MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exfo Structured version   Visualization version   GIF version

Theorem exfo 6864
Description: A relation equivalent to the existence of an onto mapping. The right-hand 𝑓 is not necessarily a function. (Contributed by NM, 20-Mar-2007.)
Assertion
Ref Expression
exfo (∃𝑓 𝑓:𝐴onto𝐵 ↔ ∃𝑓(∀𝑥𝐴 ∃!𝑦𝐵 𝑥𝑓𝑦 ∧ ∀𝑥𝐵𝑦𝐴 𝑦𝑓𝑥))
Distinct variable groups:   𝑥,𝑓,𝑦,𝐴   𝐵,𝑓,𝑥,𝑦

Proof of Theorem exfo
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 dffo4 6862 . . . 4 (𝑓:𝐴onto𝐵 ↔ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐵𝑦𝐴 𝑦𝑓𝑥))
2 dff4 6860 . . . . . 6 (𝑓:𝐴𝐵 ↔ (𝑓 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦𝐵 𝑥𝑓𝑦))
32simprbi 499 . . . . 5 (𝑓:𝐴𝐵 → ∀𝑥𝐴 ∃!𝑦𝐵 𝑥𝑓𝑦)
43anim1i 616 . . . 4 ((𝑓:𝐴𝐵 ∧ ∀𝑥𝐵𝑦𝐴 𝑦𝑓𝑥) → (∀𝑥𝐴 ∃!𝑦𝐵 𝑥𝑓𝑦 ∧ ∀𝑥𝐵𝑦𝐴 𝑦𝑓𝑥))
51, 4sylbi 219 . . 3 (𝑓:𝐴onto𝐵 → (∀𝑥𝐴 ∃!𝑦𝐵 𝑥𝑓𝑦 ∧ ∀𝑥𝐵𝑦𝐴 𝑦𝑓𝑥))
65eximi 1829 . 2 (∃𝑓 𝑓:𝐴onto𝐵 → ∃𝑓(∀𝑥𝐴 ∃!𝑦𝐵 𝑥𝑓𝑦 ∧ ∀𝑥𝐵𝑦𝐴 𝑦𝑓𝑥))
7 brinxp 5623 . . . . . . . . . . . 12 ((𝑥𝐴𝑦𝐵) → (𝑥𝑓𝑦𝑥(𝑓 ∩ (𝐴 × 𝐵))𝑦))
87reubidva 3387 . . . . . . . . . . 11 (𝑥𝐴 → (∃!𝑦𝐵 𝑥𝑓𝑦 ↔ ∃!𝑦𝐵 𝑥(𝑓 ∩ (𝐴 × 𝐵))𝑦))
98biimpd 231 . . . . . . . . . 10 (𝑥𝐴 → (∃!𝑦𝐵 𝑥𝑓𝑦 → ∃!𝑦𝐵 𝑥(𝑓 ∩ (𝐴 × 𝐵))𝑦))
109ralimia 3156 . . . . . . . . 9 (∀𝑥𝐴 ∃!𝑦𝐵 𝑥𝑓𝑦 → ∀𝑥𝐴 ∃!𝑦𝐵 𝑥(𝑓 ∩ (𝐴 × 𝐵))𝑦)
11 inss2 4204 . . . . . . . . 9 (𝑓 ∩ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵)
1210, 11jctil 522 . . . . . . . 8 (∀𝑥𝐴 ∃!𝑦𝐵 𝑥𝑓𝑦 → ((𝑓 ∩ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦𝐵 𝑥(𝑓 ∩ (𝐴 × 𝐵))𝑦))
13 dff4 6860 . . . . . . . 8 ((𝑓 ∩ (𝐴 × 𝐵)):𝐴𝐵 ↔ ((𝑓 ∩ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦𝐵 𝑥(𝑓 ∩ (𝐴 × 𝐵))𝑦))
1412, 13sylibr 236 . . . . . . 7 (∀𝑥𝐴 ∃!𝑦𝐵 𝑥𝑓𝑦 → (𝑓 ∩ (𝐴 × 𝐵)):𝐴𝐵)
15 rninxp 6029 . . . . . . . 8 (ran (𝑓 ∩ (𝐴 × 𝐵)) = 𝐵 ↔ ∀𝑥𝐵𝑦𝐴 𝑦𝑓𝑥)
1615biimpri 230 . . . . . . 7 (∀𝑥𝐵𝑦𝐴 𝑦𝑓𝑥 → ran (𝑓 ∩ (𝐴 × 𝐵)) = 𝐵)
1714, 16anim12i 614 . . . . . 6 ((∀𝑥𝐴 ∃!𝑦𝐵 𝑥𝑓𝑦 ∧ ∀𝑥𝐵𝑦𝐴 𝑦𝑓𝑥) → ((𝑓 ∩ (𝐴 × 𝐵)):𝐴𝐵 ∧ ran (𝑓 ∩ (𝐴 × 𝐵)) = 𝐵))
18 dffo2 6587 . . . . . 6 ((𝑓 ∩ (𝐴 × 𝐵)):𝐴onto𝐵 ↔ ((𝑓 ∩ (𝐴 × 𝐵)):𝐴𝐵 ∧ ran (𝑓 ∩ (𝐴 × 𝐵)) = 𝐵))
1917, 18sylibr 236 . . . . 5 ((∀𝑥𝐴 ∃!𝑦𝐵 𝑥𝑓𝑦 ∧ ∀𝑥𝐵𝑦𝐴 𝑦𝑓𝑥) → (𝑓 ∩ (𝐴 × 𝐵)):𝐴onto𝐵)
20 vex 3496 . . . . . . 7 𝑓 ∈ V
2120inex1 5212 . . . . . 6 (𝑓 ∩ (𝐴 × 𝐵)) ∈ V
22 foeq1 6579 . . . . . 6 (𝑔 = (𝑓 ∩ (𝐴 × 𝐵)) → (𝑔:𝐴onto𝐵 ↔ (𝑓 ∩ (𝐴 × 𝐵)):𝐴onto𝐵))
2321, 22spcev 3605 . . . . 5 ((𝑓 ∩ (𝐴 × 𝐵)):𝐴onto𝐵 → ∃𝑔 𝑔:𝐴onto𝐵)
2419, 23syl 17 . . . 4 ((∀𝑥𝐴 ∃!𝑦𝐵 𝑥𝑓𝑦 ∧ ∀𝑥𝐵𝑦𝐴 𝑦𝑓𝑥) → ∃𝑔 𝑔:𝐴onto𝐵)
2524exlimiv 1925 . . 3 (∃𝑓(∀𝑥𝐴 ∃!𝑦𝐵 𝑥𝑓𝑦 ∧ ∀𝑥𝐵𝑦𝐴 𝑦𝑓𝑥) → ∃𝑔 𝑔:𝐴onto𝐵)
26 foeq1 6579 . . . 4 (𝑔 = 𝑓 → (𝑔:𝐴onto𝐵𝑓:𝐴onto𝐵))
2726cbvexvw 2038 . . 3 (∃𝑔 𝑔:𝐴onto𝐵 ↔ ∃𝑓 𝑓:𝐴onto𝐵)
2825, 27sylib 220 . 2 (∃𝑓(∀𝑥𝐴 ∃!𝑦𝐵 𝑥𝑓𝑦 ∧ ∀𝑥𝐵𝑦𝐴 𝑦𝑓𝑥) → ∃𝑓 𝑓:𝐴onto𝐵)
296, 28impbii 211 1 (∃𝑓 𝑓:𝐴onto𝐵 ↔ ∃𝑓(∀𝑥𝐴 ∃!𝑦𝐵 𝑥𝑓𝑦 ∧ ∀𝑥𝐵𝑦𝐴 𝑦𝑓𝑥))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1531  wex 1774  wcel 2108  wral 3136  wrex 3137  ∃!wreu 3138  cin 3933  wss 3934   class class class wbr 5057   × cxp 5546  ran crn 5549  wf 6344  ontowfo 6346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pr 5320
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-fo 6354  df-fv 6356
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator