MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exfo Structured version   Visualization version   GIF version

Theorem exfo 7109
Description: A relation equivalent to the existence of an onto mapping. The right-hand 𝑓 is not necessarily a function. (Contributed by NM, 20-Mar-2007.)
Assertion
Ref Expression
exfo (∃𝑓 𝑓:𝐴onto𝐵 ↔ ∃𝑓(∀𝑥𝐴 ∃!𝑦𝐵 𝑥𝑓𝑦 ∧ ∀𝑥𝐵𝑦𝐴 𝑦𝑓𝑥))
Distinct variable groups:   𝑥,𝑓,𝑦,𝐴   𝐵,𝑓,𝑥,𝑦

Proof of Theorem exfo
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 dffo4 7107 . . . 4 (𝑓:𝐴onto𝐵 ↔ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐵𝑦𝐴 𝑦𝑓𝑥))
2 dff4 7105 . . . . . 6 (𝑓:𝐴𝐵 ↔ (𝑓 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦𝐵 𝑥𝑓𝑦))
32simprbi 496 . . . . 5 (𝑓:𝐴𝐵 → ∀𝑥𝐴 ∃!𝑦𝐵 𝑥𝑓𝑦)
43anim1i 614 . . . 4 ((𝑓:𝐴𝐵 ∧ ∀𝑥𝐵𝑦𝐴 𝑦𝑓𝑥) → (∀𝑥𝐴 ∃!𝑦𝐵 𝑥𝑓𝑦 ∧ ∀𝑥𝐵𝑦𝐴 𝑦𝑓𝑥))
51, 4sylbi 216 . . 3 (𝑓:𝐴onto𝐵 → (∀𝑥𝐴 ∃!𝑦𝐵 𝑥𝑓𝑦 ∧ ∀𝑥𝐵𝑦𝐴 𝑦𝑓𝑥))
65eximi 1830 . 2 (∃𝑓 𝑓:𝐴onto𝐵 → ∃𝑓(∀𝑥𝐴 ∃!𝑦𝐵 𝑥𝑓𝑦 ∧ ∀𝑥𝐵𝑦𝐴 𝑦𝑓𝑥))
7 brinxp 5750 . . . . . . . . . . . 12 ((𝑥𝐴𝑦𝐵) → (𝑥𝑓𝑦𝑥(𝑓 ∩ (𝐴 × 𝐵))𝑦))
87reubidva 3388 . . . . . . . . . . 11 (𝑥𝐴 → (∃!𝑦𝐵 𝑥𝑓𝑦 ↔ ∃!𝑦𝐵 𝑥(𝑓 ∩ (𝐴 × 𝐵))𝑦))
98biimpd 228 . . . . . . . . . 10 (𝑥𝐴 → (∃!𝑦𝐵 𝑥𝑓𝑦 → ∃!𝑦𝐵 𝑥(𝑓 ∩ (𝐴 × 𝐵))𝑦))
109ralimia 3076 . . . . . . . . 9 (∀𝑥𝐴 ∃!𝑦𝐵 𝑥𝑓𝑦 → ∀𝑥𝐴 ∃!𝑦𝐵 𝑥(𝑓 ∩ (𝐴 × 𝐵))𝑦)
11 inss2 4225 . . . . . . . . 9 (𝑓 ∩ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵)
1210, 11jctil 519 . . . . . . . 8 (∀𝑥𝐴 ∃!𝑦𝐵 𝑥𝑓𝑦 → ((𝑓 ∩ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦𝐵 𝑥(𝑓 ∩ (𝐴 × 𝐵))𝑦))
13 dff4 7105 . . . . . . . 8 ((𝑓 ∩ (𝐴 × 𝐵)):𝐴𝐵 ↔ ((𝑓 ∩ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦𝐵 𝑥(𝑓 ∩ (𝐴 × 𝐵))𝑦))
1412, 13sylibr 233 . . . . . . 7 (∀𝑥𝐴 ∃!𝑦𝐵 𝑥𝑓𝑦 → (𝑓 ∩ (𝐴 × 𝐵)):𝐴𝐵)
15 rninxp 6177 . . . . . . . 8 (ran (𝑓 ∩ (𝐴 × 𝐵)) = 𝐵 ↔ ∀𝑥𝐵𝑦𝐴 𝑦𝑓𝑥)
1615biimpri 227 . . . . . . 7 (∀𝑥𝐵𝑦𝐴 𝑦𝑓𝑥 → ran (𝑓 ∩ (𝐴 × 𝐵)) = 𝐵)
1714, 16anim12i 612 . . . . . 6 ((∀𝑥𝐴 ∃!𝑦𝐵 𝑥𝑓𝑦 ∧ ∀𝑥𝐵𝑦𝐴 𝑦𝑓𝑥) → ((𝑓 ∩ (𝐴 × 𝐵)):𝐴𝐵 ∧ ran (𝑓 ∩ (𝐴 × 𝐵)) = 𝐵))
18 dffo2 6809 . . . . . 6 ((𝑓 ∩ (𝐴 × 𝐵)):𝐴onto𝐵 ↔ ((𝑓 ∩ (𝐴 × 𝐵)):𝐴𝐵 ∧ ran (𝑓 ∩ (𝐴 × 𝐵)) = 𝐵))
1917, 18sylibr 233 . . . . 5 ((∀𝑥𝐴 ∃!𝑦𝐵 𝑥𝑓𝑦 ∧ ∀𝑥𝐵𝑦𝐴 𝑦𝑓𝑥) → (𝑓 ∩ (𝐴 × 𝐵)):𝐴onto𝐵)
20 vex 3474 . . . . . . 7 𝑓 ∈ V
2120inex1 5311 . . . . . 6 (𝑓 ∩ (𝐴 × 𝐵)) ∈ V
22 foeq1 6801 . . . . . 6 (𝑔 = (𝑓 ∩ (𝐴 × 𝐵)) → (𝑔:𝐴onto𝐵 ↔ (𝑓 ∩ (𝐴 × 𝐵)):𝐴onto𝐵))
2321, 22spcev 3592 . . . . 5 ((𝑓 ∩ (𝐴 × 𝐵)):𝐴onto𝐵 → ∃𝑔 𝑔:𝐴onto𝐵)
2419, 23syl 17 . . . 4 ((∀𝑥𝐴 ∃!𝑦𝐵 𝑥𝑓𝑦 ∧ ∀𝑥𝐵𝑦𝐴 𝑦𝑓𝑥) → ∃𝑔 𝑔:𝐴onto𝐵)
2524exlimiv 1926 . . 3 (∃𝑓(∀𝑥𝐴 ∃!𝑦𝐵 𝑥𝑓𝑦 ∧ ∀𝑥𝐵𝑦𝐴 𝑦𝑓𝑥) → ∃𝑔 𝑔:𝐴onto𝐵)
26 foeq1 6801 . . . 4 (𝑔 = 𝑓 → (𝑔:𝐴onto𝐵𝑓:𝐴onto𝐵))
2726cbvexvw 2033 . . 3 (∃𝑔 𝑔:𝐴onto𝐵 ↔ ∃𝑓 𝑓:𝐴onto𝐵)
2825, 27sylib 217 . 2 (∃𝑓(∀𝑥𝐴 ∃!𝑦𝐵 𝑥𝑓𝑦 ∧ ∀𝑥𝐵𝑦𝐴 𝑦𝑓𝑥) → ∃𝑓 𝑓:𝐴onto𝐵)
296, 28impbii 208 1 (∃𝑓 𝑓:𝐴onto𝐵 ↔ ∃𝑓(∀𝑥𝐴 ∃!𝑦𝐵 𝑥𝑓𝑦 ∧ ∀𝑥𝐵𝑦𝐴 𝑦𝑓𝑥))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1534  wex 1774  wcel 2099  wral 3057  wrex 3066  ∃!wreu 3370  cin 3944  wss 3945   class class class wbr 5142   × cxp 5670  ran crn 5673  wf 6538  ontowfo 6540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-fo 6548  df-fv 6550
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator