Step | Hyp | Ref
| Expression |
1 | | efgval.w |
. . . 4
⊢ 𝑊 = ( I ‘Word (𝐼 ×
2o)) |
2 | | efgval.r |
. . . 4
⊢ ∼ = (
~FG ‘𝐼) |
3 | | efgval2.m |
. . . 4
⊢ 𝑀 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ 〈𝑦, (1o ∖ 𝑧)〉) |
4 | | efgval2.t |
. . . 4
⊢ 𝑇 = (𝑣 ∈ 𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice 〈𝑛, 𝑛, 〈“𝑤(𝑀‘𝑤)”〉〉))) |
5 | | efgred.d |
. . . 4
⊢ 𝐷 = (𝑊 ∖ ∪
𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) |
6 | | efgred.s |
. . . 4
⊢ 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈
(1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1))) |
7 | 1, 2, 3, 4, 5, 6 | efgsf 18915 |
. . 3
⊢ 𝑆:{𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈
(1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))}⟶𝑊 |
8 | 7 | fdmi 6510 |
. . . 4
⊢ dom 𝑆 = {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈
(1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} |
9 | 8 | feq2i 6491 |
. . 3
⊢ (𝑆:dom 𝑆⟶𝑊 ↔ 𝑆:{𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈
(1..^(♯‘𝑡))(𝑡‘𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))}⟶𝑊) |
10 | 7, 9 | mpbir 234 |
. 2
⊢ 𝑆:dom 𝑆⟶𝑊 |
11 | | frn 6505 |
. . . 4
⊢ (𝑆:dom 𝑆⟶𝑊 → ran 𝑆 ⊆ 𝑊) |
12 | 10, 11 | ax-mp 5 |
. . 3
⊢ ran 𝑆 ⊆ 𝑊 |
13 | | fviss 6730 |
. . . . . . . . 9
⊢ ( I
‘Word (𝐼 ×
2o)) ⊆ Word (𝐼 × 2o) |
14 | 1, 13 | eqsstri 3927 |
. . . . . . . 8
⊢ 𝑊 ⊆ Word (𝐼 × 2o) |
15 | 14 | sseli 3889 |
. . . . . . 7
⊢ (𝑐 ∈ 𝑊 → 𝑐 ∈ Word (𝐼 × 2o)) |
16 | | lencl 13925 |
. . . . . . 7
⊢ (𝑐 ∈ Word (𝐼 × 2o) →
(♯‘𝑐) ∈
ℕ0) |
17 | 15, 16 | syl 17 |
. . . . . 6
⊢ (𝑐 ∈ 𝑊 → (♯‘𝑐) ∈
ℕ0) |
18 | | peano2nn0 11967 |
. . . . . 6
⊢
((♯‘𝑐)
∈ ℕ0 → ((♯‘𝑐) + 1) ∈
ℕ0) |
19 | 14 | sseli 3889 |
. . . . . . . . . . . 12
⊢ (𝑎 ∈ 𝑊 → 𝑎 ∈ Word (𝐼 × 2o)) |
20 | | lencl 13925 |
. . . . . . . . . . . 12
⊢ (𝑎 ∈ Word (𝐼 × 2o) →
(♯‘𝑎) ∈
ℕ0) |
21 | 19, 20 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑎 ∈ 𝑊 → (♯‘𝑎) ∈
ℕ0) |
22 | | nn0nlt0 11953 |
. . . . . . . . . . . 12
⊢
((♯‘𝑎)
∈ ℕ0 → ¬ (♯‘𝑎) < 0) |
23 | | breq2 5037 |
. . . . . . . . . . . . 13
⊢ (𝑏 = 0 →
((♯‘𝑎) <
𝑏 ↔
(♯‘𝑎) <
0)) |
24 | 23 | notbid 322 |
. . . . . . . . . . . 12
⊢ (𝑏 = 0 → (¬
(♯‘𝑎) <
𝑏 ↔ ¬
(♯‘𝑎) <
0)) |
25 | 22, 24 | syl5ibr 249 |
. . . . . . . . . . 11
⊢ (𝑏 = 0 →
((♯‘𝑎) ∈
ℕ0 → ¬ (♯‘𝑎) < 𝑏)) |
26 | 21, 25 | syl5 34 |
. . . . . . . . . 10
⊢ (𝑏 = 0 → (𝑎 ∈ 𝑊 → ¬ (♯‘𝑎) < 𝑏)) |
27 | 26 | ralrimiv 3113 |
. . . . . . . . 9
⊢ (𝑏 = 0 → ∀𝑎 ∈ 𝑊 ¬ (♯‘𝑎) < 𝑏) |
28 | | rabeq0 4281 |
. . . . . . . . 9
⊢ ({𝑎 ∈ 𝑊 ∣ (♯‘𝑎) < 𝑏} = ∅ ↔ ∀𝑎 ∈ 𝑊 ¬ (♯‘𝑎) < 𝑏) |
29 | 27, 28 | sylibr 237 |
. . . . . . . 8
⊢ (𝑏 = 0 → {𝑎 ∈ 𝑊 ∣ (♯‘𝑎) < 𝑏} = ∅) |
30 | 29 | sseq1d 3924 |
. . . . . . 7
⊢ (𝑏 = 0 → ({𝑎 ∈ 𝑊 ∣ (♯‘𝑎) < 𝑏} ⊆ ran 𝑆 ↔ ∅ ⊆ ran 𝑆)) |
31 | | breq2 5037 |
. . . . . . . . 9
⊢ (𝑏 = 𝑑 → ((♯‘𝑎) < 𝑏 ↔ (♯‘𝑎) < 𝑑)) |
32 | 31 | rabbidv 3393 |
. . . . . . . 8
⊢ (𝑏 = 𝑑 → {𝑎 ∈ 𝑊 ∣ (♯‘𝑎) < 𝑏} = {𝑎 ∈ 𝑊 ∣ (♯‘𝑎) < 𝑑}) |
33 | 32 | sseq1d 3924 |
. . . . . . 7
⊢ (𝑏 = 𝑑 → ({𝑎 ∈ 𝑊 ∣ (♯‘𝑎) < 𝑏} ⊆ ran 𝑆 ↔ {𝑎 ∈ 𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆)) |
34 | | breq2 5037 |
. . . . . . . . 9
⊢ (𝑏 = (𝑑 + 1) → ((♯‘𝑎) < 𝑏 ↔ (♯‘𝑎) < (𝑑 + 1))) |
35 | 34 | rabbidv 3393 |
. . . . . . . 8
⊢ (𝑏 = (𝑑 + 1) → {𝑎 ∈ 𝑊 ∣ (♯‘𝑎) < 𝑏} = {𝑎 ∈ 𝑊 ∣ (♯‘𝑎) < (𝑑 + 1)}) |
36 | 35 | sseq1d 3924 |
. . . . . . 7
⊢ (𝑏 = (𝑑 + 1) → ({𝑎 ∈ 𝑊 ∣ (♯‘𝑎) < 𝑏} ⊆ ran 𝑆 ↔ {𝑎 ∈ 𝑊 ∣ (♯‘𝑎) < (𝑑 + 1)} ⊆ ran 𝑆)) |
37 | | breq2 5037 |
. . . . . . . . 9
⊢ (𝑏 = ((♯‘𝑐) + 1) →
((♯‘𝑎) <
𝑏 ↔
(♯‘𝑎) <
((♯‘𝑐) +
1))) |
38 | 37 | rabbidv 3393 |
. . . . . . . 8
⊢ (𝑏 = ((♯‘𝑐) + 1) → {𝑎 ∈ 𝑊 ∣ (♯‘𝑎) < 𝑏} = {𝑎 ∈ 𝑊 ∣ (♯‘𝑎) < ((♯‘𝑐) + 1)}) |
39 | 38 | sseq1d 3924 |
. . . . . . 7
⊢ (𝑏 = ((♯‘𝑐) + 1) → ({𝑎 ∈ 𝑊 ∣ (♯‘𝑎) < 𝑏} ⊆ ran 𝑆 ↔ {𝑎 ∈ 𝑊 ∣ (♯‘𝑎) < ((♯‘𝑐) + 1)} ⊆ ran 𝑆)) |
40 | | 0ss 4293 |
. . . . . . 7
⊢ ∅
⊆ ran 𝑆 |
41 | | simpr 489 |
. . . . . . . . . 10
⊢ ((𝑑 ∈ ℕ0
∧ {𝑎 ∈ 𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) → {𝑎 ∈ 𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) |
42 | | fveqeq2 6668 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑐 → ((♯‘𝑎) = 𝑑 ↔ (♯‘𝑐) = 𝑑)) |
43 | 42 | cbvrabv 3405 |
. . . . . . . . . . 11
⊢ {𝑎 ∈ 𝑊 ∣ (♯‘𝑎) = 𝑑} = {𝑐 ∈ 𝑊 ∣ (♯‘𝑐) = 𝑑} |
44 | | eliun 4888 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 ∈ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥) ↔ ∃𝑥 ∈ 𝑊 𝑐 ∈ ran (𝑇‘𝑥)) |
45 | | fveq2 6659 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑏 → (𝑇‘𝑥) = (𝑇‘𝑏)) |
46 | 45 | rneqd 5780 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑏 → ran (𝑇‘𝑥) = ran (𝑇‘𝑏)) |
47 | 46 | eleq2d 2838 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑏 → (𝑐 ∈ ran (𝑇‘𝑥) ↔ 𝑐 ∈ ran (𝑇‘𝑏))) |
48 | 47 | cbvrexvw 3363 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑥 ∈
𝑊 𝑐 ∈ ran (𝑇‘𝑥) ↔ ∃𝑏 ∈ 𝑊 𝑐 ∈ ran (𝑇‘𝑏)) |
49 | 44, 48 | bitri 278 |
. . . . . . . . . . . . . 14
⊢ (𝑐 ∈ ∪ 𝑥 ∈ 𝑊 ran (𝑇‘𝑥) ↔ ∃𝑏 ∈ 𝑊 𝑐 ∈ ran (𝑇‘𝑏)) |
50 | | simpl1r 1223 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑑 ∈ ℕ0
∧ {𝑎 ∈ 𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐 ∈ 𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ (𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran (𝑇‘𝑏))) → {𝑎 ∈ 𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) |
51 | | fveq2 6659 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 = 𝑏 → (♯‘𝑎) = (♯‘𝑏)) |
52 | 51 | breq1d 5043 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑎 = 𝑏 → ((♯‘𝑎) < 𝑑 ↔ (♯‘𝑏) < 𝑑)) |
53 | | simprl 771 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑑 ∈ ℕ0
∧ {𝑎 ∈ 𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐 ∈ 𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ (𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran (𝑇‘𝑏))) → 𝑏 ∈ 𝑊) |
54 | 14, 53 | sseldi 3891 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑑 ∈ ℕ0
∧ {𝑎 ∈ 𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐 ∈ 𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ (𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran (𝑇‘𝑏))) → 𝑏 ∈ Word (𝐼 × 2o)) |
55 | | lencl 13925 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑏 ∈ Word (𝐼 × 2o) →
(♯‘𝑏) ∈
ℕ0) |
56 | 54, 55 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑑 ∈ ℕ0
∧ {𝑎 ∈ 𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐 ∈ 𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ (𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran (𝑇‘𝑏))) → (♯‘𝑏) ∈
ℕ0) |
57 | 56 | nn0red 11988 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑑 ∈ ℕ0
∧ {𝑎 ∈ 𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐 ∈ 𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ (𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran (𝑇‘𝑏))) → (♯‘𝑏) ∈ ℝ) |
58 | | 2rp 12428 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 2 ∈
ℝ+ |
59 | | ltaddrp 12460 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((♯‘𝑏)
∈ ℝ ∧ 2 ∈ ℝ+) → (♯‘𝑏) < ((♯‘𝑏) + 2)) |
60 | 57, 58, 59 | sylancl 590 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑑 ∈ ℕ0
∧ {𝑎 ∈ 𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐 ∈ 𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ (𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran (𝑇‘𝑏))) → (♯‘𝑏) < ((♯‘𝑏) + 2)) |
61 | 1, 2, 3, 4 | efgtlen 18912 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran (𝑇‘𝑏)) → (♯‘𝑐) = ((♯‘𝑏) + 2)) |
62 | 61 | adantl 486 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑑 ∈ ℕ0
∧ {𝑎 ∈ 𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐 ∈ 𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ (𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran (𝑇‘𝑏))) → (♯‘𝑐) = ((♯‘𝑏) + 2)) |
63 | | simpl3 1191 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑑 ∈ ℕ0
∧ {𝑎 ∈ 𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐 ∈ 𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ (𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran (𝑇‘𝑏))) → (♯‘𝑐) = 𝑑) |
64 | 62, 63 | eqtr3d 2796 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑑 ∈ ℕ0
∧ {𝑎 ∈ 𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐 ∈ 𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ (𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran (𝑇‘𝑏))) → ((♯‘𝑏) + 2) = 𝑑) |
65 | 60, 64 | breqtrd 5059 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑑 ∈ ℕ0
∧ {𝑎 ∈ 𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐 ∈ 𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ (𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran (𝑇‘𝑏))) → (♯‘𝑏) < 𝑑) |
66 | 52, 53, 65 | elrabd 3605 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑑 ∈ ℕ0
∧ {𝑎 ∈ 𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐 ∈ 𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ (𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran (𝑇‘𝑏))) → 𝑏 ∈ {𝑎 ∈ 𝑊 ∣ (♯‘𝑎) < 𝑑}) |
67 | 50, 66 | sseldd 3894 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑑 ∈ ℕ0
∧ {𝑎 ∈ 𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐 ∈ 𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ (𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran (𝑇‘𝑏))) → 𝑏 ∈ ran 𝑆) |
68 | | ffn 6499 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑆:dom 𝑆⟶𝑊 → 𝑆 Fn dom 𝑆) |
69 | 10, 68 | ax-mp 5 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑆 Fn dom 𝑆 |
70 | | fvelrnb 6715 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑆 Fn dom 𝑆 → (𝑏 ∈ ran 𝑆 ↔ ∃𝑜 ∈ dom 𝑆(𝑆‘𝑜) = 𝑏)) |
71 | 69, 70 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 ∈ ran 𝑆 ↔ ∃𝑜 ∈ dom 𝑆(𝑆‘𝑜) = 𝑏) |
72 | 67, 71 | sylib 221 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑑 ∈ ℕ0
∧ {𝑎 ∈ 𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐 ∈ 𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ (𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran (𝑇‘𝑏))) → ∃𝑜 ∈ dom 𝑆(𝑆‘𝑜) = 𝑏) |
73 | | simprrl 781 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑑 ∈ ℕ0
∧ {𝑎 ∈ 𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐 ∈ 𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ ((𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran (𝑇‘𝑏)) ∧ (𝑜 ∈ dom 𝑆 ∧ (𝑆‘𝑜) = 𝑏))) → 𝑜 ∈ dom 𝑆) |
74 | 1, 2, 3, 4, 5, 6 | efgsdm 18916 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑜 ∈ dom 𝑆 ↔ (𝑜 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝑜‘0) ∈ 𝐷 ∧ ∀𝑖 ∈
(1..^(♯‘𝑜))(𝑜‘𝑖) ∈ ran (𝑇‘(𝑜‘(𝑖 − 1))))) |
75 | 74 | simp1bi 1143 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑜 ∈ dom 𝑆 → 𝑜 ∈ (Word 𝑊 ∖ {∅})) |
76 | | eldifi 4033 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑜 ∈ (Word 𝑊 ∖ {∅}) → 𝑜 ∈ Word 𝑊) |
77 | 73, 75, 76 | 3syl 18 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑑 ∈ ℕ0
∧ {𝑎 ∈ 𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐 ∈ 𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ ((𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran (𝑇‘𝑏)) ∧ (𝑜 ∈ dom 𝑆 ∧ (𝑆‘𝑜) = 𝑏))) → 𝑜 ∈ Word 𝑊) |
78 | | simpl2 1190 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑑 ∈ ℕ0
∧ {𝑎 ∈ 𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐 ∈ 𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ ((𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran (𝑇‘𝑏)) ∧ (𝑜 ∈ dom 𝑆 ∧ (𝑆‘𝑜) = 𝑏))) → 𝑐 ∈ 𝑊) |
79 | | simprlr 780 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑑 ∈ ℕ0
∧ {𝑎 ∈ 𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐 ∈ 𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ ((𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran (𝑇‘𝑏)) ∧ (𝑜 ∈ dom 𝑆 ∧ (𝑆‘𝑜) = 𝑏))) → 𝑐 ∈ ran (𝑇‘𝑏)) |
80 | | simprrr 782 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑑 ∈ ℕ0
∧ {𝑎 ∈ 𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐 ∈ 𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ ((𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran (𝑇‘𝑏)) ∧ (𝑜 ∈ dom 𝑆 ∧ (𝑆‘𝑜) = 𝑏))) → (𝑆‘𝑜) = 𝑏) |
81 | 80 | fveq2d 6663 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑑 ∈ ℕ0
∧ {𝑎 ∈ 𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐 ∈ 𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ ((𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran (𝑇‘𝑏)) ∧ (𝑜 ∈ dom 𝑆 ∧ (𝑆‘𝑜) = 𝑏))) → (𝑇‘(𝑆‘𝑜)) = (𝑇‘𝑏)) |
82 | 81 | rneqd 5780 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑑 ∈ ℕ0
∧ {𝑎 ∈ 𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐 ∈ 𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ ((𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran (𝑇‘𝑏)) ∧ (𝑜 ∈ dom 𝑆 ∧ (𝑆‘𝑜) = 𝑏))) → ran (𝑇‘(𝑆‘𝑜)) = ran (𝑇‘𝑏)) |
83 | 79, 82 | eleqtrrd 2856 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑑 ∈ ℕ0
∧ {𝑎 ∈ 𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐 ∈ 𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ ((𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran (𝑇‘𝑏)) ∧ (𝑜 ∈ dom 𝑆 ∧ (𝑆‘𝑜) = 𝑏))) → 𝑐 ∈ ran (𝑇‘(𝑆‘𝑜))) |
84 | 1, 2, 3, 4, 5, 6 | efgsp1 18923 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑜 ∈ dom 𝑆 ∧ 𝑐 ∈ ran (𝑇‘(𝑆‘𝑜))) → (𝑜 ++ 〈“𝑐”〉) ∈ dom 𝑆) |
85 | 73, 83, 84 | syl2anc 588 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑑 ∈ ℕ0
∧ {𝑎 ∈ 𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐 ∈ 𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ ((𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran (𝑇‘𝑏)) ∧ (𝑜 ∈ dom 𝑆 ∧ (𝑆‘𝑜) = 𝑏))) → (𝑜 ++ 〈“𝑐”〉) ∈ dom 𝑆) |
86 | 1, 2, 3, 4, 5, 6 | efgsval2 18919 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑜 ∈ Word 𝑊 ∧ 𝑐 ∈ 𝑊 ∧ (𝑜 ++ 〈“𝑐”〉) ∈ dom 𝑆) → (𝑆‘(𝑜 ++ 〈“𝑐”〉)) = 𝑐) |
87 | 77, 78, 85, 86 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑑 ∈ ℕ0
∧ {𝑎 ∈ 𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐 ∈ 𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ ((𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran (𝑇‘𝑏)) ∧ (𝑜 ∈ dom 𝑆 ∧ (𝑆‘𝑜) = 𝑏))) → (𝑆‘(𝑜 ++ 〈“𝑐”〉)) = 𝑐) |
88 | | fnfvelrn 6840 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑆 Fn dom 𝑆 ∧ (𝑜 ++ 〈“𝑐”〉) ∈ dom 𝑆) → (𝑆‘(𝑜 ++ 〈“𝑐”〉)) ∈ ran 𝑆) |
89 | 69, 85, 88 | sylancr 591 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑑 ∈ ℕ0
∧ {𝑎 ∈ 𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐 ∈ 𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ ((𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran (𝑇‘𝑏)) ∧ (𝑜 ∈ dom 𝑆 ∧ (𝑆‘𝑜) = 𝑏))) → (𝑆‘(𝑜 ++ 〈“𝑐”〉)) ∈ ran 𝑆) |
90 | 87, 89 | eqeltrrd 2854 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑑 ∈ ℕ0
∧ {𝑎 ∈ 𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐 ∈ 𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ ((𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran (𝑇‘𝑏)) ∧ (𝑜 ∈ dom 𝑆 ∧ (𝑆‘𝑜) = 𝑏))) → 𝑐 ∈ ran 𝑆) |
91 | 90 | anassrs 472 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑑 ∈
ℕ0 ∧ {𝑎 ∈ 𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐 ∈ 𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ (𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran (𝑇‘𝑏))) ∧ (𝑜 ∈ dom 𝑆 ∧ (𝑆‘𝑜) = 𝑏)) → 𝑐 ∈ ran 𝑆) |
92 | 72, 91 | rexlimddv 3216 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑑 ∈ ℕ0
∧ {𝑎 ∈ 𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐 ∈ 𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ (𝑏 ∈ 𝑊 ∧ 𝑐 ∈ ran (𝑇‘𝑏))) → 𝑐 ∈ ran 𝑆) |
93 | 92 | rexlimdvaa 3210 |
. . . . . . . . . . . . . 14
⊢ (((𝑑 ∈ ℕ0
∧ {𝑎 ∈ 𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐 ∈ 𝑊 ∧ (♯‘𝑐) = 𝑑) → (∃𝑏 ∈ 𝑊 𝑐 ∈ ran (𝑇‘𝑏) → 𝑐 ∈ ran 𝑆)) |
94 | 49, 93 | syl5bi 245 |
. . . . . . . . . . . . 13
⊢ (((𝑑 ∈ ℕ0
∧ {𝑎 ∈ 𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐 ∈ 𝑊 ∧ (♯‘𝑐) = 𝑑) → (𝑐 ∈ ∪
𝑥 ∈ 𝑊 ran (𝑇‘𝑥) → 𝑐 ∈ ran 𝑆)) |
95 | | eldif 3869 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑐 ∈ (𝑊 ∖ ∪
𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) ↔ (𝑐 ∈ 𝑊 ∧ ¬ 𝑐 ∈ ∪
𝑥 ∈ 𝑊 ran (𝑇‘𝑥))) |
96 | 5 | eleq2i 2844 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑐 ∈ 𝐷 ↔ 𝑐 ∈ (𝑊 ∖ ∪
𝑥 ∈ 𝑊 ran (𝑇‘𝑥))) |
97 | 1, 2, 3, 4, 5, 6 | efgs1 18921 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑐 ∈ 𝐷 → 〈“𝑐”〉 ∈ dom 𝑆) |
98 | 96, 97 | sylbir 238 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑐 ∈ (𝑊 ∖ ∪
𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) → 〈“𝑐”〉 ∈ dom 𝑆) |
99 | 95, 98 | sylbir 238 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑐 ∈ 𝑊 ∧ ¬ 𝑐 ∈ ∪
𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) → 〈“𝑐”〉 ∈ dom 𝑆) |
100 | 1, 2, 3, 4, 5, 6 | efgsval 18917 |
. . . . . . . . . . . . . . . . . 18
⊢
(〈“𝑐”〉 ∈ dom 𝑆 → (𝑆‘〈“𝑐”〉) = (〈“𝑐”〉‘((♯‘〈“𝑐”〉) −
1))) |
101 | 99, 100 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑐 ∈ 𝑊 ∧ ¬ 𝑐 ∈ ∪
𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) → (𝑆‘〈“𝑐”〉) = (〈“𝑐”〉‘((♯‘〈“𝑐”〉) −
1))) |
102 | | s1len 14000 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(♯‘〈“𝑐”〉) = 1 |
103 | 102 | oveq1i 7161 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((♯‘〈“𝑐”〉) − 1) = (1 −
1) |
104 | | 1m1e0 11739 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (1
− 1) = 0 |
105 | 103, 104 | eqtri 2782 |
. . . . . . . . . . . . . . . . . . 19
⊢
((♯‘〈“𝑐”〉) − 1) =
0 |
106 | 105 | fveq2i 6662 |
. . . . . . . . . . . . . . . . . 18
⊢
(〈“𝑐”〉‘((♯‘〈“𝑐”〉) − 1)) =
(〈“𝑐”〉‘0) |
107 | 106 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑐 ∈ 𝑊 ∧ ¬ 𝑐 ∈ ∪
𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) → (〈“𝑐”〉‘((♯‘〈“𝑐”〉) − 1)) =
(〈“𝑐”〉‘0)) |
108 | | s1fv 14004 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑐 ∈ 𝑊 → (〈“𝑐”〉‘0) = 𝑐) |
109 | 108 | adantr 485 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑐 ∈ 𝑊 ∧ ¬ 𝑐 ∈ ∪
𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) → (〈“𝑐”〉‘0) = 𝑐) |
110 | 101, 107,
109 | 3eqtrd 2798 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑐 ∈ 𝑊 ∧ ¬ 𝑐 ∈ ∪
𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) → (𝑆‘〈“𝑐”〉) = 𝑐) |
111 | | fnfvelrn 6840 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑆 Fn dom 𝑆 ∧ 〈“𝑐”〉 ∈ dom 𝑆) → (𝑆‘〈“𝑐”〉) ∈ ran 𝑆) |
112 | 69, 99, 111 | sylancr 591 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑐 ∈ 𝑊 ∧ ¬ 𝑐 ∈ ∪
𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) → (𝑆‘〈“𝑐”〉) ∈ ran 𝑆) |
113 | 110, 112 | eqeltrrd 2854 |
. . . . . . . . . . . . . . 15
⊢ ((𝑐 ∈ 𝑊 ∧ ¬ 𝑐 ∈ ∪
𝑥 ∈ 𝑊 ran (𝑇‘𝑥)) → 𝑐 ∈ ran 𝑆) |
114 | 113 | ex 417 |
. . . . . . . . . . . . . 14
⊢ (𝑐 ∈ 𝑊 → (¬ 𝑐 ∈ ∪
𝑥 ∈ 𝑊 ran (𝑇‘𝑥) → 𝑐 ∈ ran 𝑆)) |
115 | 114 | 3ad2ant2 1132 |
. . . . . . . . . . . . 13
⊢ (((𝑑 ∈ ℕ0
∧ {𝑎 ∈ 𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐 ∈ 𝑊 ∧ (♯‘𝑐) = 𝑑) → (¬ 𝑐 ∈ ∪
𝑥 ∈ 𝑊 ran (𝑇‘𝑥) → 𝑐 ∈ ran 𝑆)) |
116 | 94, 115 | pm2.61d 182 |
. . . . . . . . . . . 12
⊢ (((𝑑 ∈ ℕ0
∧ {𝑎 ∈ 𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐 ∈ 𝑊 ∧ (♯‘𝑐) = 𝑑) → 𝑐 ∈ ran 𝑆) |
117 | 116 | rabssdv 3980 |
. . . . . . . . . . 11
⊢ ((𝑑 ∈ ℕ0
∧ {𝑎 ∈ 𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) → {𝑐 ∈ 𝑊 ∣ (♯‘𝑐) = 𝑑} ⊆ ran 𝑆) |
118 | 43, 117 | eqsstrid 3941 |
. . . . . . . . . 10
⊢ ((𝑑 ∈ ℕ0
∧ {𝑎 ∈ 𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) → {𝑎 ∈ 𝑊 ∣ (♯‘𝑎) = 𝑑} ⊆ ran 𝑆) |
119 | 41, 118 | unssd 4092 |
. . . . . . . . 9
⊢ ((𝑑 ∈ ℕ0
∧ {𝑎 ∈ 𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) → ({𝑎 ∈ 𝑊 ∣ (♯‘𝑎) < 𝑑} ∪ {𝑎 ∈ 𝑊 ∣ (♯‘𝑎) = 𝑑}) ⊆ ran 𝑆) |
120 | 119 | ex 417 |
. . . . . . . 8
⊢ (𝑑 ∈ ℕ0
→ ({𝑎 ∈ 𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆 → ({𝑎 ∈ 𝑊 ∣ (♯‘𝑎) < 𝑑} ∪ {𝑎 ∈ 𝑊 ∣ (♯‘𝑎) = 𝑑}) ⊆ ran 𝑆)) |
121 | | id 22 |
. . . . . . . . . . . . 13
⊢ (𝑑 ∈ ℕ0
→ 𝑑 ∈
ℕ0) |
122 | | nn0leltp1 12073 |
. . . . . . . . . . . . 13
⊢
(((♯‘𝑎)
∈ ℕ0 ∧ 𝑑 ∈ ℕ0) →
((♯‘𝑎) ≤
𝑑 ↔
(♯‘𝑎) <
(𝑑 + 1))) |
123 | 21, 121, 122 | syl2anr 600 |
. . . . . . . . . . . 12
⊢ ((𝑑 ∈ ℕ0
∧ 𝑎 ∈ 𝑊) → ((♯‘𝑎) ≤ 𝑑 ↔ (♯‘𝑎) < (𝑑 + 1))) |
124 | 21 | nn0red 11988 |
. . . . . . . . . . . . 13
⊢ (𝑎 ∈ 𝑊 → (♯‘𝑎) ∈ ℝ) |
125 | | nn0re 11936 |
. . . . . . . . . . . . 13
⊢ (𝑑 ∈ ℕ0
→ 𝑑 ∈
ℝ) |
126 | | leloe 10758 |
. . . . . . . . . . . . 13
⊢
(((♯‘𝑎)
∈ ℝ ∧ 𝑑
∈ ℝ) → ((♯‘𝑎) ≤ 𝑑 ↔ ((♯‘𝑎) < 𝑑 ∨ (♯‘𝑎) = 𝑑))) |
127 | 124, 125,
126 | syl2anr 600 |
. . . . . . . . . . . 12
⊢ ((𝑑 ∈ ℕ0
∧ 𝑎 ∈ 𝑊) → ((♯‘𝑎) ≤ 𝑑 ↔ ((♯‘𝑎) < 𝑑 ∨ (♯‘𝑎) = 𝑑))) |
128 | 123, 127 | bitr3d 284 |
. . . . . . . . . . 11
⊢ ((𝑑 ∈ ℕ0
∧ 𝑎 ∈ 𝑊) → ((♯‘𝑎) < (𝑑 + 1) ↔ ((♯‘𝑎) < 𝑑 ∨ (♯‘𝑎) = 𝑑))) |
129 | 128 | rabbidva 3391 |
. . . . . . . . . 10
⊢ (𝑑 ∈ ℕ0
→ {𝑎 ∈ 𝑊 ∣ (♯‘𝑎) < (𝑑 + 1)} = {𝑎 ∈ 𝑊 ∣ ((♯‘𝑎) < 𝑑 ∨ (♯‘𝑎) = 𝑑)}) |
130 | | unrab 4209 |
. . . . . . . . . 10
⊢ ({𝑎 ∈ 𝑊 ∣ (♯‘𝑎) < 𝑑} ∪ {𝑎 ∈ 𝑊 ∣ (♯‘𝑎) = 𝑑}) = {𝑎 ∈ 𝑊 ∣ ((♯‘𝑎) < 𝑑 ∨ (♯‘𝑎) = 𝑑)} |
131 | 129, 130 | eqtr4di 2812 |
. . . . . . . . 9
⊢ (𝑑 ∈ ℕ0
→ {𝑎 ∈ 𝑊 ∣ (♯‘𝑎) < (𝑑 + 1)} = ({𝑎 ∈ 𝑊 ∣ (♯‘𝑎) < 𝑑} ∪ {𝑎 ∈ 𝑊 ∣ (♯‘𝑎) = 𝑑})) |
132 | 131 | sseq1d 3924 |
. . . . . . . 8
⊢ (𝑑 ∈ ℕ0
→ ({𝑎 ∈ 𝑊 ∣ (♯‘𝑎) < (𝑑 + 1)} ⊆ ran 𝑆 ↔ ({𝑎 ∈ 𝑊 ∣ (♯‘𝑎) < 𝑑} ∪ {𝑎 ∈ 𝑊 ∣ (♯‘𝑎) = 𝑑}) ⊆ ran 𝑆)) |
133 | 120, 132 | sylibrd 262 |
. . . . . . 7
⊢ (𝑑 ∈ ℕ0
→ ({𝑎 ∈ 𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆 → {𝑎 ∈ 𝑊 ∣ (♯‘𝑎) < (𝑑 + 1)} ⊆ ran 𝑆)) |
134 | 30, 33, 36, 39, 40, 133 | nn0ind 12109 |
. . . . . 6
⊢
(((♯‘𝑐)
+ 1) ∈ ℕ0 → {𝑎 ∈ 𝑊 ∣ (♯‘𝑎) < ((♯‘𝑐) + 1)} ⊆ ran 𝑆) |
135 | 17, 18, 134 | 3syl 18 |
. . . . 5
⊢ (𝑐 ∈ 𝑊 → {𝑎 ∈ 𝑊 ∣ (♯‘𝑎) < ((♯‘𝑐) + 1)} ⊆ ran 𝑆) |
136 | | fveq2 6659 |
. . . . . . 7
⊢ (𝑎 = 𝑐 → (♯‘𝑎) = (♯‘𝑐)) |
137 | 136 | breq1d 5043 |
. . . . . 6
⊢ (𝑎 = 𝑐 → ((♯‘𝑎) < ((♯‘𝑐) + 1) ↔ (♯‘𝑐) < ((♯‘𝑐) + 1))) |
138 | | id 22 |
. . . . . 6
⊢ (𝑐 ∈ 𝑊 → 𝑐 ∈ 𝑊) |
139 | 17 | nn0red 11988 |
. . . . . . 7
⊢ (𝑐 ∈ 𝑊 → (♯‘𝑐) ∈ ℝ) |
140 | 139 | ltp1d 11601 |
. . . . . 6
⊢ (𝑐 ∈ 𝑊 → (♯‘𝑐) < ((♯‘𝑐) + 1)) |
141 | 137, 138,
140 | elrabd 3605 |
. . . . 5
⊢ (𝑐 ∈ 𝑊 → 𝑐 ∈ {𝑎 ∈ 𝑊 ∣ (♯‘𝑎) < ((♯‘𝑐) + 1)}) |
142 | 135, 141 | sseldd 3894 |
. . . 4
⊢ (𝑐 ∈ 𝑊 → 𝑐 ∈ ran 𝑆) |
143 | 142 | ssriv 3897 |
. . 3
⊢ 𝑊 ⊆ ran 𝑆 |
144 | 12, 143 | eqssi 3909 |
. 2
⊢ ran 𝑆 = 𝑊 |
145 | | dffo2 6581 |
. 2
⊢ (𝑆:dom 𝑆–onto→𝑊 ↔ (𝑆:dom 𝑆⟶𝑊 ∧ ran 𝑆 = 𝑊)) |
146 | 10, 144, 145 | mpbir2an 711 |
1
⊢ 𝑆:dom 𝑆–onto→𝑊 |