (𝑆𝑜) = 𝑏))) → (𝑇‘(𝑆𝑜)) = (𝑇𝑏))
8281rneqd 5902 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ ((𝑏𝑊𝑐 ∈ ran (𝑇𝑏)) ∧ (𝑜 ∈ dom 𝑆 ∧ (𝑆𝑜) = 𝑏))) → ran (𝑇‘(𝑆𝑜)) = ran (𝑇𝑏))
8379, 82eleqtrrd 2831 . . . . . . . . . . . . . . . . . . . 20 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ ((𝑏𝑊𝑐 ∈ ran (𝑇𝑏)) ∧ (𝑜 ∈ dom 𝑆 ∧ (𝑆𝑜) = 𝑏))) → 𝑐 ∈ ran (𝑇‘(𝑆𝑜)))
841, 2, 3, 4, 5, 6efgsp1 19667 . . . . . . . . . . . . . . . . . . . 20 ((𝑜 ∈ dom 𝑆𝑐 ∈ ran (𝑇‘(𝑆𝑜))) → (𝑜 ++ ⟨“𝑐”⟩) ∈ dom 𝑆)
8573, 83, 84syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ ((𝑏𝑊𝑐 ∈ ran (𝑇𝑏)) ∧ (𝑜 ∈ dom 𝑆 ∧ (𝑆𝑜) = 𝑏))) → (𝑜 ++ ⟨“𝑐”⟩) ∈ dom 𝑆)
861, 2, 3, 4, 5, 6efgsval2 19663 . . . . . . . . . . . . . . . . . . 19 ((𝑜 ∈ Word 𝑊𝑐𝑊 ∧ (𝑜 ++ ⟨“𝑐”⟩) ∈ dom 𝑆) → (𝑆‘(𝑜 ++ ⟨“𝑐”⟩)) = 𝑐)
8777, 78, 85, 86syl3anc 1373 . . . . . . . . . . . . . . . . . 18 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ ((𝑏𝑊𝑐 ∈ ran (𝑇𝑏)) ∧ (𝑜 ∈ dom 𝑆 ∧ (𝑆𝑜) = 𝑏))) → (𝑆‘(𝑜 ++ ⟨“𝑐”⟩)) = 𝑐)
88 fnfvelrn 7052 . . . . . . . . . . . . . . . . . . 19 ((𝑆 Fn dom 𝑆 ∧ (𝑜 ++ ⟨“𝑐”⟩) ∈ dom 𝑆) → (𝑆‘(𝑜 ++ ⟨“𝑐”⟩)) ∈ ran 𝑆)
8969, 85, 88sylancr 587 . . . . . . . . . . . . . . . . . 18 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ ((𝑏𝑊𝑐 ∈ ran (𝑇𝑏)) ∧ (𝑜 ∈ dom 𝑆 ∧ (𝑆𝑜) = 𝑏))) → (𝑆‘(𝑜 ++ ⟨“𝑐”⟩)) ∈ ran 𝑆)
9087, 89eqeltrrd 2829 . . . . . . . . . . . . . . . . 17 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ ((𝑏𝑊𝑐 ∈ ran (𝑇𝑏)) ∧ (𝑜 ∈ dom 𝑆 ∧ (𝑆𝑜) = 𝑏))) → 𝑐 ∈ ran 𝑆)
9190anassrs 467 . . . . . . . . . . . . . . . 16 (((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ (𝑏𝑊𝑐 ∈ ran (𝑇𝑏))) ∧ (𝑜 ∈ dom 𝑆 ∧ (𝑆𝑜) = 𝑏)) → 𝑐 ∈ ran 𝑆)
9272, 91rexlimddv 3140 . . . . . . . . . . . . . . 15 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ (𝑏𝑊𝑐 ∈ ran (𝑇𝑏))) → 𝑐 ∈ ran 𝑆)
9392rexlimdvaa 3135 . . . . . . . . . . . . . 14 (((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) → (∃𝑏𝑊 𝑐 ∈ ran (𝑇𝑏) → 𝑐 ∈ ran 𝑆))
9449, 93biimtrid 242 . . . . . . . . . . . . 13 (((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) → (𝑐 𝑥𝑊 ran (𝑇𝑥) → 𝑐 ∈ ran 𝑆))
95 eldif 3924 . . . . . . . . . . . . . . . . . . 19 (𝑐 ∈ (𝑊 𝑥𝑊 ran (𝑇𝑥)) ↔ (𝑐𝑊 ∧ ¬ 𝑐 𝑥𝑊 ran (𝑇𝑥)))
965eleq2i 2820 . . . . . . . . . . . . . . . . . . . 20 (𝑐𝐷𝑐 ∈ (𝑊 𝑥𝑊 ran (𝑇𝑥)))
971, 2, 3, 4, 5, 6efgs1 19665 . . . . . . . . . . . . . . . . . . . 20 (𝑐𝐷 → ⟨“𝑐”⟩ ∈ dom 𝑆)
9896, 97sylbir 235 . . . . . . . . . . . . . . . . . . 19 (𝑐 ∈ (𝑊 𝑥𝑊 ran (𝑇𝑥)) → ⟨“𝑐”⟩ ∈ dom 𝑆)
9995, 98sylbir 235 . . . . . . . . . . . . . . . . . 18 ((𝑐𝑊 ∧ ¬ 𝑐 𝑥𝑊 ran (𝑇𝑥)) → ⟨“𝑐”⟩ ∈ dom 𝑆)
1001, 2, 3, 4, 5, 6efgsval 19661 . . . . . . . . . . . . . . . . . 18 (⟨“𝑐”⟩ ∈ dom 𝑆 → (𝑆‘⟨“𝑐”⟩) = (⟨“𝑐”⟩‘((♯‘⟨“𝑐”⟩) − 1)))
10199, 100syl 17 . . . . . . . . . . . . . . . . 17 ((𝑐𝑊 ∧ ¬ 𝑐 𝑥𝑊 ran (𝑇𝑥)) → (𝑆‘⟨“𝑐”⟩) = (⟨“𝑐”⟩‘((♯‘⟨“𝑐”⟩) − 1)))
102 s1len 14571 . . . . . . . . . . . . . . . . . . . . 21 (♯‘⟨“𝑐”⟩) = 1
103102oveq1i 7397 . . . . . . . . . . . . . . . . . . . 20 ((♯‘⟨“𝑐”⟩) − 1) = (1 − 1)
104 1m1e0 12258 . . . . . . . . . . . . . . . . . . . 20 (1 − 1) = 0
105103, 104eqtri 2752 . . . . . . . . . . . . . . . . . . 19 ((♯‘⟨“𝑐”⟩) − 1) = 0
106105fveq2i 6861 . . . . . . . . . . . . . . . . . 18 (⟨“𝑐”⟩‘((♯‘⟨“𝑐”⟩) − 1)) = (⟨“𝑐”⟩‘0)
107106a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑐𝑊 ∧ ¬ 𝑐 𝑥𝑊 ran (𝑇𝑥)) → (⟨“𝑐”⟩‘((♯‘⟨“𝑐”⟩) − 1)) = (⟨“𝑐”⟩‘0))
108 s1fv 14575 . . . . . . . . . . . . . . . . . 18 (𝑐𝑊 → (⟨“𝑐”⟩‘0) = 𝑐)
109108adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑐𝑊 ∧ ¬ 𝑐 𝑥𝑊 ran (𝑇𝑥)) → (⟨“𝑐”⟩‘0) = 𝑐)
110101, 107, 1093eqtrd 2768 . . . . . . . . . . . . . . . 16 ((𝑐𝑊 ∧ ¬ 𝑐 𝑥𝑊 ran (𝑇𝑥)) → (𝑆‘⟨“𝑐”⟩) = 𝑐)
111 fnfvelrn 7052 . . . . . . . . . . . . . . . . 17 ((𝑆 Fn dom 𝑆 ∧ ⟨“𝑐”⟩ ∈ dom 𝑆) → (𝑆‘⟨“𝑐”⟩) ∈ ran 𝑆)
11269, 99, 111sylancr 587 . . . . . . . . . . . . . . . 16 ((𝑐𝑊 ∧ ¬ 𝑐 𝑥𝑊 ran (𝑇𝑥)) → (𝑆‘⟨“𝑐”⟩) ∈ ran 𝑆)
113110, 112eqeltrrd 2829 . . . . . . . . . . . . . . 15 ((𝑐𝑊 ∧ ¬ 𝑐 𝑥𝑊 ran (𝑇𝑥)) → 𝑐 ∈ ran 𝑆)
114113ex 412 . . . . . . . . . . . . . 14 (𝑐𝑊 → (¬ 𝑐 𝑥𝑊 ran (𝑇𝑥) → 𝑐 ∈ ran 𝑆))
1151143ad2ant2 1134 . . . . . . . . . . . . 13 (((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) → (¬ 𝑐 𝑥𝑊 ran (𝑇𝑥) → 𝑐 ∈ ran 𝑆))
11694, 115pm2.61d 179 . . . . . . . . . . . 12 (((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) → 𝑐 ∈ ran 𝑆)
117116rabssdv 4038 . . . . . . . . . . 11 ((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) → {𝑐𝑊 ∣ (♯‘𝑐) = 𝑑} ⊆ ran 𝑆)
11843, 117eqsstrid 3985 . . . . . . . . . 10 ((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) → {𝑎𝑊 ∣ (♯‘𝑎) = 𝑑} ⊆ ran 𝑆)
11941, 118unssd 4155 . . . . . . . . 9 ((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) → ({𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ∪ {𝑎𝑊 ∣ (♯‘𝑎) = 𝑑}) ⊆ ran 𝑆)
120119ex 412 . . . . . . . 8 (𝑑 ∈ ℕ0 → ({𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆 → ({𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ∪ {𝑎𝑊 ∣ (♯‘𝑎) = 𝑑}) ⊆ ran 𝑆))
121 id 22 . . . . . . . . . . . . 13 (𝑑 ∈ ℕ0𝑑 ∈ ℕ0)
122 nn0leltp1 12593 . . . . . . . . . . . . 13 (((♯‘𝑎) ∈ ℕ0𝑑 ∈ ℕ0) → ((♯‘𝑎) ≤ 𝑑 ↔ (♯‘𝑎) < (𝑑 + 1)))
12321, 121, 122syl2anr 597 . . . . . . . . . . . 12 ((𝑑 ∈ ℕ0𝑎𝑊) → ((♯‘𝑎) ≤ 𝑑 ↔ (♯‘𝑎) < (𝑑 + 1)))
12421nn0red 12504 . . . . . . . . . . . . 13 (𝑎𝑊 → (♯‘𝑎) ∈ ℝ)
125 nn0re 12451 . . . . . . . . . . . . 13 (𝑑 ∈ ℕ0𝑑 ∈ ℝ)
126 leloe 11260 . . . . . . . . . . . . 13 (((♯‘𝑎) ∈ ℝ ∧ 𝑑 ∈ ℝ) → ((♯‘𝑎) ≤ 𝑑 ↔ ((♯‘𝑎) < 𝑑 ∨ (♯‘𝑎) = 𝑑)))
127124, 125, 126syl2anr 597 . . . . . . . . . . . 12 ((𝑑 ∈ ℕ0𝑎𝑊) → ((♯‘𝑎) ≤ 𝑑 ↔ ((♯‘𝑎) < 𝑑 ∨ (♯‘𝑎) = 𝑑)))
128123, 127bitr3d 281 . . . . . . . . . . 11 ((𝑑 ∈ ℕ0𝑎𝑊) → ((♯‘𝑎) < (𝑑 + 1) ↔ ((♯‘𝑎) < 𝑑 ∨ (♯‘𝑎) = 𝑑)))
129128rabbidva 3412 . . . . . . . . . 10 (𝑑 ∈ ℕ0 → {𝑎𝑊 ∣ (♯‘𝑎) < (𝑑 + 1)} = {𝑎𝑊 ∣ ((♯‘𝑎) < 𝑑 ∨ (♯‘𝑎) = 𝑑)})
130 unrab 4278 . . . . . . . . . 10 ({𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ∪ {𝑎𝑊 ∣ (♯‘𝑎) = 𝑑}) = {𝑎𝑊 ∣ ((♯‘𝑎) < 𝑑 ∨ (♯‘𝑎) = 𝑑)}
131129, 130eqtr4di 2782 . . . . . . . . 9 (𝑑 ∈ ℕ0 → {𝑎𝑊 ∣ (♯‘𝑎) < (𝑑 + 1)} = ({𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ∪ {𝑎𝑊 ∣ (♯‘𝑎) = 𝑑}))
132131sseq1d 3978 . . . . . . . 8 (𝑑 ∈ ℕ0 → ({𝑎𝑊 ∣ (♯‘𝑎) < (𝑑 + 1)} ⊆ ran 𝑆 ↔ ({𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ∪ {𝑎𝑊 ∣ (♯‘𝑎) = 𝑑}) ⊆ ran 𝑆))
133120, 132sylibrd 259 . . . . . . 7 (𝑑 ∈ ℕ0 → ({𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆 → {𝑎𝑊 ∣ (♯‘𝑎) < (𝑑 + 1)} ⊆ ran 𝑆))
13430, 33, 36, 39, 40, 133nn0ind 12629 . . . . . 6 (((♯‘𝑐) + 1) ∈ ℕ0 → {𝑎𝑊 ∣ (♯‘𝑎) < ((♯‘𝑐) + 1)} ⊆ ran 𝑆)
13517, 18, 1343syl 18 . . . . 5 (𝑐𝑊 → {𝑎𝑊 ∣ (♯‘𝑎) < ((♯‘𝑐) + 1)} ⊆ ran 𝑆)
136 fveq2 6858 . . . . . . 7 (𝑎 = 𝑐 → (♯‘𝑎) = (♯‘𝑐))
137136breq1d 5117 . . . . . 6 (𝑎 = 𝑐 → ((♯‘𝑎) < ((♯‘𝑐) + 1) ↔ (♯‘𝑐) < ((♯‘𝑐) + 1)))
138 id 22 . . . . . 6 (𝑐𝑊𝑐𝑊)
13917nn0red 12504 . . . . . . 7 (𝑐𝑊 → (♯‘𝑐) ∈ ℝ)
140139ltp1d 12113 . . . . . 6 (𝑐𝑊 → (♯‘𝑐) < ((♯‘𝑐) + 1))
141137, 138, 140elrabd 3661 . . . . 5 (𝑐𝑊𝑐 ∈ {𝑎𝑊 ∣ (♯‘𝑎) < ((♯‘𝑐) + 1)})
142135, 141sseldd 3947 . . . 4 (𝑐𝑊𝑐 ∈ ran 𝑆)
143142ssriv 3950 . . 3 𝑊 ⊆ ran 𝑆
14412, 143eqssi 3963 . 2 ran 𝑆 = 𝑊
145 dffo2 6776 . 2 (𝑆:dom 𝑆onto𝑊 ↔ (𝑆:dom 𝑆𝑊 ∧ ran 𝑆 = 𝑊))
14610, 144, 145mpbir2an 711 1 𝑆:dom 𝑆onto𝑊
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3405  cdif 3911  cun 3912  wss 3914  c0 4296  {csn 4589  cop 4595  cotp 4597   ciun 4955   class class class wbr 5107  cmpt 5188   I cid 5532   × cxp 5636  dom cdm 5638  ran crn 5639   Fn wfn 6506  wf 6507  ontowfo 6509  cfv 6511  (class class class)co 7387  cmpo 7389  1oc1o 8427  2oc2o 8428  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   < clt 11208  cle 11209  cmin 11405  2c2 12241  0cn0 12442  +crp 12951  ...cfz 13468  ..^cfzo 13615  chash 14295  Word cword 14478   ++ cconcat 14535  ⟨“cs1 14560   splice csplice 14714  ⟨“cs2 14807   ~FG cefg 19636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-ot 4598  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-hash 14296  df-word 14479  df-concat 14536  df-s1 14561  df-substr 14606  df-pfx 14636  df-splice 14715  df-s2 14814
This theorem is referenced by:  efgredlemc  19675  efgrelexlemb  19680  efgredeu  19682  efgred2  19683
  Copyright terms: Public domain W3C validator