MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgsfo Structured version   Visualization version   GIF version

Theorem efgsfo 18857
Description: For any word, there is a sequence of extensions starting at a reduced word and ending at the target word, such that each word in the chain is an extension of the previous (inserting an element and its inverse at adjacent indices somewhere in the sequence). (Contributed by Mario Carneiro, 27-Sep-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
Assertion
Ref Expression
efgsfo 𝑆:dom 𝑆onto𝑊
Distinct variable groups:   𝑦,𝑧   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧,𝑚,𝑥   𝑚,𝑀   𝑥,𝑛,𝑀,𝑡,𝑣,𝑤   𝑘,𝑚,𝑡,𝑥,𝑇   𝑘,𝑛,𝑣,𝑤,𝑦,𝑧,𝑊,𝑚,𝑡,𝑥   ,𝑚,𝑡,𝑥,𝑦,𝑧   𝑚,𝐼,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑚,𝑡
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐼(𝑘)   𝑀(𝑦,𝑧,𝑘)

Proof of Theorem efgsfo
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑖 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . 4 𝑊 = ( I ‘Word (𝐼 × 2o))
2 efgval.r . . . 4 = ( ~FG𝐼)
3 efgval2.m . . . 4 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
4 efgval2.t . . . 4 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
5 efgred.d . . . 4 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
6 efgred.s . . . 4 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
71, 2, 3, 4, 5, 6efgsf 18847 . . 3 𝑆:{𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))}⟶𝑊
87fdmi 6498 . . . 4 dom 𝑆 = {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))}
98feq2i 6479 . . 3 (𝑆:dom 𝑆𝑊𝑆:{𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))}⟶𝑊)
107, 9mpbir 234 . 2 𝑆:dom 𝑆𝑊
11 frn 6493 . . . 4 (𝑆:dom 𝑆𝑊 → ran 𝑆𝑊)
1210, 11ax-mp 5 . . 3 ran 𝑆𝑊
13 fviss 6716 . . . . . . . . 9 ( I ‘Word (𝐼 × 2o)) ⊆ Word (𝐼 × 2o)
141, 13eqsstri 3949 . . . . . . . 8 𝑊 ⊆ Word (𝐼 × 2o)
1514sseli 3911 . . . . . . 7 (𝑐𝑊𝑐 ∈ Word (𝐼 × 2o))
16 lencl 13876 . . . . . . 7 (𝑐 ∈ Word (𝐼 × 2o) → (♯‘𝑐) ∈ ℕ0)
1715, 16syl 17 . . . . . 6 (𝑐𝑊 → (♯‘𝑐) ∈ ℕ0)
18 peano2nn0 11925 . . . . . 6 ((♯‘𝑐) ∈ ℕ0 → ((♯‘𝑐) + 1) ∈ ℕ0)
1914sseli 3911 . . . . . . . . . . . 12 (𝑎𝑊𝑎 ∈ Word (𝐼 × 2o))
20 lencl 13876 . . . . . . . . . . . 12 (𝑎 ∈ Word (𝐼 × 2o) → (♯‘𝑎) ∈ ℕ0)
2119, 20syl 17 . . . . . . . . . . 11 (𝑎𝑊 → (♯‘𝑎) ∈ ℕ0)
22 nn0nlt0 11911 . . . . . . . . . . . 12 ((♯‘𝑎) ∈ ℕ0 → ¬ (♯‘𝑎) < 0)
23 breq2 5034 . . . . . . . . . . . . 13 (𝑏 = 0 → ((♯‘𝑎) < 𝑏 ↔ (♯‘𝑎) < 0))
2423notbid 321 . . . . . . . . . . . 12 (𝑏 = 0 → (¬ (♯‘𝑎) < 𝑏 ↔ ¬ (♯‘𝑎) < 0))
2522, 24syl5ibr 249 . . . . . . . . . . 11 (𝑏 = 0 → ((♯‘𝑎) ∈ ℕ0 → ¬ (♯‘𝑎) < 𝑏))
2621, 25syl5 34 . . . . . . . . . 10 (𝑏 = 0 → (𝑎𝑊 → ¬ (♯‘𝑎) < 𝑏))
2726ralrimiv 3148 . . . . . . . . 9 (𝑏 = 0 → ∀𝑎𝑊 ¬ (♯‘𝑎) < 𝑏)
28 rabeq0 4292 . . . . . . . . 9 ({𝑎𝑊 ∣ (♯‘𝑎) < 𝑏} = ∅ ↔ ∀𝑎𝑊 ¬ (♯‘𝑎) < 𝑏)
2927, 28sylibr 237 . . . . . . . 8 (𝑏 = 0 → {𝑎𝑊 ∣ (♯‘𝑎) < 𝑏} = ∅)
3029sseq1d 3946 . . . . . . 7 (𝑏 = 0 → ({𝑎𝑊 ∣ (♯‘𝑎) < 𝑏} ⊆ ran 𝑆 ↔ ∅ ⊆ ran 𝑆))
31 breq2 5034 . . . . . . . . 9 (𝑏 = 𝑑 → ((♯‘𝑎) < 𝑏 ↔ (♯‘𝑎) < 𝑑))
3231rabbidv 3427 . . . . . . . 8 (𝑏 = 𝑑 → {𝑎𝑊 ∣ (♯‘𝑎) < 𝑏} = {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑})
3332sseq1d 3946 . . . . . . 7 (𝑏 = 𝑑 → ({𝑎𝑊 ∣ (♯‘𝑎) < 𝑏} ⊆ ran 𝑆 ↔ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆))
34 breq2 5034 . . . . . . . . 9 (𝑏 = (𝑑 + 1) → ((♯‘𝑎) < 𝑏 ↔ (♯‘𝑎) < (𝑑 + 1)))
3534rabbidv 3427 . . . . . . . 8 (𝑏 = (𝑑 + 1) → {𝑎𝑊 ∣ (♯‘𝑎) < 𝑏} = {𝑎𝑊 ∣ (♯‘𝑎) < (𝑑 + 1)})
3635sseq1d 3946 . . . . . . 7 (𝑏 = (𝑑 + 1) → ({𝑎𝑊 ∣ (♯‘𝑎) < 𝑏} ⊆ ran 𝑆 ↔ {𝑎𝑊 ∣ (♯‘𝑎) < (𝑑 + 1)} ⊆ ran 𝑆))
37 breq2 5034 . . . . . . . . 9 (𝑏 = ((♯‘𝑐) + 1) → ((♯‘𝑎) < 𝑏 ↔ (♯‘𝑎) < ((♯‘𝑐) + 1)))
3837rabbidv 3427 . . . . . . . 8 (𝑏 = ((♯‘𝑐) + 1) → {𝑎𝑊 ∣ (♯‘𝑎) < 𝑏} = {𝑎𝑊 ∣ (♯‘𝑎) < ((♯‘𝑐) + 1)})
3938sseq1d 3946 . . . . . . 7 (𝑏 = ((♯‘𝑐) + 1) → ({𝑎𝑊 ∣ (♯‘𝑎) < 𝑏} ⊆ ran 𝑆 ↔ {𝑎𝑊 ∣ (♯‘𝑎) < ((♯‘𝑐) + 1)} ⊆ ran 𝑆))
40 0ss 4304 . . . . . . 7 ∅ ⊆ ran 𝑆
41 simpr 488 . . . . . . . . . 10 ((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) → {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆)
42 fveqeq2 6654 . . . . . . . . . . . 12 (𝑎 = 𝑐 → ((♯‘𝑎) = 𝑑 ↔ (♯‘𝑐) = 𝑑))
4342cbvrabv 3439 . . . . . . . . . . 11 {𝑎𝑊 ∣ (♯‘𝑎) = 𝑑} = {𝑐𝑊 ∣ (♯‘𝑐) = 𝑑}
44 eliun 4885 . . . . . . . . . . . . . . 15 (𝑐 𝑥𝑊 ran (𝑇𝑥) ↔ ∃𝑥𝑊 𝑐 ∈ ran (𝑇𝑥))
45 fveq2 6645 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑏 → (𝑇𝑥) = (𝑇𝑏))
4645rneqd 5772 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑏 → ran (𝑇𝑥) = ran (𝑇𝑏))
4746eleq2d 2875 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑏 → (𝑐 ∈ ran (𝑇𝑥) ↔ 𝑐 ∈ ran (𝑇𝑏)))
4847cbvrexvw 3397 . . . . . . . . . . . . . . 15 (∃𝑥𝑊 𝑐 ∈ ran (𝑇𝑥) ↔ ∃𝑏𝑊 𝑐 ∈ ran (𝑇𝑏))
4944, 48bitri 278 . . . . . . . . . . . . . 14 (𝑐 𝑥𝑊 ran (𝑇𝑥) ↔ ∃𝑏𝑊 𝑐 ∈ ran (𝑇𝑏))
50 simpl1r 1222 . . . . . . . . . . . . . . . . . 18 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ (𝑏𝑊𝑐 ∈ ran (𝑇𝑏))) → {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆)
51 fveq2 6645 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝑏 → (♯‘𝑎) = (♯‘𝑏))
5251breq1d 5040 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝑏 → ((♯‘𝑎) < 𝑑 ↔ (♯‘𝑏) < 𝑑))
53 simprl 770 . . . . . . . . . . . . . . . . . . 19 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ (𝑏𝑊𝑐 ∈ ran (𝑇𝑏))) → 𝑏𝑊)
5414, 53sseldi 3913 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ (𝑏𝑊𝑐 ∈ ran (𝑇𝑏))) → 𝑏 ∈ Word (𝐼 × 2o))
55 lencl 13876 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 ∈ Word (𝐼 × 2o) → (♯‘𝑏) ∈ ℕ0)
5654, 55syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ (𝑏𝑊𝑐 ∈ ran (𝑇𝑏))) → (♯‘𝑏) ∈ ℕ0)
5756nn0red 11944 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ (𝑏𝑊𝑐 ∈ ran (𝑇𝑏))) → (♯‘𝑏) ∈ ℝ)
58 2rp 12382 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℝ+
59 ltaddrp 12414 . . . . . . . . . . . . . . . . . . . . 21 (((♯‘𝑏) ∈ ℝ ∧ 2 ∈ ℝ+) → (♯‘𝑏) < ((♯‘𝑏) + 2))
6057, 58, 59sylancl 589 . . . . . . . . . . . . . . . . . . . 20 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ (𝑏𝑊𝑐 ∈ ran (𝑇𝑏))) → (♯‘𝑏) < ((♯‘𝑏) + 2))
611, 2, 3, 4efgtlen 18844 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑏𝑊𝑐 ∈ ran (𝑇𝑏)) → (♯‘𝑐) = ((♯‘𝑏) + 2))
6261adantl 485 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ (𝑏𝑊𝑐 ∈ ran (𝑇𝑏))) → (♯‘𝑐) = ((♯‘𝑏) + 2))
63 simpl3 1190 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ (𝑏𝑊𝑐 ∈ ran (𝑇𝑏))) → (♯‘𝑐) = 𝑑)
6462, 63eqtr3d 2835 . . . . . . . . . . . . . . . . . . . 20 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ (𝑏𝑊𝑐 ∈ ran (𝑇𝑏))) → ((♯‘𝑏) + 2) = 𝑑)
6560, 64breqtrd 5056 . . . . . . . . . . . . . . . . . . 19 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ (𝑏𝑊𝑐 ∈ ran (𝑇𝑏))) → (♯‘𝑏) < 𝑑)
6652, 53, 65elrabd 3630 . . . . . . . . . . . . . . . . . 18 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ (𝑏𝑊𝑐 ∈ ran (𝑇𝑏))) → 𝑏 ∈ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑})
6750, 66sseldd 3916 . . . . . . . . . . . . . . . . 17 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ (𝑏𝑊𝑐 ∈ ran (𝑇𝑏))) → 𝑏 ∈ ran 𝑆)
68 ffn 6487 . . . . . . . . . . . . . . . . . . 19 (𝑆:dom 𝑆𝑊𝑆 Fn dom 𝑆)
6910, 68ax-mp 5 . . . . . . . . . . . . . . . . . 18 𝑆 Fn dom 𝑆
70 fvelrnb 6701 . . . . . . . . . . . . . . . . . 18 (𝑆 Fn dom 𝑆 → (𝑏 ∈ ran 𝑆 ↔ ∃𝑜 ∈ dom 𝑆(𝑆𝑜) = 𝑏))
7169, 70ax-mp 5 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ ran 𝑆 ↔ ∃𝑜 ∈ dom 𝑆(𝑆𝑜) = 𝑏)
7267, 71sylib 221 . . . . . . . . . . . . . . . 16 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ (𝑏𝑊𝑐 ∈ ran (𝑇𝑏))) → ∃𝑜 ∈ dom 𝑆(𝑆𝑜) = 𝑏)
73 simprrl 780 . . . . . . . . . . . . . . . . . . . 20 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ ((𝑏𝑊𝑐 ∈ ran (𝑇𝑏)) ∧ (𝑜 ∈ dom 𝑆 ∧ (𝑆𝑜) = 𝑏))) → 𝑜 ∈ dom 𝑆)
741, 2, 3, 4, 5, 6efgsdm 18848 . . . . . . . . . . . . . . . . . . . . 21 (𝑜 ∈ dom 𝑆 ↔ (𝑜 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝑜‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝑜))(𝑜𝑖) ∈ ran (𝑇‘(𝑜‘(𝑖 − 1)))))
7574simp1bi 1142 . . . . . . . . . . . . . . . . . . . 20 (𝑜 ∈ dom 𝑆𝑜 ∈ (Word 𝑊 ∖ {∅}))
76 eldifi 4054 . . . . . . . . . . . . . . . . . . . 20 (𝑜 ∈ (Word 𝑊 ∖ {∅}) → 𝑜 ∈ Word 𝑊)
7773, 75, 763syl 18 . . . . . . . . . . . . . . . . . . 19 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ ((𝑏𝑊𝑐 ∈ ran (𝑇𝑏)) ∧ (𝑜 ∈ dom 𝑆 ∧ (𝑆𝑜) = 𝑏))) → 𝑜 ∈ Word 𝑊)
78 simpl2 1189 . . . . . . . . . . . . . . . . . . 19 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ ((𝑏𝑊𝑐 ∈ ran (𝑇𝑏)) ∧ (𝑜 ∈ dom 𝑆 ∧ (𝑆𝑜) = 𝑏))) → 𝑐𝑊)
79 simprlr 779 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ ((𝑏𝑊𝑐 ∈ ran (𝑇𝑏)) ∧ (𝑜 ∈ dom 𝑆 ∧ (𝑆𝑜) = 𝑏))) → 𝑐 ∈ ran (𝑇𝑏))
80 simprrr 781 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ ((𝑏𝑊𝑐 ∈ ran (𝑇𝑏)) ∧ (𝑜 ∈ dom 𝑆 ∧ (𝑆𝑜) = 𝑏))) → (𝑆𝑜) = 𝑏)
8180fveq2d 6649 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ ((𝑏𝑊𝑐 ∈ ran (𝑇𝑏)) ∧ (𝑜 ∈ dom 𝑆 ∧ (𝑆𝑜) = 𝑏))) → (𝑇‘(𝑆𝑜)) = (𝑇𝑏))
8281rneqd 5772 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ ((𝑏𝑊𝑐 ∈ ran (𝑇𝑏)) ∧ (𝑜 ∈ dom 𝑆 ∧ (𝑆𝑜) = 𝑏))) → ran (𝑇‘(𝑆𝑜)) = ran (𝑇𝑏))
8379, 82eleqtrrd 2893 . . . . . . . . . . . . . . . . . . . 20 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ ((𝑏𝑊𝑐 ∈ ran (𝑇𝑏)) ∧ (𝑜 ∈ dom 𝑆 ∧ (𝑆𝑜) = 𝑏))) → 𝑐 ∈ ran (𝑇‘(𝑆𝑜)))
841, 2, 3, 4, 5, 6efgsp1 18855 . . . . . . . . . . . . . . . . . . . 20 ((𝑜 ∈ dom 𝑆𝑐 ∈ ran (𝑇‘(𝑆𝑜))) → (𝑜 ++ ⟨“𝑐”⟩) ∈ dom 𝑆)
8573, 83, 84syl2anc 587 . . . . . . . . . . . . . . . . . . 19 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ ((𝑏𝑊𝑐 ∈ ran (𝑇𝑏)) ∧ (𝑜 ∈ dom 𝑆 ∧ (𝑆𝑜) = 𝑏))) → (𝑜 ++ ⟨“𝑐”⟩) ∈ dom 𝑆)
861, 2, 3, 4, 5, 6efgsval2 18851 . . . . . . . . . . . . . . . . . . 19 ((𝑜 ∈ Word 𝑊𝑐𝑊 ∧ (𝑜 ++ ⟨“𝑐”⟩) ∈ dom 𝑆) → (𝑆‘(𝑜 ++ ⟨“𝑐”⟩)) = 𝑐)
8777, 78, 85, 86syl3anc 1368 . . . . . . . . . . . . . . . . . 18 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ ((𝑏𝑊𝑐 ∈ ran (𝑇𝑏)) ∧ (𝑜 ∈ dom 𝑆 ∧ (𝑆𝑜) = 𝑏))) → (𝑆‘(𝑜 ++ ⟨“𝑐”⟩)) = 𝑐)
88 fnfvelrn 6825 . . . . . . . . . . . . . . . . . . 19 ((𝑆 Fn dom 𝑆 ∧ (𝑜 ++ ⟨“𝑐”⟩) ∈ dom 𝑆) → (𝑆‘(𝑜 ++ ⟨“𝑐”⟩)) ∈ ran 𝑆)
8969, 85, 88sylancr 590 . . . . . . . . . . . . . . . . . 18 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ ((𝑏𝑊𝑐 ∈ ran (𝑇𝑏)) ∧ (𝑜 ∈ dom 𝑆 ∧ (𝑆𝑜) = 𝑏))) → (𝑆‘(𝑜 ++ ⟨“𝑐”⟩)) ∈ ran 𝑆)
9087, 89eqeltrrd 2891 . . . . . . . . . . . . . . . . 17 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ ((𝑏𝑊𝑐 ∈ ran (𝑇𝑏)) ∧ (𝑜 ∈ dom 𝑆 ∧ (𝑆𝑜) = 𝑏))) → 𝑐 ∈ ran 𝑆)
9190anassrs 471 . . . . . . . . . . . . . . . 16 (((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ (𝑏𝑊𝑐 ∈ ran (𝑇𝑏))) ∧ (𝑜 ∈ dom 𝑆 ∧ (𝑆𝑜) = 𝑏)) → 𝑐 ∈ ran 𝑆)
9272, 91rexlimddv 3250 . . . . . . . . . . . . . . 15 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ (𝑏𝑊𝑐 ∈ ran (𝑇𝑏))) → 𝑐 ∈ ran 𝑆)
9392rexlimdvaa 3244 . . . . . . . . . . . . . 14 (((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) → (∃𝑏𝑊 𝑐 ∈ ran (𝑇𝑏) → 𝑐 ∈ ran 𝑆))
9449, 93syl5bi 245 . . . . . . . . . . . . 13 (((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) → (𝑐 𝑥𝑊 ran (𝑇𝑥) → 𝑐 ∈ ran 𝑆))
95 eldif 3891 . . . . . . . . . . . . . . . . . . 19 (𝑐 ∈ (𝑊 𝑥𝑊 ran (𝑇𝑥)) ↔ (𝑐𝑊 ∧ ¬ 𝑐 𝑥𝑊 ran (𝑇𝑥)))
965eleq2i 2881 . . . . . . . . . . . . . . . . . . . 20 (𝑐𝐷𝑐 ∈ (𝑊 𝑥𝑊 ran (𝑇𝑥)))
971, 2, 3, 4, 5, 6efgs1 18853 . . . . . . . . . . . . . . . . . . . 20 (𝑐𝐷 → ⟨“𝑐”⟩ ∈ dom 𝑆)
9896, 97sylbir 238 . . . . . . . . . . . . . . . . . . 19 (𝑐 ∈ (𝑊 𝑥𝑊 ran (𝑇𝑥)) → ⟨“𝑐”⟩ ∈ dom 𝑆)
9995, 98sylbir 238 . . . . . . . . . . . . . . . . . 18 ((𝑐𝑊 ∧ ¬ 𝑐 𝑥𝑊 ran (𝑇𝑥)) → ⟨“𝑐”⟩ ∈ dom 𝑆)
1001, 2, 3, 4, 5, 6efgsval 18849 . . . . . . . . . . . . . . . . . 18 (⟨“𝑐”⟩ ∈ dom 𝑆 → (𝑆‘⟨“𝑐”⟩) = (⟨“𝑐”⟩‘((♯‘⟨“𝑐”⟩) − 1)))
10199, 100syl 17 . . . . . . . . . . . . . . . . 17 ((𝑐𝑊 ∧ ¬ 𝑐 𝑥𝑊 ran (𝑇𝑥)) → (𝑆‘⟨“𝑐”⟩) = (⟨“𝑐”⟩‘((♯‘⟨“𝑐”⟩) − 1)))
102 s1len 13951 . . . . . . . . . . . . . . . . . . . . 21 (♯‘⟨“𝑐”⟩) = 1
103102oveq1i 7145 . . . . . . . . . . . . . . . . . . . 20 ((♯‘⟨“𝑐”⟩) − 1) = (1 − 1)
104 1m1e0 11697 . . . . . . . . . . . . . . . . . . . 20 (1 − 1) = 0
105103, 104eqtri 2821 . . . . . . . . . . . . . . . . . . 19 ((♯‘⟨“𝑐”⟩) − 1) = 0
106105fveq2i 6648 . . . . . . . . . . . . . . . . . 18 (⟨“𝑐”⟩‘((♯‘⟨“𝑐”⟩) − 1)) = (⟨“𝑐”⟩‘0)
107106a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑐𝑊 ∧ ¬ 𝑐 𝑥𝑊 ran (𝑇𝑥)) → (⟨“𝑐”⟩‘((♯‘⟨“𝑐”⟩) − 1)) = (⟨“𝑐”⟩‘0))
108 s1fv 13955 . . . . . . . . . . . . . . . . . 18 (𝑐𝑊 → (⟨“𝑐”⟩‘0) = 𝑐)
109108adantr 484 . . . . . . . . . . . . . . . . 17 ((𝑐𝑊 ∧ ¬ 𝑐 𝑥𝑊 ran (𝑇𝑥)) → (⟨“𝑐”⟩‘0) = 𝑐)
110101, 107, 1093eqtrd 2837 . . . . . . . . . . . . . . . 16 ((𝑐𝑊 ∧ ¬ 𝑐 𝑥𝑊 ran (𝑇𝑥)) → (𝑆‘⟨“𝑐”⟩) = 𝑐)
111 fnfvelrn 6825 . . . . . . . . . . . . . . . . 17 ((𝑆 Fn dom 𝑆 ∧ ⟨“𝑐”⟩ ∈ dom 𝑆) → (𝑆‘⟨“𝑐”⟩) ∈ ran 𝑆)
11269, 99, 111sylancr 590 . . . . . . . . . . . . . . . 16 ((𝑐𝑊 ∧ ¬ 𝑐 𝑥𝑊 ran (𝑇𝑥)) → (𝑆‘⟨“𝑐”⟩) ∈ ran 𝑆)
113110, 112eqeltrrd 2891 . . . . . . . . . . . . . . 15 ((𝑐𝑊 ∧ ¬ 𝑐 𝑥𝑊 ran (𝑇𝑥)) → 𝑐 ∈ ran 𝑆)
114113ex 416 . . . . . . . . . . . . . 14 (𝑐𝑊 → (¬ 𝑐 𝑥𝑊 ran (𝑇𝑥) → 𝑐 ∈ ran 𝑆))
1151143ad2ant2 1131 . . . . . . . . . . . . 13 (((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) → (¬ 𝑐 𝑥𝑊 ran (𝑇𝑥) → 𝑐 ∈ ran 𝑆))
11694, 115pm2.61d 182 . . . . . . . . . . . 12 (((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) → 𝑐 ∈ ran 𝑆)
117116rabssdv 4002 . . . . . . . . . . 11 ((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) → {𝑐𝑊 ∣ (♯‘𝑐) = 𝑑} ⊆ ran 𝑆)
11843, 117eqsstrid 3963 . . . . . . . . . 10 ((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) → {𝑎𝑊 ∣ (♯‘𝑎) = 𝑑} ⊆ ran 𝑆)
11941, 118unssd 4113 . . . . . . . . 9 ((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) → ({𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ∪ {𝑎𝑊 ∣ (♯‘𝑎) = 𝑑}) ⊆ ran 𝑆)
120119ex 416 . . . . . . . 8 (𝑑 ∈ ℕ0 → ({𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆 → ({𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ∪ {𝑎𝑊 ∣ (♯‘𝑎) = 𝑑}) ⊆ ran 𝑆))
121 id 22 . . . . . . . . . . . . 13 (𝑑 ∈ ℕ0𝑑 ∈ ℕ0)
122 nn0leltp1 12029 . . . . . . . . . . . . 13 (((♯‘𝑎) ∈ ℕ0𝑑 ∈ ℕ0) → ((♯‘𝑎) ≤ 𝑑 ↔ (♯‘𝑎) < (𝑑 + 1)))
12321, 121, 122syl2anr 599 . . . . . . . . . . . 12 ((𝑑 ∈ ℕ0𝑎𝑊) → ((♯‘𝑎) ≤ 𝑑 ↔ (♯‘𝑎) < (𝑑 + 1)))
12421nn0red 11944 . . . . . . . . . . . . 13 (𝑎𝑊 → (♯‘𝑎) ∈ ℝ)
125 nn0re 11894 . . . . . . . . . . . . 13 (𝑑 ∈ ℕ0𝑑 ∈ ℝ)
126 leloe 10716 . . . . . . . . . . . . 13 (((♯‘𝑎) ∈ ℝ ∧ 𝑑 ∈ ℝ) → ((♯‘𝑎) ≤ 𝑑 ↔ ((♯‘𝑎) < 𝑑 ∨ (♯‘𝑎) = 𝑑)))
127124, 125, 126syl2anr 599 . . . . . . . . . . . 12 ((𝑑 ∈ ℕ0𝑎𝑊) → ((♯‘𝑎) ≤ 𝑑 ↔ ((♯‘𝑎) < 𝑑 ∨ (♯‘𝑎) = 𝑑)))
128123, 127bitr3d 284 . . . . . . . . . . 11 ((𝑑 ∈ ℕ0𝑎𝑊) → ((♯‘𝑎) < (𝑑 + 1) ↔ ((♯‘𝑎) < 𝑑 ∨ (♯‘𝑎) = 𝑑)))
129128rabbidva 3425 . . . . . . . . . 10 (𝑑 ∈ ℕ0 → {𝑎𝑊 ∣ (♯‘𝑎) < (𝑑 + 1)} = {𝑎𝑊 ∣ ((♯‘𝑎) < 𝑑 ∨ (♯‘𝑎) = 𝑑)})
130 unrab 4226 . . . . . . . . . 10 ({𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ∪ {𝑎𝑊 ∣ (♯‘𝑎) = 𝑑}) = {𝑎𝑊 ∣ ((♯‘𝑎) < 𝑑 ∨ (♯‘𝑎) = 𝑑)}
131129, 130eqtr4di 2851 . . . . . . . . 9 (𝑑 ∈ ℕ0 → {𝑎𝑊 ∣ (♯‘𝑎) < (𝑑 + 1)} = ({𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ∪ {𝑎𝑊 ∣ (♯‘𝑎) = 𝑑}))
132131sseq1d 3946 . . . . . . . 8 (𝑑 ∈ ℕ0 → ({𝑎𝑊 ∣ (♯‘𝑎) < (𝑑 + 1)} ⊆ ran 𝑆 ↔ ({𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ∪ {𝑎𝑊 ∣ (♯‘𝑎) = 𝑑}) ⊆ ran 𝑆))
133120, 132sylibrd 262 . . . . . . 7 (𝑑 ∈ ℕ0 → ({𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆 → {𝑎𝑊 ∣ (♯‘𝑎) < (𝑑 + 1)} ⊆ ran 𝑆))
13430, 33, 36, 39, 40, 133nn0ind 12065 . . . . . 6 (((♯‘𝑐) + 1) ∈ ℕ0 → {𝑎𝑊 ∣ (♯‘𝑎) < ((♯‘𝑐) + 1)} ⊆ ran 𝑆)
13517, 18, 1343syl 18 . . . . 5 (𝑐𝑊 → {𝑎𝑊 ∣ (♯‘𝑎) < ((♯‘𝑐) + 1)} ⊆ ran 𝑆)
136 fveq2 6645 . . . . . . 7 (𝑎 = 𝑐 → (♯‘𝑎) = (♯‘𝑐))
137136breq1d 5040 . . . . . 6 (𝑎 = 𝑐 → ((♯‘𝑎) < ((♯‘𝑐) + 1) ↔ (♯‘𝑐) < ((♯‘𝑐) + 1)))
138 id 22 . . . . . 6 (𝑐𝑊𝑐𝑊)
13917nn0red 11944 . . . . . . 7 (𝑐𝑊 → (♯‘𝑐) ∈ ℝ)
140139ltp1d 11559 . . . . . 6 (𝑐𝑊 → (♯‘𝑐) < ((♯‘𝑐) + 1))
141137, 138, 140elrabd 3630 . . . . 5 (𝑐𝑊𝑐 ∈ {𝑎𝑊 ∣ (♯‘𝑎) < ((♯‘𝑐) + 1)})
142135, 141sseldd 3916 . . . 4 (𝑐𝑊𝑐 ∈ ran 𝑆)
143142ssriv 3919 . . 3 𝑊 ⊆ ran 𝑆
14412, 143eqssi 3931 . 2 ran 𝑆 = 𝑊
145 dffo2 6569 . 2 (𝑆:dom 𝑆onto𝑊 ↔ (𝑆:dom 𝑆𝑊 ∧ ran 𝑆 = 𝑊))
14610, 144, 145mpbir2an 710 1 𝑆:dom 𝑆onto𝑊
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2111  wral 3106  wrex 3107  {crab 3110  cdif 3878  cun 3879  wss 3881  c0 4243  {csn 4525  cop 4531  cotp 4533   ciun 4881   class class class wbr 5030  cmpt 5110   I cid 5424   × cxp 5517  dom cdm 5519  ran crn 5520   Fn wfn 6319  wf 6320  ontowfo 6322  cfv 6324  (class class class)co 7135  cmpo 7137  1oc1o 8078  2oc2o 8079  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   < clt 10664  cle 10665  cmin 10859  2c2 11680  0cn0 11885  +crp 12377  ...cfz 12885  ..^cfzo 13028  chash 13686  Word cword 13857   ++ cconcat 13913  ⟨“cs1 13940   splice csplice 14102  ⟨“cs2 14194   ~FG cefg 18824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-ot 4534  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-hash 13687  df-word 13858  df-concat 13914  df-s1 13941  df-substr 13994  df-pfx 14024  df-splice 14103  df-s2 14201
This theorem is referenced by:  efgredlemc  18863  efgrelexlemb  18868  efgredeu  18870  efgred2  18871
  Copyright terms: Public domain W3C validator