MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgsfo Structured version   Visualization version   GIF version

Theorem efgsfo 19650
Description: For any word, there is a sequence of extensions starting at a reduced word and ending at the target word, such that each word in the chain is an extension of the previous (inserting an element and its inverse at adjacent indices somewhere in the sequence). (Contributed by Mario Carneiro, 27-Sep-2015.)
Hypotheses
Ref Expression
efgval.w π‘Š = ( I β€˜Word (𝐼 Γ— 2o))
efgval.r ∼ = ( ~FG β€˜πΌ)
efgval2.m 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ βŸ¨π‘¦, (1o βˆ– 𝑧)⟩)
efgval2.t 𝑇 = (𝑣 ∈ π‘Š ↦ (𝑛 ∈ (0...(β™―β€˜π‘£)), 𝑀 ∈ (𝐼 Γ— 2o) ↦ (𝑣 splice βŸ¨π‘›, 𝑛, βŸ¨β€œπ‘€(π‘€β€˜π‘€)β€βŸ©βŸ©)))
efgred.d 𝐷 = (π‘Š βˆ– βˆͺ π‘₯ ∈ π‘Š ran (π‘‡β€˜π‘₯))
efgred.s 𝑆 = (π‘š ∈ {𝑑 ∈ (Word π‘Š βˆ– {βˆ…}) ∣ ((π‘‘β€˜0) ∈ 𝐷 ∧ βˆ€π‘˜ ∈ (1..^(β™―β€˜π‘‘))(π‘‘β€˜π‘˜) ∈ ran (π‘‡β€˜(π‘‘β€˜(π‘˜ βˆ’ 1))))} ↦ (π‘šβ€˜((β™―β€˜π‘š) βˆ’ 1)))
Assertion
Ref Expression
efgsfo 𝑆:dom 𝑆–ontoβ†’π‘Š
Distinct variable groups:   𝑦,𝑧   𝑑,𝑛,𝑣,𝑀,𝑦,𝑧,π‘š,π‘₯   π‘š,𝑀   π‘₯,𝑛,𝑀,𝑑,𝑣,𝑀   π‘˜,π‘š,𝑑,π‘₯,𝑇   π‘˜,𝑛,𝑣,𝑀,𝑦,𝑧,π‘Š,π‘š,𝑑,π‘₯   ∼ ,π‘š,𝑑,π‘₯,𝑦,𝑧   π‘š,𝐼,𝑛,𝑑,𝑣,𝑀,π‘₯,𝑦,𝑧   𝐷,π‘š,𝑑
Allowed substitution hints:   𝐷(π‘₯,𝑦,𝑧,𝑀,𝑣,π‘˜,𝑛)   ∼ (𝑀,𝑣,π‘˜,𝑛)   𝑆(π‘₯,𝑦,𝑧,𝑀,𝑣,𝑑,π‘˜,π‘š,𝑛)   𝑇(𝑦,𝑧,𝑀,𝑣,𝑛)   𝐼(π‘˜)   𝑀(𝑦,𝑧,π‘˜)

Proof of Theorem efgsfo
Dummy variables π‘Ž 𝑏 𝑐 𝑑 𝑖 π‘œ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . 4 π‘Š = ( I β€˜Word (𝐼 Γ— 2o))
2 efgval.r . . . 4 ∼ = ( ~FG β€˜πΌ)
3 efgval2.m . . . 4 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ βŸ¨π‘¦, (1o βˆ– 𝑧)⟩)
4 efgval2.t . . . 4 𝑇 = (𝑣 ∈ π‘Š ↦ (𝑛 ∈ (0...(β™―β€˜π‘£)), 𝑀 ∈ (𝐼 Γ— 2o) ↦ (𝑣 splice βŸ¨π‘›, 𝑛, βŸ¨β€œπ‘€(π‘€β€˜π‘€)β€βŸ©βŸ©)))
5 efgred.d . . . 4 𝐷 = (π‘Š βˆ– βˆͺ π‘₯ ∈ π‘Š ran (π‘‡β€˜π‘₯))
6 efgred.s . . . 4 𝑆 = (π‘š ∈ {𝑑 ∈ (Word π‘Š βˆ– {βˆ…}) ∣ ((π‘‘β€˜0) ∈ 𝐷 ∧ βˆ€π‘˜ ∈ (1..^(β™―β€˜π‘‘))(π‘‘β€˜π‘˜) ∈ ran (π‘‡β€˜(π‘‘β€˜(π‘˜ βˆ’ 1))))} ↦ (π‘šβ€˜((β™―β€˜π‘š) βˆ’ 1)))
71, 2, 3, 4, 5, 6efgsf 19640 . . 3 𝑆:{𝑑 ∈ (Word π‘Š βˆ– {βˆ…}) ∣ ((π‘‘β€˜0) ∈ 𝐷 ∧ βˆ€π‘˜ ∈ (1..^(β™―β€˜π‘‘))(π‘‘β€˜π‘˜) ∈ ran (π‘‡β€˜(π‘‘β€˜(π‘˜ βˆ’ 1))))}βŸΆπ‘Š
87fdmi 6730 . . . 4 dom 𝑆 = {𝑑 ∈ (Word π‘Š βˆ– {βˆ…}) ∣ ((π‘‘β€˜0) ∈ 𝐷 ∧ βˆ€π‘˜ ∈ (1..^(β™―β€˜π‘‘))(π‘‘β€˜π‘˜) ∈ ran (π‘‡β€˜(π‘‘β€˜(π‘˜ βˆ’ 1))))}
98feq2i 6710 . . 3 (𝑆:dom π‘†βŸΆπ‘Š ↔ 𝑆:{𝑑 ∈ (Word π‘Š βˆ– {βˆ…}) ∣ ((π‘‘β€˜0) ∈ 𝐷 ∧ βˆ€π‘˜ ∈ (1..^(β™―β€˜π‘‘))(π‘‘β€˜π‘˜) ∈ ran (π‘‡β€˜(π‘‘β€˜(π‘˜ βˆ’ 1))))}βŸΆπ‘Š)
107, 9mpbir 230 . 2 𝑆:dom π‘†βŸΆπ‘Š
11 frn 6725 . . . 4 (𝑆:dom π‘†βŸΆπ‘Š β†’ ran 𝑆 βŠ† π‘Š)
1210, 11ax-mp 5 . . 3 ran 𝑆 βŠ† π‘Š
13 fviss 6969 . . . . . . . . 9 ( I β€˜Word (𝐼 Γ— 2o)) βŠ† Word (𝐼 Γ— 2o)
141, 13eqsstri 4017 . . . . . . . 8 π‘Š βŠ† Word (𝐼 Γ— 2o)
1514sseli 3979 . . . . . . 7 (𝑐 ∈ π‘Š β†’ 𝑐 ∈ Word (𝐼 Γ— 2o))
16 lencl 14489 . . . . . . 7 (𝑐 ∈ Word (𝐼 Γ— 2o) β†’ (β™―β€˜π‘) ∈ β„•0)
1715, 16syl 17 . . . . . 6 (𝑐 ∈ π‘Š β†’ (β™―β€˜π‘) ∈ β„•0)
18 peano2nn0 12518 . . . . . 6 ((β™―β€˜π‘) ∈ β„•0 β†’ ((β™―β€˜π‘) + 1) ∈ β„•0)
1914sseli 3979 . . . . . . . . . . . 12 (π‘Ž ∈ π‘Š β†’ π‘Ž ∈ Word (𝐼 Γ— 2o))
20 lencl 14489 . . . . . . . . . . . 12 (π‘Ž ∈ Word (𝐼 Γ— 2o) β†’ (β™―β€˜π‘Ž) ∈ β„•0)
2119, 20syl 17 . . . . . . . . . . 11 (π‘Ž ∈ π‘Š β†’ (β™―β€˜π‘Ž) ∈ β„•0)
22 nn0nlt0 12504 . . . . . . . . . . . 12 ((β™―β€˜π‘Ž) ∈ β„•0 β†’ Β¬ (β™―β€˜π‘Ž) < 0)
23 breq2 5153 . . . . . . . . . . . . 13 (𝑏 = 0 β†’ ((β™―β€˜π‘Ž) < 𝑏 ↔ (β™―β€˜π‘Ž) < 0))
2423notbid 317 . . . . . . . . . . . 12 (𝑏 = 0 β†’ (Β¬ (β™―β€˜π‘Ž) < 𝑏 ↔ Β¬ (β™―β€˜π‘Ž) < 0))
2522, 24imbitrrid 245 . . . . . . . . . . 11 (𝑏 = 0 β†’ ((β™―β€˜π‘Ž) ∈ β„•0 β†’ Β¬ (β™―β€˜π‘Ž) < 𝑏))
2621, 25syl5 34 . . . . . . . . . 10 (𝑏 = 0 β†’ (π‘Ž ∈ π‘Š β†’ Β¬ (β™―β€˜π‘Ž) < 𝑏))
2726ralrimiv 3143 . . . . . . . . 9 (𝑏 = 0 β†’ βˆ€π‘Ž ∈ π‘Š Β¬ (β™―β€˜π‘Ž) < 𝑏)
28 rabeq0 4385 . . . . . . . . 9 ({π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) < 𝑏} = βˆ… ↔ βˆ€π‘Ž ∈ π‘Š Β¬ (β™―β€˜π‘Ž) < 𝑏)
2927, 28sylibr 233 . . . . . . . 8 (𝑏 = 0 β†’ {π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) < 𝑏} = βˆ…)
3029sseq1d 4014 . . . . . . 7 (𝑏 = 0 β†’ ({π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) < 𝑏} βŠ† ran 𝑆 ↔ βˆ… βŠ† ran 𝑆))
31 breq2 5153 . . . . . . . . 9 (𝑏 = 𝑑 β†’ ((β™―β€˜π‘Ž) < 𝑏 ↔ (β™―β€˜π‘Ž) < 𝑑))
3231rabbidv 3438 . . . . . . . 8 (𝑏 = 𝑑 β†’ {π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) < 𝑏} = {π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) < 𝑑})
3332sseq1d 4014 . . . . . . 7 (𝑏 = 𝑑 β†’ ({π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) < 𝑏} βŠ† ran 𝑆 ↔ {π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) < 𝑑} βŠ† ran 𝑆))
34 breq2 5153 . . . . . . . . 9 (𝑏 = (𝑑 + 1) β†’ ((β™―β€˜π‘Ž) < 𝑏 ↔ (β™―β€˜π‘Ž) < (𝑑 + 1)))
3534rabbidv 3438 . . . . . . . 8 (𝑏 = (𝑑 + 1) β†’ {π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) < 𝑏} = {π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) < (𝑑 + 1)})
3635sseq1d 4014 . . . . . . 7 (𝑏 = (𝑑 + 1) β†’ ({π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) < 𝑏} βŠ† ran 𝑆 ↔ {π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) < (𝑑 + 1)} βŠ† ran 𝑆))
37 breq2 5153 . . . . . . . . 9 (𝑏 = ((β™―β€˜π‘) + 1) β†’ ((β™―β€˜π‘Ž) < 𝑏 ↔ (β™―β€˜π‘Ž) < ((β™―β€˜π‘) + 1)))
3837rabbidv 3438 . . . . . . . 8 (𝑏 = ((β™―β€˜π‘) + 1) β†’ {π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) < 𝑏} = {π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) < ((β™―β€˜π‘) + 1)})
3938sseq1d 4014 . . . . . . 7 (𝑏 = ((β™―β€˜π‘) + 1) β†’ ({π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) < 𝑏} βŠ† ran 𝑆 ↔ {π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) < ((β™―β€˜π‘) + 1)} βŠ† ran 𝑆))
40 0ss 4397 . . . . . . 7 βˆ… βŠ† ran 𝑆
41 simpr 483 . . . . . . . . . 10 ((𝑑 ∈ β„•0 ∧ {π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) < 𝑑} βŠ† ran 𝑆) β†’ {π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) < 𝑑} βŠ† ran 𝑆)
42 fveqeq2 6901 . . . . . . . . . . . 12 (π‘Ž = 𝑐 β†’ ((β™―β€˜π‘Ž) = 𝑑 ↔ (β™―β€˜π‘) = 𝑑))
4342cbvrabv 3440 . . . . . . . . . . 11 {π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) = 𝑑} = {𝑐 ∈ π‘Š ∣ (β™―β€˜π‘) = 𝑑}
44 eliun 5002 . . . . . . . . . . . . . . 15 (𝑐 ∈ βˆͺ π‘₯ ∈ π‘Š ran (π‘‡β€˜π‘₯) ↔ βˆƒπ‘₯ ∈ π‘Š 𝑐 ∈ ran (π‘‡β€˜π‘₯))
45 fveq2 6892 . . . . . . . . . . . . . . . . . 18 (π‘₯ = 𝑏 β†’ (π‘‡β€˜π‘₯) = (π‘‡β€˜π‘))
4645rneqd 5938 . . . . . . . . . . . . . . . . 17 (π‘₯ = 𝑏 β†’ ran (π‘‡β€˜π‘₯) = ran (π‘‡β€˜π‘))
4746eleq2d 2817 . . . . . . . . . . . . . . . 16 (π‘₯ = 𝑏 β†’ (𝑐 ∈ ran (π‘‡β€˜π‘₯) ↔ 𝑐 ∈ ran (π‘‡β€˜π‘)))
4847cbvrexvw 3233 . . . . . . . . . . . . . . 15 (βˆƒπ‘₯ ∈ π‘Š 𝑐 ∈ ran (π‘‡β€˜π‘₯) ↔ βˆƒπ‘ ∈ π‘Š 𝑐 ∈ ran (π‘‡β€˜π‘))
4944, 48bitri 274 . . . . . . . . . . . . . 14 (𝑐 ∈ βˆͺ π‘₯ ∈ π‘Š ran (π‘‡β€˜π‘₯) ↔ βˆƒπ‘ ∈ π‘Š 𝑐 ∈ ran (π‘‡β€˜π‘))
50 simpl1r 1223 . . . . . . . . . . . . . . . . . 18 ((((𝑑 ∈ β„•0 ∧ {π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) < 𝑑} βŠ† ran 𝑆) ∧ 𝑐 ∈ π‘Š ∧ (β™―β€˜π‘) = 𝑑) ∧ (𝑏 ∈ π‘Š ∧ 𝑐 ∈ ran (π‘‡β€˜π‘))) β†’ {π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) < 𝑑} βŠ† ran 𝑆)
51 fveq2 6892 . . . . . . . . . . . . . . . . . . . 20 (π‘Ž = 𝑏 β†’ (β™―β€˜π‘Ž) = (β™―β€˜π‘))
5251breq1d 5159 . . . . . . . . . . . . . . . . . . 19 (π‘Ž = 𝑏 β†’ ((β™―β€˜π‘Ž) < 𝑑 ↔ (β™―β€˜π‘) < 𝑑))
53 simprl 767 . . . . . . . . . . . . . . . . . . 19 ((((𝑑 ∈ β„•0 ∧ {π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) < 𝑑} βŠ† ran 𝑆) ∧ 𝑐 ∈ π‘Š ∧ (β™―β€˜π‘) = 𝑑) ∧ (𝑏 ∈ π‘Š ∧ 𝑐 ∈ ran (π‘‡β€˜π‘))) β†’ 𝑏 ∈ π‘Š)
5414, 53sselid 3981 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑑 ∈ β„•0 ∧ {π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) < 𝑑} βŠ† ran 𝑆) ∧ 𝑐 ∈ π‘Š ∧ (β™―β€˜π‘) = 𝑑) ∧ (𝑏 ∈ π‘Š ∧ 𝑐 ∈ ran (π‘‡β€˜π‘))) β†’ 𝑏 ∈ Word (𝐼 Γ— 2o))
55 lencl 14489 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 ∈ Word (𝐼 Γ— 2o) β†’ (β™―β€˜π‘) ∈ β„•0)
5654, 55syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑑 ∈ β„•0 ∧ {π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) < 𝑑} βŠ† ran 𝑆) ∧ 𝑐 ∈ π‘Š ∧ (β™―β€˜π‘) = 𝑑) ∧ (𝑏 ∈ π‘Š ∧ 𝑐 ∈ ran (π‘‡β€˜π‘))) β†’ (β™―β€˜π‘) ∈ β„•0)
5756nn0red 12539 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑑 ∈ β„•0 ∧ {π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) < 𝑑} βŠ† ran 𝑆) ∧ 𝑐 ∈ π‘Š ∧ (β™―β€˜π‘) = 𝑑) ∧ (𝑏 ∈ π‘Š ∧ 𝑐 ∈ ran (π‘‡β€˜π‘))) β†’ (β™―β€˜π‘) ∈ ℝ)
58 2rp 12985 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℝ+
59 ltaddrp 13017 . . . . . . . . . . . . . . . . . . . . 21 (((β™―β€˜π‘) ∈ ℝ ∧ 2 ∈ ℝ+) β†’ (β™―β€˜π‘) < ((β™―β€˜π‘) + 2))
6057, 58, 59sylancl 584 . . . . . . . . . . . . . . . . . . . 20 ((((𝑑 ∈ β„•0 ∧ {π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) < 𝑑} βŠ† ran 𝑆) ∧ 𝑐 ∈ π‘Š ∧ (β™―β€˜π‘) = 𝑑) ∧ (𝑏 ∈ π‘Š ∧ 𝑐 ∈ ran (π‘‡β€˜π‘))) β†’ (β™―β€˜π‘) < ((β™―β€˜π‘) + 2))
611, 2, 3, 4efgtlen 19637 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑏 ∈ π‘Š ∧ 𝑐 ∈ ran (π‘‡β€˜π‘)) β†’ (β™―β€˜π‘) = ((β™―β€˜π‘) + 2))
6261adantl 480 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑑 ∈ β„•0 ∧ {π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) < 𝑑} βŠ† ran 𝑆) ∧ 𝑐 ∈ π‘Š ∧ (β™―β€˜π‘) = 𝑑) ∧ (𝑏 ∈ π‘Š ∧ 𝑐 ∈ ran (π‘‡β€˜π‘))) β†’ (β™―β€˜π‘) = ((β™―β€˜π‘) + 2))
63 simpl3 1191 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑑 ∈ β„•0 ∧ {π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) < 𝑑} βŠ† ran 𝑆) ∧ 𝑐 ∈ π‘Š ∧ (β™―β€˜π‘) = 𝑑) ∧ (𝑏 ∈ π‘Š ∧ 𝑐 ∈ ran (π‘‡β€˜π‘))) β†’ (β™―β€˜π‘) = 𝑑)
6462, 63eqtr3d 2772 . . . . . . . . . . . . . . . . . . . 20 ((((𝑑 ∈ β„•0 ∧ {π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) < 𝑑} βŠ† ran 𝑆) ∧ 𝑐 ∈ π‘Š ∧ (β™―β€˜π‘) = 𝑑) ∧ (𝑏 ∈ π‘Š ∧ 𝑐 ∈ ran (π‘‡β€˜π‘))) β†’ ((β™―β€˜π‘) + 2) = 𝑑)
6560, 64breqtrd 5175 . . . . . . . . . . . . . . . . . . 19 ((((𝑑 ∈ β„•0 ∧ {π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) < 𝑑} βŠ† ran 𝑆) ∧ 𝑐 ∈ π‘Š ∧ (β™―β€˜π‘) = 𝑑) ∧ (𝑏 ∈ π‘Š ∧ 𝑐 ∈ ran (π‘‡β€˜π‘))) β†’ (β™―β€˜π‘) < 𝑑)
6652, 53, 65elrabd 3686 . . . . . . . . . . . . . . . . . 18 ((((𝑑 ∈ β„•0 ∧ {π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) < 𝑑} βŠ† ran 𝑆) ∧ 𝑐 ∈ π‘Š ∧ (β™―β€˜π‘) = 𝑑) ∧ (𝑏 ∈ π‘Š ∧ 𝑐 ∈ ran (π‘‡β€˜π‘))) β†’ 𝑏 ∈ {π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) < 𝑑})
6750, 66sseldd 3984 . . . . . . . . . . . . . . . . 17 ((((𝑑 ∈ β„•0 ∧ {π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) < 𝑑} βŠ† ran 𝑆) ∧ 𝑐 ∈ π‘Š ∧ (β™―β€˜π‘) = 𝑑) ∧ (𝑏 ∈ π‘Š ∧ 𝑐 ∈ ran (π‘‡β€˜π‘))) β†’ 𝑏 ∈ ran 𝑆)
68 ffn 6718 . . . . . . . . . . . . . . . . . . 19 (𝑆:dom π‘†βŸΆπ‘Š β†’ 𝑆 Fn dom 𝑆)
6910, 68ax-mp 5 . . . . . . . . . . . . . . . . . 18 𝑆 Fn dom 𝑆
70 fvelrnb 6953 . . . . . . . . . . . . . . . . . 18 (𝑆 Fn dom 𝑆 β†’ (𝑏 ∈ ran 𝑆 ↔ βˆƒπ‘œ ∈ dom 𝑆(π‘†β€˜π‘œ) = 𝑏))
7169, 70ax-mp 5 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ ran 𝑆 ↔ βˆƒπ‘œ ∈ dom 𝑆(π‘†β€˜π‘œ) = 𝑏)
7267, 71sylib 217 . . . . . . . . . . . . . . . 16 ((((𝑑 ∈ β„•0 ∧ {π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) < 𝑑} βŠ† ran 𝑆) ∧ 𝑐 ∈ π‘Š ∧ (β™―β€˜π‘) = 𝑑) ∧ (𝑏 ∈ π‘Š ∧ 𝑐 ∈ ran (π‘‡β€˜π‘))) β†’ βˆƒπ‘œ ∈ dom 𝑆(π‘†β€˜π‘œ) = 𝑏)
73 simprrl 777 . . . . . . . . . . . . . . . . . . . 20 ((((𝑑 ∈ β„•0 ∧ {π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) < 𝑑} βŠ† ran 𝑆) ∧ 𝑐 ∈ π‘Š ∧ (β™―β€˜π‘) = 𝑑) ∧ ((𝑏 ∈ π‘Š ∧ 𝑐 ∈ ran (π‘‡β€˜π‘)) ∧ (π‘œ ∈ dom 𝑆 ∧ (π‘†β€˜π‘œ) = 𝑏))) β†’ π‘œ ∈ dom 𝑆)
741, 2, 3, 4, 5, 6efgsdm 19641 . . . . . . . . . . . . . . . . . . . . 21 (π‘œ ∈ dom 𝑆 ↔ (π‘œ ∈ (Word π‘Š βˆ– {βˆ…}) ∧ (π‘œβ€˜0) ∈ 𝐷 ∧ βˆ€π‘– ∈ (1..^(β™―β€˜π‘œ))(π‘œβ€˜π‘–) ∈ ran (π‘‡β€˜(π‘œβ€˜(𝑖 βˆ’ 1)))))
7574simp1bi 1143 . . . . . . . . . . . . . . . . . . . 20 (π‘œ ∈ dom 𝑆 β†’ π‘œ ∈ (Word π‘Š βˆ– {βˆ…}))
76 eldifi 4127 . . . . . . . . . . . . . . . . . . . 20 (π‘œ ∈ (Word π‘Š βˆ– {βˆ…}) β†’ π‘œ ∈ Word π‘Š)
7773, 75, 763syl 18 . . . . . . . . . . . . . . . . . . 19 ((((𝑑 ∈ β„•0 ∧ {π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) < 𝑑} βŠ† ran 𝑆) ∧ 𝑐 ∈ π‘Š ∧ (β™―β€˜π‘) = 𝑑) ∧ ((𝑏 ∈ π‘Š ∧ 𝑐 ∈ ran (π‘‡β€˜π‘)) ∧ (π‘œ ∈ dom 𝑆 ∧ (π‘†β€˜π‘œ) = 𝑏))) β†’ π‘œ ∈ Word π‘Š)
78 simpl2 1190 . . . . . . . . . . . . . . . . . . 19 ((((𝑑 ∈ β„•0 ∧ {π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) < 𝑑} βŠ† ran 𝑆) ∧ 𝑐 ∈ π‘Š ∧ (β™―β€˜π‘) = 𝑑) ∧ ((𝑏 ∈ π‘Š ∧ 𝑐 ∈ ran (π‘‡β€˜π‘)) ∧ (π‘œ ∈ dom 𝑆 ∧ (π‘†β€˜π‘œ) = 𝑏))) β†’ 𝑐 ∈ π‘Š)
79 simprlr 776 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑑 ∈ β„•0 ∧ {π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) < 𝑑} βŠ† ran 𝑆) ∧ 𝑐 ∈ π‘Š ∧ (β™―β€˜π‘) = 𝑑) ∧ ((𝑏 ∈ π‘Š ∧ 𝑐 ∈ ran (π‘‡β€˜π‘)) ∧ (π‘œ ∈ dom 𝑆 ∧ (π‘†β€˜π‘œ) = 𝑏))) β†’ 𝑐 ∈ ran (π‘‡β€˜π‘))
80 simprrr 778 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑑 ∈ β„•0 ∧ {π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) < 𝑑} βŠ† ran 𝑆) ∧ 𝑐 ∈ π‘Š ∧ (β™―β€˜π‘) = 𝑑) ∧ ((𝑏 ∈ π‘Š ∧ 𝑐 ∈ ran (π‘‡β€˜π‘)) ∧ (π‘œ ∈ dom 𝑆 ∧ (π‘†β€˜π‘œ) = 𝑏))) β†’ (π‘†β€˜π‘œ) = 𝑏)
8180fveq2d 6896 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑑 ∈ β„•0 ∧ {π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) < 𝑑} βŠ† ran 𝑆) ∧ 𝑐 ∈ π‘Š ∧ (β™―β€˜π‘) = 𝑑) ∧ ((𝑏 ∈ π‘Š ∧ 𝑐 ∈ ran (π‘‡β€˜π‘)) ∧ (π‘œ ∈ dom 𝑆 ∧ (π‘†β€˜π‘œ) = 𝑏))) β†’ (π‘‡β€˜(π‘†β€˜π‘œ)) = (π‘‡β€˜π‘))
8281rneqd 5938 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑑 ∈ β„•0 ∧ {π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) < 𝑑} βŠ† ran 𝑆) ∧ 𝑐 ∈ π‘Š ∧ (β™―β€˜π‘) = 𝑑) ∧ ((𝑏 ∈ π‘Š ∧ 𝑐 ∈ ran (π‘‡β€˜π‘)) ∧ (π‘œ ∈ dom 𝑆 ∧ (π‘†β€˜π‘œ) = 𝑏))) β†’ ran (π‘‡β€˜(π‘†β€˜π‘œ)) = ran (π‘‡β€˜π‘))
8379, 82eleqtrrd 2834 . . . . . . . . . . . . . . . . . . . 20 ((((𝑑 ∈ β„•0 ∧ {π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) < 𝑑} βŠ† ran 𝑆) ∧ 𝑐 ∈ π‘Š ∧ (β™―β€˜π‘) = 𝑑) ∧ ((𝑏 ∈ π‘Š ∧ 𝑐 ∈ ran (π‘‡β€˜π‘)) ∧ (π‘œ ∈ dom 𝑆 ∧ (π‘†β€˜π‘œ) = 𝑏))) β†’ 𝑐 ∈ ran (π‘‡β€˜(π‘†β€˜π‘œ)))
841, 2, 3, 4, 5, 6efgsp1 19648 . . . . . . . . . . . . . . . . . . . 20 ((π‘œ ∈ dom 𝑆 ∧ 𝑐 ∈ ran (π‘‡β€˜(π‘†β€˜π‘œ))) β†’ (π‘œ ++ βŸ¨β€œπ‘β€βŸ©) ∈ dom 𝑆)
8573, 83, 84syl2anc 582 . . . . . . . . . . . . . . . . . . 19 ((((𝑑 ∈ β„•0 ∧ {π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) < 𝑑} βŠ† ran 𝑆) ∧ 𝑐 ∈ π‘Š ∧ (β™―β€˜π‘) = 𝑑) ∧ ((𝑏 ∈ π‘Š ∧ 𝑐 ∈ ran (π‘‡β€˜π‘)) ∧ (π‘œ ∈ dom 𝑆 ∧ (π‘†β€˜π‘œ) = 𝑏))) β†’ (π‘œ ++ βŸ¨β€œπ‘β€βŸ©) ∈ dom 𝑆)
861, 2, 3, 4, 5, 6efgsval2 19644 . . . . . . . . . . . . . . . . . . 19 ((π‘œ ∈ Word π‘Š ∧ 𝑐 ∈ π‘Š ∧ (π‘œ ++ βŸ¨β€œπ‘β€βŸ©) ∈ dom 𝑆) β†’ (π‘†β€˜(π‘œ ++ βŸ¨β€œπ‘β€βŸ©)) = 𝑐)
8777, 78, 85, 86syl3anc 1369 . . . . . . . . . . . . . . . . . 18 ((((𝑑 ∈ β„•0 ∧ {π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) < 𝑑} βŠ† ran 𝑆) ∧ 𝑐 ∈ π‘Š ∧ (β™―β€˜π‘) = 𝑑) ∧ ((𝑏 ∈ π‘Š ∧ 𝑐 ∈ ran (π‘‡β€˜π‘)) ∧ (π‘œ ∈ dom 𝑆 ∧ (π‘†β€˜π‘œ) = 𝑏))) β†’ (π‘†β€˜(π‘œ ++ βŸ¨β€œπ‘β€βŸ©)) = 𝑐)
88 fnfvelrn 7083 . . . . . . . . . . . . . . . . . . 19 ((𝑆 Fn dom 𝑆 ∧ (π‘œ ++ βŸ¨β€œπ‘β€βŸ©) ∈ dom 𝑆) β†’ (π‘†β€˜(π‘œ ++ βŸ¨β€œπ‘β€βŸ©)) ∈ ran 𝑆)
8969, 85, 88sylancr 585 . . . . . . . . . . . . . . . . . 18 ((((𝑑 ∈ β„•0 ∧ {π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) < 𝑑} βŠ† ran 𝑆) ∧ 𝑐 ∈ π‘Š ∧ (β™―β€˜π‘) = 𝑑) ∧ ((𝑏 ∈ π‘Š ∧ 𝑐 ∈ ran (π‘‡β€˜π‘)) ∧ (π‘œ ∈ dom 𝑆 ∧ (π‘†β€˜π‘œ) = 𝑏))) β†’ (π‘†β€˜(π‘œ ++ βŸ¨β€œπ‘β€βŸ©)) ∈ ran 𝑆)
9087, 89eqeltrrd 2832 . . . . . . . . . . . . . . . . 17 ((((𝑑 ∈ β„•0 ∧ {π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) < 𝑑} βŠ† ran 𝑆) ∧ 𝑐 ∈ π‘Š ∧ (β™―β€˜π‘) = 𝑑) ∧ ((𝑏 ∈ π‘Š ∧ 𝑐 ∈ ran (π‘‡β€˜π‘)) ∧ (π‘œ ∈ dom 𝑆 ∧ (π‘†β€˜π‘œ) = 𝑏))) β†’ 𝑐 ∈ ran 𝑆)
9190anassrs 466 . . . . . . . . . . . . . . . 16 (((((𝑑 ∈ β„•0 ∧ {π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) < 𝑑} βŠ† ran 𝑆) ∧ 𝑐 ∈ π‘Š ∧ (β™―β€˜π‘) = 𝑑) ∧ (𝑏 ∈ π‘Š ∧ 𝑐 ∈ ran (π‘‡β€˜π‘))) ∧ (π‘œ ∈ dom 𝑆 ∧ (π‘†β€˜π‘œ) = 𝑏)) β†’ 𝑐 ∈ ran 𝑆)
9272, 91rexlimddv 3159 . . . . . . . . . . . . . . 15 ((((𝑑 ∈ β„•0 ∧ {π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) < 𝑑} βŠ† ran 𝑆) ∧ 𝑐 ∈ π‘Š ∧ (β™―β€˜π‘) = 𝑑) ∧ (𝑏 ∈ π‘Š ∧ 𝑐 ∈ ran (π‘‡β€˜π‘))) β†’ 𝑐 ∈ ran 𝑆)
9392rexlimdvaa 3154 . . . . . . . . . . . . . 14 (((𝑑 ∈ β„•0 ∧ {π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) < 𝑑} βŠ† ran 𝑆) ∧ 𝑐 ∈ π‘Š ∧ (β™―β€˜π‘) = 𝑑) β†’ (βˆƒπ‘ ∈ π‘Š 𝑐 ∈ ran (π‘‡β€˜π‘) β†’ 𝑐 ∈ ran 𝑆))
9449, 93biimtrid 241 . . . . . . . . . . . . 13 (((𝑑 ∈ β„•0 ∧ {π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) < 𝑑} βŠ† ran 𝑆) ∧ 𝑐 ∈ π‘Š ∧ (β™―β€˜π‘) = 𝑑) β†’ (𝑐 ∈ βˆͺ π‘₯ ∈ π‘Š ran (π‘‡β€˜π‘₯) β†’ 𝑐 ∈ ran 𝑆))
95 eldif 3959 . . . . . . . . . . . . . . . . . . 19 (𝑐 ∈ (π‘Š βˆ– βˆͺ π‘₯ ∈ π‘Š ran (π‘‡β€˜π‘₯)) ↔ (𝑐 ∈ π‘Š ∧ Β¬ 𝑐 ∈ βˆͺ π‘₯ ∈ π‘Š ran (π‘‡β€˜π‘₯)))
965eleq2i 2823 . . . . . . . . . . . . . . . . . . . 20 (𝑐 ∈ 𝐷 ↔ 𝑐 ∈ (π‘Š βˆ– βˆͺ π‘₯ ∈ π‘Š ran (π‘‡β€˜π‘₯)))
971, 2, 3, 4, 5, 6efgs1 19646 . . . . . . . . . . . . . . . . . . . 20 (𝑐 ∈ 𝐷 β†’ βŸ¨β€œπ‘β€βŸ© ∈ dom 𝑆)
9896, 97sylbir 234 . . . . . . . . . . . . . . . . . . 19 (𝑐 ∈ (π‘Š βˆ– βˆͺ π‘₯ ∈ π‘Š ran (π‘‡β€˜π‘₯)) β†’ βŸ¨β€œπ‘β€βŸ© ∈ dom 𝑆)
9995, 98sylbir 234 . . . . . . . . . . . . . . . . . 18 ((𝑐 ∈ π‘Š ∧ Β¬ 𝑐 ∈ βˆͺ π‘₯ ∈ π‘Š ran (π‘‡β€˜π‘₯)) β†’ βŸ¨β€œπ‘β€βŸ© ∈ dom 𝑆)
1001, 2, 3, 4, 5, 6efgsval 19642 . . . . . . . . . . . . . . . . . 18 (βŸ¨β€œπ‘β€βŸ© ∈ dom 𝑆 β†’ (π‘†β€˜βŸ¨β€œπ‘β€βŸ©) = (βŸ¨β€œπ‘β€βŸ©β€˜((β™―β€˜βŸ¨β€œπ‘β€βŸ©) βˆ’ 1)))
10199, 100syl 17 . . . . . . . . . . . . . . . . 17 ((𝑐 ∈ π‘Š ∧ Β¬ 𝑐 ∈ βˆͺ π‘₯ ∈ π‘Š ran (π‘‡β€˜π‘₯)) β†’ (π‘†β€˜βŸ¨β€œπ‘β€βŸ©) = (βŸ¨β€œπ‘β€βŸ©β€˜((β™―β€˜βŸ¨β€œπ‘β€βŸ©) βˆ’ 1)))
102 s1len 14562 . . . . . . . . . . . . . . . . . . . . 21 (β™―β€˜βŸ¨β€œπ‘β€βŸ©) = 1
103102oveq1i 7423 . . . . . . . . . . . . . . . . . . . 20 ((β™―β€˜βŸ¨β€œπ‘β€βŸ©) βˆ’ 1) = (1 βˆ’ 1)
104 1m1e0 12290 . . . . . . . . . . . . . . . . . . . 20 (1 βˆ’ 1) = 0
105103, 104eqtri 2758 . . . . . . . . . . . . . . . . . . 19 ((β™―β€˜βŸ¨β€œπ‘β€βŸ©) βˆ’ 1) = 0
106105fveq2i 6895 . . . . . . . . . . . . . . . . . 18 (βŸ¨β€œπ‘β€βŸ©β€˜((β™―β€˜βŸ¨β€œπ‘β€βŸ©) βˆ’ 1)) = (βŸ¨β€œπ‘β€βŸ©β€˜0)
107106a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑐 ∈ π‘Š ∧ Β¬ 𝑐 ∈ βˆͺ π‘₯ ∈ π‘Š ran (π‘‡β€˜π‘₯)) β†’ (βŸ¨β€œπ‘β€βŸ©β€˜((β™―β€˜βŸ¨β€œπ‘β€βŸ©) βˆ’ 1)) = (βŸ¨β€œπ‘β€βŸ©β€˜0))
108 s1fv 14566 . . . . . . . . . . . . . . . . . 18 (𝑐 ∈ π‘Š β†’ (βŸ¨β€œπ‘β€βŸ©β€˜0) = 𝑐)
109108adantr 479 . . . . . . . . . . . . . . . . 17 ((𝑐 ∈ π‘Š ∧ Β¬ 𝑐 ∈ βˆͺ π‘₯ ∈ π‘Š ran (π‘‡β€˜π‘₯)) β†’ (βŸ¨β€œπ‘β€βŸ©β€˜0) = 𝑐)
110101, 107, 1093eqtrd 2774 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ π‘Š ∧ Β¬ 𝑐 ∈ βˆͺ π‘₯ ∈ π‘Š ran (π‘‡β€˜π‘₯)) β†’ (π‘†β€˜βŸ¨β€œπ‘β€βŸ©) = 𝑐)
111 fnfvelrn 7083 . . . . . . . . . . . . . . . . 17 ((𝑆 Fn dom 𝑆 ∧ βŸ¨β€œπ‘β€βŸ© ∈ dom 𝑆) β†’ (π‘†β€˜βŸ¨β€œπ‘β€βŸ©) ∈ ran 𝑆)
11269, 99, 111sylancr 585 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ π‘Š ∧ Β¬ 𝑐 ∈ βˆͺ π‘₯ ∈ π‘Š ran (π‘‡β€˜π‘₯)) β†’ (π‘†β€˜βŸ¨β€œπ‘β€βŸ©) ∈ ran 𝑆)
113110, 112eqeltrrd 2832 . . . . . . . . . . . . . . 15 ((𝑐 ∈ π‘Š ∧ Β¬ 𝑐 ∈ βˆͺ π‘₯ ∈ π‘Š ran (π‘‡β€˜π‘₯)) β†’ 𝑐 ∈ ran 𝑆)
114113ex 411 . . . . . . . . . . . . . 14 (𝑐 ∈ π‘Š β†’ (Β¬ 𝑐 ∈ βˆͺ π‘₯ ∈ π‘Š ran (π‘‡β€˜π‘₯) β†’ 𝑐 ∈ ran 𝑆))
1151143ad2ant2 1132 . . . . . . . . . . . . 13 (((𝑑 ∈ β„•0 ∧ {π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) < 𝑑} βŠ† ran 𝑆) ∧ 𝑐 ∈ π‘Š ∧ (β™―β€˜π‘) = 𝑑) β†’ (Β¬ 𝑐 ∈ βˆͺ π‘₯ ∈ π‘Š ran (π‘‡β€˜π‘₯) β†’ 𝑐 ∈ ran 𝑆))
11694, 115pm2.61d 179 . . . . . . . . . . . 12 (((𝑑 ∈ β„•0 ∧ {π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) < 𝑑} βŠ† ran 𝑆) ∧ 𝑐 ∈ π‘Š ∧ (β™―β€˜π‘) = 𝑑) β†’ 𝑐 ∈ ran 𝑆)
117116rabssdv 4073 . . . . . . . . . . 11 ((𝑑 ∈ β„•0 ∧ {π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) < 𝑑} βŠ† ran 𝑆) β†’ {𝑐 ∈ π‘Š ∣ (β™―β€˜π‘) = 𝑑} βŠ† ran 𝑆)
11843, 117eqsstrid 4031 . . . . . . . . . 10 ((𝑑 ∈ β„•0 ∧ {π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) < 𝑑} βŠ† ran 𝑆) β†’ {π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) = 𝑑} βŠ† ran 𝑆)
11941, 118unssd 4187 . . . . . . . . 9 ((𝑑 ∈ β„•0 ∧ {π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) < 𝑑} βŠ† ran 𝑆) β†’ ({π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) < 𝑑} βˆͺ {π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) = 𝑑}) βŠ† ran 𝑆)
120119ex 411 . . . . . . . 8 (𝑑 ∈ β„•0 β†’ ({π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) < 𝑑} βŠ† ran 𝑆 β†’ ({π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) < 𝑑} βˆͺ {π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) = 𝑑}) βŠ† ran 𝑆))
121 id 22 . . . . . . . . . . . . 13 (𝑑 ∈ β„•0 β†’ 𝑑 ∈ β„•0)
122 nn0leltp1 12627 . . . . . . . . . . . . 13 (((β™―β€˜π‘Ž) ∈ β„•0 ∧ 𝑑 ∈ β„•0) β†’ ((β™―β€˜π‘Ž) ≀ 𝑑 ↔ (β™―β€˜π‘Ž) < (𝑑 + 1)))
12321, 121, 122syl2anr 595 . . . . . . . . . . . 12 ((𝑑 ∈ β„•0 ∧ π‘Ž ∈ π‘Š) β†’ ((β™―β€˜π‘Ž) ≀ 𝑑 ↔ (β™―β€˜π‘Ž) < (𝑑 + 1)))
12421nn0red 12539 . . . . . . . . . . . . 13 (π‘Ž ∈ π‘Š β†’ (β™―β€˜π‘Ž) ∈ ℝ)
125 nn0re 12487 . . . . . . . . . . . . 13 (𝑑 ∈ β„•0 β†’ 𝑑 ∈ ℝ)
126 leloe 11306 . . . . . . . . . . . . 13 (((β™―β€˜π‘Ž) ∈ ℝ ∧ 𝑑 ∈ ℝ) β†’ ((β™―β€˜π‘Ž) ≀ 𝑑 ↔ ((β™―β€˜π‘Ž) < 𝑑 ∨ (β™―β€˜π‘Ž) = 𝑑)))
127124, 125, 126syl2anr 595 . . . . . . . . . . . 12 ((𝑑 ∈ β„•0 ∧ π‘Ž ∈ π‘Š) β†’ ((β™―β€˜π‘Ž) ≀ 𝑑 ↔ ((β™―β€˜π‘Ž) < 𝑑 ∨ (β™―β€˜π‘Ž) = 𝑑)))
128123, 127bitr3d 280 . . . . . . . . . . 11 ((𝑑 ∈ β„•0 ∧ π‘Ž ∈ π‘Š) β†’ ((β™―β€˜π‘Ž) < (𝑑 + 1) ↔ ((β™―β€˜π‘Ž) < 𝑑 ∨ (β™―β€˜π‘Ž) = 𝑑)))
129128rabbidva 3437 . . . . . . . . . 10 (𝑑 ∈ β„•0 β†’ {π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) < (𝑑 + 1)} = {π‘Ž ∈ π‘Š ∣ ((β™―β€˜π‘Ž) < 𝑑 ∨ (β™―β€˜π‘Ž) = 𝑑)})
130 unrab 4306 . . . . . . . . . 10 ({π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) < 𝑑} βˆͺ {π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) = 𝑑}) = {π‘Ž ∈ π‘Š ∣ ((β™―β€˜π‘Ž) < 𝑑 ∨ (β™―β€˜π‘Ž) = 𝑑)}
131129, 130eqtr4di 2788 . . . . . . . . 9 (𝑑 ∈ β„•0 β†’ {π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) < (𝑑 + 1)} = ({π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) < 𝑑} βˆͺ {π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) = 𝑑}))
132131sseq1d 4014 . . . . . . . 8 (𝑑 ∈ β„•0 β†’ ({π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) < (𝑑 + 1)} βŠ† ran 𝑆 ↔ ({π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) < 𝑑} βˆͺ {π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) = 𝑑}) βŠ† ran 𝑆))
133120, 132sylibrd 258 . . . . . . 7 (𝑑 ∈ β„•0 β†’ ({π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) < 𝑑} βŠ† ran 𝑆 β†’ {π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) < (𝑑 + 1)} βŠ† ran 𝑆))
13430, 33, 36, 39, 40, 133nn0ind 12663 . . . . . 6 (((β™―β€˜π‘) + 1) ∈ β„•0 β†’ {π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) < ((β™―β€˜π‘) + 1)} βŠ† ran 𝑆)
13517, 18, 1343syl 18 . . . . 5 (𝑐 ∈ π‘Š β†’ {π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) < ((β™―β€˜π‘) + 1)} βŠ† ran 𝑆)
136 fveq2 6892 . . . . . . 7 (π‘Ž = 𝑐 β†’ (β™―β€˜π‘Ž) = (β™―β€˜π‘))
137136breq1d 5159 . . . . . 6 (π‘Ž = 𝑐 β†’ ((β™―β€˜π‘Ž) < ((β™―β€˜π‘) + 1) ↔ (β™―β€˜π‘) < ((β™―β€˜π‘) + 1)))
138 id 22 . . . . . 6 (𝑐 ∈ π‘Š β†’ 𝑐 ∈ π‘Š)
13917nn0red 12539 . . . . . . 7 (𝑐 ∈ π‘Š β†’ (β™―β€˜π‘) ∈ ℝ)
140139ltp1d 12150 . . . . . 6 (𝑐 ∈ π‘Š β†’ (β™―β€˜π‘) < ((β™―β€˜π‘) + 1))
141137, 138, 140elrabd 3686 . . . . 5 (𝑐 ∈ π‘Š β†’ 𝑐 ∈ {π‘Ž ∈ π‘Š ∣ (β™―β€˜π‘Ž) < ((β™―β€˜π‘) + 1)})
142135, 141sseldd 3984 . . . 4 (𝑐 ∈ π‘Š β†’ 𝑐 ∈ ran 𝑆)
143142ssriv 3987 . . 3 π‘Š βŠ† ran 𝑆
14412, 143eqssi 3999 . 2 ran 𝑆 = π‘Š
145 dffo2 6810 . 2 (𝑆:dom 𝑆–ontoβ†’π‘Š ↔ (𝑆:dom π‘†βŸΆπ‘Š ∧ ran 𝑆 = π‘Š))
14610, 144, 145mpbir2an 707 1 𝑆:dom 𝑆–ontoβ†’π‘Š
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∨ wo 843   ∧ w3a 1085   = wceq 1539   ∈ wcel 2104  βˆ€wral 3059  βˆƒwrex 3068  {crab 3430   βˆ– cdif 3946   βˆͺ cun 3947   βŠ† wss 3949  βˆ…c0 4323  {csn 4629  βŸ¨cop 4635  βŸ¨cotp 4637  βˆͺ ciun 4998   class class class wbr 5149   ↦ cmpt 5232   I cid 5574   Γ— cxp 5675  dom cdm 5677  ran crn 5678   Fn wfn 6539  βŸΆwf 6540  β€“ontoβ†’wfo 6542  β€˜cfv 6544  (class class class)co 7413   ∈ cmpo 7415  1oc1o 8463  2oc2o 8464  β„cr 11113  0cc0 11114  1c1 11115   + caddc 11117   < clt 11254   ≀ cle 11255   βˆ’ cmin 11450  2c2 12273  β„•0cn0 12478  β„+crp 12980  ...cfz 13490  ..^cfzo 13633  β™―chash 14296  Word cword 14470   ++ cconcat 14526  βŸ¨β€œcs1 14551   splice csplice 14705  βŸ¨β€œcs2 14798   ~FG cefg 19617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-ot 4638  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-1o 8470  df-2o 8471  df-er 8707  df-map 8826  df-en 8944  df-dom 8945  df-sdom 8946  df-fin 8947  df-card 9938  df-pnf 11256  df-mnf 11257  df-xr 11258  df-ltxr 11259  df-le 11260  df-sub 11452  df-neg 11453  df-nn 12219  df-2 12281  df-n0 12479  df-xnn0 12551  df-z 12565  df-uz 12829  df-rp 12981  df-fz 13491  df-fzo 13634  df-hash 14297  df-word 14471  df-concat 14527  df-s1 14552  df-substr 14597  df-pfx 14627  df-splice 14706  df-s2 14805
This theorem is referenced by:  efgredlemc  19656  efgrelexlemb  19661  efgredeu  19663  efgred2  19664
  Copyright terms: Public domain W3C validator