MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgsfo Structured version   Visualization version   GIF version

Theorem efgsfo 19720
Description: For any word, there is a sequence of extensions starting at a reduced word and ending at the target word, such that each word in the chain is an extension of the previous (inserting an element and its inverse at adjacent indices somewhere in the sequence). (Contributed by Mario Carneiro, 27-Sep-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
Assertion
Ref Expression
efgsfo 𝑆:dom 𝑆onto𝑊
Distinct variable groups:   𝑦,𝑧   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧,𝑚,𝑥   𝑚,𝑀   𝑥,𝑛,𝑀,𝑡,𝑣,𝑤   𝑘,𝑚,𝑡,𝑥,𝑇   𝑘,𝑛,𝑣,𝑤,𝑦,𝑧,𝑊,𝑚,𝑡,𝑥   ,𝑚,𝑡,𝑥,𝑦,𝑧   𝑚,𝐼,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑚,𝑡
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐼(𝑘)   𝑀(𝑦,𝑧,𝑘)

Proof of Theorem efgsfo
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑖 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efgval.w . . . 4 𝑊 = ( I ‘Word (𝐼 × 2o))
2 efgval.r . . . 4 = ( ~FG𝐼)
3 efgval2.m . . . 4 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
4 efgval2.t . . . 4 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
5 efgred.d . . . 4 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
6 efgred.s . . . 4 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
71, 2, 3, 4, 5, 6efgsf 19710 . . 3 𝑆:{𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))}⟶𝑊
87fdmi 6717 . . . 4 dom 𝑆 = {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))}
98feq2i 6698 . . 3 (𝑆:dom 𝑆𝑊𝑆:{𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))}⟶𝑊)
107, 9mpbir 231 . 2 𝑆:dom 𝑆𝑊
11 frn 6713 . . . 4 (𝑆:dom 𝑆𝑊 → ran 𝑆𝑊)
1210, 11ax-mp 5 . . 3 ran 𝑆𝑊
13 fviss 6956 . . . . . . . . 9 ( I ‘Word (𝐼 × 2o)) ⊆ Word (𝐼 × 2o)
141, 13eqsstri 4005 . . . . . . . 8 𝑊 ⊆ Word (𝐼 × 2o)
1514sseli 3954 . . . . . . 7 (𝑐𝑊𝑐 ∈ Word (𝐼 × 2o))
16 lencl 14551 . . . . . . 7 (𝑐 ∈ Word (𝐼 × 2o) → (♯‘𝑐) ∈ ℕ0)
1715, 16syl 17 . . . . . 6 (𝑐𝑊 → (♯‘𝑐) ∈ ℕ0)
18 peano2nn0 12541 . . . . . 6 ((♯‘𝑐) ∈ ℕ0 → ((♯‘𝑐) + 1) ∈ ℕ0)
1914sseli 3954 . . . . . . . . . . . 12 (𝑎𝑊𝑎 ∈ Word (𝐼 × 2o))
20 lencl 14551 . . . . . . . . . . . 12 (𝑎 ∈ Word (𝐼 × 2o) → (♯‘𝑎) ∈ ℕ0)
2119, 20syl 17 . . . . . . . . . . 11 (𝑎𝑊 → (♯‘𝑎) ∈ ℕ0)
22 nn0nlt0 12527 . . . . . . . . . . . 12 ((♯‘𝑎) ∈ ℕ0 → ¬ (♯‘𝑎) < 0)
23 breq2 5123 . . . . . . . . . . . . 13 (𝑏 = 0 → ((♯‘𝑎) < 𝑏 ↔ (♯‘𝑎) < 0))
2423notbid 318 . . . . . . . . . . . 12 (𝑏 = 0 → (¬ (♯‘𝑎) < 𝑏 ↔ ¬ (♯‘𝑎) < 0))
2522, 24imbitrrid 246 . . . . . . . . . . 11 (𝑏 = 0 → ((♯‘𝑎) ∈ ℕ0 → ¬ (♯‘𝑎) < 𝑏))
2621, 25syl5 34 . . . . . . . . . 10 (𝑏 = 0 → (𝑎𝑊 → ¬ (♯‘𝑎) < 𝑏))
2726ralrimiv 3131 . . . . . . . . 9 (𝑏 = 0 → ∀𝑎𝑊 ¬ (♯‘𝑎) < 𝑏)
28 rabeq0 4363 . . . . . . . . 9 ({𝑎𝑊 ∣ (♯‘𝑎) < 𝑏} = ∅ ↔ ∀𝑎𝑊 ¬ (♯‘𝑎) < 𝑏)
2927, 28sylibr 234 . . . . . . . 8 (𝑏 = 0 → {𝑎𝑊 ∣ (♯‘𝑎) < 𝑏} = ∅)
3029sseq1d 3990 . . . . . . 7 (𝑏 = 0 → ({𝑎𝑊 ∣ (♯‘𝑎) < 𝑏} ⊆ ran 𝑆 ↔ ∅ ⊆ ran 𝑆))
31 breq2 5123 . . . . . . . . 9 (𝑏 = 𝑑 → ((♯‘𝑎) < 𝑏 ↔ (♯‘𝑎) < 𝑑))
3231rabbidv 3423 . . . . . . . 8 (𝑏 = 𝑑 → {𝑎𝑊 ∣ (♯‘𝑎) < 𝑏} = {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑})
3332sseq1d 3990 . . . . . . 7 (𝑏 = 𝑑 → ({𝑎𝑊 ∣ (♯‘𝑎) < 𝑏} ⊆ ran 𝑆 ↔ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆))
34 breq2 5123 . . . . . . . . 9 (𝑏 = (𝑑 + 1) → ((♯‘𝑎) < 𝑏 ↔ (♯‘𝑎) < (𝑑 + 1)))
3534rabbidv 3423 . . . . . . . 8 (𝑏 = (𝑑 + 1) → {𝑎𝑊 ∣ (♯‘𝑎) < 𝑏} = {𝑎𝑊 ∣ (♯‘𝑎) < (𝑑 + 1)})
3635sseq1d 3990 . . . . . . 7 (𝑏 = (𝑑 + 1) → ({𝑎𝑊 ∣ (♯‘𝑎) < 𝑏} ⊆ ran 𝑆 ↔ {𝑎𝑊 ∣ (♯‘𝑎) < (𝑑 + 1)} ⊆ ran 𝑆))
37 breq2 5123 . . . . . . . . 9 (𝑏 = ((♯‘𝑐) + 1) → ((♯‘𝑎) < 𝑏 ↔ (♯‘𝑎) < ((♯‘𝑐) + 1)))
3837rabbidv 3423 . . . . . . . 8 (𝑏 = ((♯‘𝑐) + 1) → {𝑎𝑊 ∣ (♯‘𝑎) < 𝑏} = {𝑎𝑊 ∣ (♯‘𝑎) < ((♯‘𝑐) + 1)})
3938sseq1d 3990 . . . . . . 7 (𝑏 = ((♯‘𝑐) + 1) → ({𝑎𝑊 ∣ (♯‘𝑎) < 𝑏} ⊆ ran 𝑆 ↔ {𝑎𝑊 ∣ (♯‘𝑎) < ((♯‘𝑐) + 1)} ⊆ ran 𝑆))
40 0ss 4375 . . . . . . 7 ∅ ⊆ ran 𝑆
41 simpr 484 . . . . . . . . . 10 ((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) → {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆)
42 fveqeq2 6885 . . . . . . . . . . . 12 (𝑎 = 𝑐 → ((♯‘𝑎) = 𝑑 ↔ (♯‘𝑐) = 𝑑))
4342cbvrabv 3426 . . . . . . . . . . 11 {𝑎𝑊 ∣ (♯‘𝑎) = 𝑑} = {𝑐𝑊 ∣ (♯‘𝑐) = 𝑑}
44 eliun 4971 . . . . . . . . . . . . . . 15 (𝑐 𝑥𝑊 ran (𝑇𝑥) ↔ ∃𝑥𝑊 𝑐 ∈ ran (𝑇𝑥))
45 fveq2 6876 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑏 → (𝑇𝑥) = (𝑇𝑏))
4645rneqd 5918 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑏 → ran (𝑇𝑥) = ran (𝑇𝑏))
4746eleq2d 2820 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑏 → (𝑐 ∈ ran (𝑇𝑥) ↔ 𝑐 ∈ ran (𝑇𝑏)))
4847cbvrexvw 3221 . . . . . . . . . . . . . . 15 (∃𝑥𝑊 𝑐 ∈ ran (𝑇𝑥) ↔ ∃𝑏𝑊 𝑐 ∈ ran (𝑇𝑏))
4944, 48bitri 275 . . . . . . . . . . . . . 14 (𝑐 𝑥𝑊 ran (𝑇𝑥) ↔ ∃𝑏𝑊 𝑐 ∈ ran (𝑇𝑏))
50 simpl1r 1226 . . . . . . . . . . . . . . . . . 18 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ (𝑏𝑊𝑐 ∈ ran (𝑇𝑏))) → {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆)
51 fveq2 6876 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝑏 → (♯‘𝑎) = (♯‘𝑏))
5251breq1d 5129 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝑏 → ((♯‘𝑎) < 𝑑 ↔ (♯‘𝑏) < 𝑑))
53 simprl 770 . . . . . . . . . . . . . . . . . . 19 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ (𝑏𝑊𝑐 ∈ ran (𝑇𝑏))) → 𝑏𝑊)
5414, 53sselid 3956 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ (𝑏𝑊𝑐 ∈ ran (𝑇𝑏))) → 𝑏 ∈ Word (𝐼 × 2o))
55 lencl 14551 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 ∈ Word (𝐼 × 2o) → (♯‘𝑏) ∈ ℕ0)
5654, 55syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ (𝑏𝑊𝑐 ∈ ran (𝑇𝑏))) → (♯‘𝑏) ∈ ℕ0)
5756nn0red 12563 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ (𝑏𝑊𝑐 ∈ ran (𝑇𝑏))) → (♯‘𝑏) ∈ ℝ)
58 2rp 13013 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℝ+
59 ltaddrp 13046 . . . . . . . . . . . . . . . . . . . . 21 (((♯‘𝑏) ∈ ℝ ∧ 2 ∈ ℝ+) → (♯‘𝑏) < ((♯‘𝑏) + 2))
6057, 58, 59sylancl 586 . . . . . . . . . . . . . . . . . . . 20 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ (𝑏𝑊𝑐 ∈ ran (𝑇𝑏))) → (♯‘𝑏) < ((♯‘𝑏) + 2))
611, 2, 3, 4efgtlen 19707 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑏𝑊𝑐 ∈ ran (𝑇𝑏)) → (♯‘𝑐) = ((♯‘𝑏) + 2))
6261adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ (𝑏𝑊𝑐 ∈ ran (𝑇𝑏))) → (♯‘𝑐) = ((♯‘𝑏) + 2))
63 simpl3 1194 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ (𝑏𝑊𝑐 ∈ ran (𝑇𝑏))) → (♯‘𝑐) = 𝑑)
6462, 63eqtr3d 2772 . . . . . . . . . . . . . . . . . . . 20 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ (𝑏𝑊𝑐 ∈ ran (𝑇𝑏))) → ((♯‘𝑏) + 2) = 𝑑)
6560, 64breqtrd 5145 . . . . . . . . . . . . . . . . . . 19 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ (𝑏𝑊𝑐 ∈ ran (𝑇𝑏))) → (♯‘𝑏) < 𝑑)
6652, 53, 65elrabd 3673 . . . . . . . . . . . . . . . . . 18 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ (𝑏𝑊𝑐 ∈ ran (𝑇𝑏))) → 𝑏 ∈ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑})
6750, 66sseldd 3959 . . . . . . . . . . . . . . . . 17 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ (𝑏𝑊𝑐 ∈ ran (𝑇𝑏))) → 𝑏 ∈ ran 𝑆)
68 ffn 6706 . . . . . . . . . . . . . . . . . . 19 (𝑆:dom 𝑆𝑊𝑆 Fn dom 𝑆)
6910, 68ax-mp 5 . . . . . . . . . . . . . . . . . 18 𝑆 Fn dom 𝑆
70 fvelrnb 6939 . . . . . . . . . . . . . . . . . 18 (𝑆 Fn dom 𝑆 → (𝑏 ∈ ran 𝑆 ↔ ∃𝑜 ∈ dom 𝑆(𝑆𝑜) = 𝑏))
7169, 70ax-mp 5 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ ran 𝑆 ↔ ∃𝑜 ∈ dom 𝑆(𝑆𝑜) = 𝑏)
7267, 71sylib 218 . . . . . . . . . . . . . . . 16 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ (𝑏𝑊𝑐 ∈ ran (𝑇𝑏))) → ∃𝑜 ∈ dom 𝑆(𝑆𝑜) = 𝑏)
73 simprrl 780 . . . . . . . . . . . . . . . . . . . 20 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ ((𝑏𝑊𝑐 ∈ ran (𝑇𝑏)) ∧ (𝑜 ∈ dom 𝑆 ∧ (𝑆𝑜) = 𝑏))) → 𝑜 ∈ dom 𝑆)
741, 2, 3, 4, 5, 6efgsdm 19711 . . . . . . . . . . . . . . . . . . . . 21 (𝑜 ∈ dom 𝑆 ↔ (𝑜 ∈ (Word 𝑊 ∖ {∅}) ∧ (𝑜‘0) ∈ 𝐷 ∧ ∀𝑖 ∈ (1..^(♯‘𝑜))(𝑜𝑖) ∈ ran (𝑇‘(𝑜‘(𝑖 − 1)))))
7574simp1bi 1145 . . . . . . . . . . . . . . . . . . . 20 (𝑜 ∈ dom 𝑆𝑜 ∈ (Word 𝑊 ∖ {∅}))
76 eldifi 4106 . . . . . . . . . . . . . . . . . . . 20 (𝑜 ∈ (Word 𝑊 ∖ {∅}) → 𝑜 ∈ Word 𝑊)
7773, 75, 763syl 18 . . . . . . . . . . . . . . . . . . 19 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ ((𝑏𝑊𝑐 ∈ ran (𝑇𝑏)) ∧ (𝑜 ∈ dom 𝑆 ∧ (𝑆𝑜) = 𝑏))) → 𝑜 ∈ Word 𝑊)
78 simpl2 1193 . . . . . . . . . . . . . . . . . . 19 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ ((𝑏𝑊𝑐 ∈ ran (𝑇𝑏)) ∧ (𝑜 ∈ dom 𝑆 ∧ (𝑆𝑜) = 𝑏))) → 𝑐𝑊)
79 simprlr 779 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ ((𝑏𝑊𝑐 ∈ ran (𝑇𝑏)) ∧ (𝑜 ∈ dom 𝑆 ∧ (𝑆𝑜) = 𝑏))) → 𝑐 ∈ ran (𝑇𝑏))
80 simprrr 781 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ ((𝑏𝑊𝑐 ∈ ran (𝑇𝑏)) ∧ (𝑜 ∈ dom 𝑆 ∧ (𝑆𝑜) = 𝑏))) → (𝑆𝑜) = 𝑏)
8180fveq2d 6880 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ ((𝑏𝑊𝑐 ∈ ran (𝑇𝑏)) ∧ (𝑜 ∈ dom 𝑆 ∧ (𝑆𝑜) = 𝑏))) → (𝑇‘(𝑆𝑜)) = (𝑇𝑏))
8281rneqd 5918 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ ((𝑏𝑊𝑐 ∈ ran (𝑇𝑏)) ∧ (𝑜 ∈ dom 𝑆 ∧ (𝑆𝑜) = 𝑏))) → ran (𝑇‘(𝑆𝑜)) = ran (𝑇𝑏))
8379, 82eleqtrrd 2837 . . . . . . . . . . . . . . . . . . . 20 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ ((𝑏𝑊𝑐 ∈ ran (𝑇𝑏)) ∧ (𝑜 ∈ dom 𝑆 ∧ (𝑆𝑜) = 𝑏))) → 𝑐 ∈ ran (𝑇‘(𝑆𝑜)))
841, 2, 3, 4, 5, 6efgsp1 19718 . . . . . . . . . . . . . . . . . . . 20 ((𝑜 ∈ dom 𝑆𝑐 ∈ ran (𝑇‘(𝑆𝑜))) → (𝑜 ++ ⟨“𝑐”⟩) ∈ dom 𝑆)
8573, 83, 84syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ ((𝑏𝑊𝑐 ∈ ran (𝑇𝑏)) ∧ (𝑜 ∈ dom 𝑆 ∧ (𝑆𝑜) = 𝑏))) → (𝑜 ++ ⟨“𝑐”⟩) ∈ dom 𝑆)
861, 2, 3, 4, 5, 6efgsval2 19714 . . . . . . . . . . . . . . . . . . 19 ((𝑜 ∈ Word 𝑊𝑐𝑊 ∧ (𝑜 ++ ⟨“𝑐”⟩) ∈ dom 𝑆) → (𝑆‘(𝑜 ++ ⟨“𝑐”⟩)) = 𝑐)
8777, 78, 85, 86syl3anc 1373 . . . . . . . . . . . . . . . . . 18 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ ((𝑏𝑊𝑐 ∈ ran (𝑇𝑏)) ∧ (𝑜 ∈ dom 𝑆 ∧ (𝑆𝑜) = 𝑏))) → (𝑆‘(𝑜 ++ ⟨“𝑐”⟩)) = 𝑐)
88 fnfvelrn 7070 . . . . . . . . . . . . . . . . . . 19 ((𝑆 Fn dom 𝑆 ∧ (𝑜 ++ ⟨“𝑐”⟩) ∈ dom 𝑆) → (𝑆‘(𝑜 ++ ⟨“𝑐”⟩)) ∈ ran 𝑆)
8969, 85, 88sylancr 587 . . . . . . . . . . . . . . . . . 18 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ ((𝑏𝑊𝑐 ∈ ran (𝑇𝑏)) ∧ (𝑜 ∈ dom 𝑆 ∧ (𝑆𝑜) = 𝑏))) → (𝑆‘(𝑜 ++ ⟨“𝑐”⟩)) ∈ ran 𝑆)
9087, 89eqeltrrd 2835 . . . . . . . . . . . . . . . . 17 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ ((𝑏𝑊𝑐 ∈ ran (𝑇𝑏)) ∧ (𝑜 ∈ dom 𝑆 ∧ (𝑆𝑜) = 𝑏))) → 𝑐 ∈ ran 𝑆)
9190anassrs 467 . . . . . . . . . . . . . . . 16 (((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ (𝑏𝑊𝑐 ∈ ran (𝑇𝑏))) ∧ (𝑜 ∈ dom 𝑆 ∧ (𝑆𝑜) = 𝑏)) → 𝑐 ∈ ran 𝑆)
9272, 91rexlimddv 3147 . . . . . . . . . . . . . . 15 ((((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) ∧ (𝑏𝑊𝑐 ∈ ran (𝑇𝑏))) → 𝑐 ∈ ran 𝑆)
9392rexlimdvaa 3142 . . . . . . . . . . . . . 14 (((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) → (∃𝑏𝑊 𝑐 ∈ ran (𝑇𝑏) → 𝑐 ∈ ran 𝑆))
9449, 93biimtrid 242 . . . . . . . . . . . . 13 (((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) → (𝑐 𝑥𝑊 ran (𝑇𝑥) → 𝑐 ∈ ran 𝑆))
95 eldif 3936 . . . . . . . . . . . . . . . . . . 19 (𝑐 ∈ (𝑊 𝑥𝑊 ran (𝑇𝑥)) ↔ (𝑐𝑊 ∧ ¬ 𝑐 𝑥𝑊 ran (𝑇𝑥)))
965eleq2i 2826 . . . . . . . . . . . . . . . . . . . 20 (𝑐𝐷𝑐 ∈ (𝑊 𝑥𝑊 ran (𝑇𝑥)))
971, 2, 3, 4, 5, 6efgs1 19716 . . . . . . . . . . . . . . . . . . . 20 (𝑐𝐷 → ⟨“𝑐”⟩ ∈ dom 𝑆)
9896, 97sylbir 235 . . . . . . . . . . . . . . . . . . 19 (𝑐 ∈ (𝑊 𝑥𝑊 ran (𝑇𝑥)) → ⟨“𝑐”⟩ ∈ dom 𝑆)
9995, 98sylbir 235 . . . . . . . . . . . . . . . . . 18 ((𝑐𝑊 ∧ ¬ 𝑐 𝑥𝑊 ran (𝑇𝑥)) → ⟨“𝑐”⟩ ∈ dom 𝑆)
1001, 2, 3, 4, 5, 6efgsval 19712 . . . . . . . . . . . . . . . . . 18 (⟨“𝑐”⟩ ∈ dom 𝑆 → (𝑆‘⟨“𝑐”⟩) = (⟨“𝑐”⟩‘((♯‘⟨“𝑐”⟩) − 1)))
10199, 100syl 17 . . . . . . . . . . . . . . . . 17 ((𝑐𝑊 ∧ ¬ 𝑐 𝑥𝑊 ran (𝑇𝑥)) → (𝑆‘⟨“𝑐”⟩) = (⟨“𝑐”⟩‘((♯‘⟨“𝑐”⟩) − 1)))
102 s1len 14624 . . . . . . . . . . . . . . . . . . . . 21 (♯‘⟨“𝑐”⟩) = 1
103102oveq1i 7415 . . . . . . . . . . . . . . . . . . . 20 ((♯‘⟨“𝑐”⟩) − 1) = (1 − 1)
104 1m1e0 12312 . . . . . . . . . . . . . . . . . . . 20 (1 − 1) = 0
105103, 104eqtri 2758 . . . . . . . . . . . . . . . . . . 19 ((♯‘⟨“𝑐”⟩) − 1) = 0
106105fveq2i 6879 . . . . . . . . . . . . . . . . . 18 (⟨“𝑐”⟩‘((♯‘⟨“𝑐”⟩) − 1)) = (⟨“𝑐”⟩‘0)
107106a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑐𝑊 ∧ ¬ 𝑐 𝑥𝑊 ran (𝑇𝑥)) → (⟨“𝑐”⟩‘((♯‘⟨“𝑐”⟩) − 1)) = (⟨“𝑐”⟩‘0))
108 s1fv 14628 . . . . . . . . . . . . . . . . . 18 (𝑐𝑊 → (⟨“𝑐”⟩‘0) = 𝑐)
109108adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑐𝑊 ∧ ¬ 𝑐 𝑥𝑊 ran (𝑇𝑥)) → (⟨“𝑐”⟩‘0) = 𝑐)
110101, 107, 1093eqtrd 2774 . . . . . . . . . . . . . . . 16 ((𝑐𝑊 ∧ ¬ 𝑐 𝑥𝑊 ran (𝑇𝑥)) → (𝑆‘⟨“𝑐”⟩) = 𝑐)
111 fnfvelrn 7070 . . . . . . . . . . . . . . . . 17 ((𝑆 Fn dom 𝑆 ∧ ⟨“𝑐”⟩ ∈ dom 𝑆) → (𝑆‘⟨“𝑐”⟩) ∈ ran 𝑆)
11269, 99, 111sylancr 587 . . . . . . . . . . . . . . . 16 ((𝑐𝑊 ∧ ¬ 𝑐 𝑥𝑊 ran (𝑇𝑥)) → (𝑆‘⟨“𝑐”⟩) ∈ ran 𝑆)
113110, 112eqeltrrd 2835 . . . . . . . . . . . . . . 15 ((𝑐𝑊 ∧ ¬ 𝑐 𝑥𝑊 ran (𝑇𝑥)) → 𝑐 ∈ ran 𝑆)
114113ex 412 . . . . . . . . . . . . . 14 (𝑐𝑊 → (¬ 𝑐 𝑥𝑊 ran (𝑇𝑥) → 𝑐 ∈ ran 𝑆))
1151143ad2ant2 1134 . . . . . . . . . . . . 13 (((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) → (¬ 𝑐 𝑥𝑊 ran (𝑇𝑥) → 𝑐 ∈ ran 𝑆))
11694, 115pm2.61d 179 . . . . . . . . . . . 12 (((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) ∧ 𝑐𝑊 ∧ (♯‘𝑐) = 𝑑) → 𝑐 ∈ ran 𝑆)
117116rabssdv 4050 . . . . . . . . . . 11 ((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) → {𝑐𝑊 ∣ (♯‘𝑐) = 𝑑} ⊆ ran 𝑆)
11843, 117eqsstrid 3997 . . . . . . . . . 10 ((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) → {𝑎𝑊 ∣ (♯‘𝑎) = 𝑑} ⊆ ran 𝑆)
11941, 118unssd 4167 . . . . . . . . 9 ((𝑑 ∈ ℕ0 ∧ {𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆) → ({𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ∪ {𝑎𝑊 ∣ (♯‘𝑎) = 𝑑}) ⊆ ran 𝑆)
120119ex 412 . . . . . . . 8 (𝑑 ∈ ℕ0 → ({𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆 → ({𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ∪ {𝑎𝑊 ∣ (♯‘𝑎) = 𝑑}) ⊆ ran 𝑆))
121 id 22 . . . . . . . . . . . . 13 (𝑑 ∈ ℕ0𝑑 ∈ ℕ0)
122 nn0leltp1 12652 . . . . . . . . . . . . 13 (((♯‘𝑎) ∈ ℕ0𝑑 ∈ ℕ0) → ((♯‘𝑎) ≤ 𝑑 ↔ (♯‘𝑎) < (𝑑 + 1)))
12321, 121, 122syl2anr 597 . . . . . . . . . . . 12 ((𝑑 ∈ ℕ0𝑎𝑊) → ((♯‘𝑎) ≤ 𝑑 ↔ (♯‘𝑎) < (𝑑 + 1)))
12421nn0red 12563 . . . . . . . . . . . . 13 (𝑎𝑊 → (♯‘𝑎) ∈ ℝ)
125 nn0re 12510 . . . . . . . . . . . . 13 (𝑑 ∈ ℕ0𝑑 ∈ ℝ)
126 leloe 11321 . . . . . . . . . . . . 13 (((♯‘𝑎) ∈ ℝ ∧ 𝑑 ∈ ℝ) → ((♯‘𝑎) ≤ 𝑑 ↔ ((♯‘𝑎) < 𝑑 ∨ (♯‘𝑎) = 𝑑)))
127124, 125, 126syl2anr 597 . . . . . . . . . . . 12 ((𝑑 ∈ ℕ0𝑎𝑊) → ((♯‘𝑎) ≤ 𝑑 ↔ ((♯‘𝑎) < 𝑑 ∨ (♯‘𝑎) = 𝑑)))
128123, 127bitr3d 281 . . . . . . . . . . 11 ((𝑑 ∈ ℕ0𝑎𝑊) → ((♯‘𝑎) < (𝑑 + 1) ↔ ((♯‘𝑎) < 𝑑 ∨ (♯‘𝑎) = 𝑑)))
129128rabbidva 3422 . . . . . . . . . 10 (𝑑 ∈ ℕ0 → {𝑎𝑊 ∣ (♯‘𝑎) < (𝑑 + 1)} = {𝑎𝑊 ∣ ((♯‘𝑎) < 𝑑 ∨ (♯‘𝑎) = 𝑑)})
130 unrab 4290 . . . . . . . . . 10 ({𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ∪ {𝑎𝑊 ∣ (♯‘𝑎) = 𝑑}) = {𝑎𝑊 ∣ ((♯‘𝑎) < 𝑑 ∨ (♯‘𝑎) = 𝑑)}
131129, 130eqtr4di 2788 . . . . . . . . 9 (𝑑 ∈ ℕ0 → {𝑎𝑊 ∣ (♯‘𝑎) < (𝑑 + 1)} = ({𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ∪ {𝑎𝑊 ∣ (♯‘𝑎) = 𝑑}))
132131sseq1d 3990 . . . . . . . 8 (𝑑 ∈ ℕ0 → ({𝑎𝑊 ∣ (♯‘𝑎) < (𝑑 + 1)} ⊆ ran 𝑆 ↔ ({𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ∪ {𝑎𝑊 ∣ (♯‘𝑎) = 𝑑}) ⊆ ran 𝑆))
133120, 132sylibrd 259 . . . . . . 7 (𝑑 ∈ ℕ0 → ({𝑎𝑊 ∣ (♯‘𝑎) < 𝑑} ⊆ ran 𝑆 → {𝑎𝑊 ∣ (♯‘𝑎) < (𝑑 + 1)} ⊆ ran 𝑆))
13430, 33, 36, 39, 40, 133nn0ind 12688 . . . . . 6 (((♯‘𝑐) + 1) ∈ ℕ0 → {𝑎𝑊 ∣ (♯‘𝑎) < ((♯‘𝑐) + 1)} ⊆ ran 𝑆)
13517, 18, 1343syl 18 . . . . 5 (𝑐𝑊 → {𝑎𝑊 ∣ (♯‘𝑎) < ((♯‘𝑐) + 1)} ⊆ ran 𝑆)
136 fveq2 6876 . . . . . . 7 (𝑎 = 𝑐 → (♯‘𝑎) = (♯‘𝑐))
137136breq1d 5129 . . . . . 6 (𝑎 = 𝑐 → ((♯‘𝑎) < ((♯‘𝑐) + 1) ↔ (♯‘𝑐) < ((♯‘𝑐) + 1)))
138 id 22 . . . . . 6 (𝑐𝑊𝑐𝑊)
13917nn0red 12563 . . . . . . 7 (𝑐𝑊 → (♯‘𝑐) ∈ ℝ)
140139ltp1d 12172 . . . . . 6 (𝑐𝑊 → (♯‘𝑐) < ((♯‘𝑐) + 1))
141137, 138, 140elrabd 3673 . . . . 5 (𝑐𝑊𝑐 ∈ {𝑎𝑊 ∣ (♯‘𝑎) < ((♯‘𝑐) + 1)})
142135, 141sseldd 3959 . . . 4 (𝑐𝑊𝑐 ∈ ran 𝑆)
143142ssriv 3962 . . 3 𝑊 ⊆ ran 𝑆
14412, 143eqssi 3975 . 2 ran 𝑆 = 𝑊
145 dffo2 6794 . 2 (𝑆:dom 𝑆onto𝑊 ↔ (𝑆:dom 𝑆𝑊 ∧ ran 𝑆 = 𝑊))
14610, 144, 145mpbir2an 711 1 𝑆:dom 𝑆onto𝑊
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2108  wral 3051  wrex 3060  {crab 3415  cdif 3923  cun 3924  wss 3926  c0 4308  {csn 4601  cop 4607  cotp 4609   ciun 4967   class class class wbr 5119  cmpt 5201   I cid 5547   × cxp 5652  dom cdm 5654  ran crn 5655   Fn wfn 6526  wf 6527  ontowfo 6529  cfv 6531  (class class class)co 7405  cmpo 7407  1oc1o 8473  2oc2o 8474  cr 11128  0cc0 11129  1c1 11130   + caddc 11132   < clt 11269  cle 11270  cmin 11466  2c2 12295  0cn0 12501  +crp 13008  ...cfz 13524  ..^cfzo 13671  chash 14348  Word cword 14531   ++ cconcat 14588  ⟨“cs1 14613   splice csplice 14767  ⟨“cs2 14860   ~FG cefg 19687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-ot 4610  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-n0 12502  df-xnn0 12575  df-z 12589  df-uz 12853  df-rp 13009  df-fz 13525  df-fzo 13672  df-hash 14349  df-word 14532  df-concat 14589  df-s1 14614  df-substr 14659  df-pfx 14689  df-splice 14768  df-s2 14867
This theorem is referenced by:  efgredlemc  19726  efgrelexlemb  19731  efgredeu  19733  efgred2  19734
  Copyright terms: Public domain W3C validator