MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exfo Structured version   Visualization version   GIF version

Theorem exfo 7103
Description: A relation equivalent to the existence of an onto mapping. The right-hand 𝑓 is not necessarily a function. (Contributed by NM, 20-Mar-2007.)
Assertion
Ref Expression
exfo (∃𝑓 𝑓:𝐴onto𝐵 ↔ ∃𝑓(∀𝑥𝐴 ∃!𝑦𝐵 𝑥𝑓𝑦 ∧ ∀𝑥𝐵𝑦𝐴 𝑦𝑓𝑥))
Distinct variable groups:   𝑥,𝑓,𝑦,𝐴   𝐵,𝑓,𝑥,𝑦

Proof of Theorem exfo
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 dffo4 7101 . . . 4 (𝑓:𝐴onto𝐵 ↔ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐵𝑦𝐴 𝑦𝑓𝑥))
2 dff4 7099 . . . . . 6 (𝑓:𝐴𝐵 ↔ (𝑓 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦𝐵 𝑥𝑓𝑦))
32simprbi 497 . . . . 5 (𝑓:𝐴𝐵 → ∀𝑥𝐴 ∃!𝑦𝐵 𝑥𝑓𝑦)
43anim1i 615 . . . 4 ((𝑓:𝐴𝐵 ∧ ∀𝑥𝐵𝑦𝐴 𝑦𝑓𝑥) → (∀𝑥𝐴 ∃!𝑦𝐵 𝑥𝑓𝑦 ∧ ∀𝑥𝐵𝑦𝐴 𝑦𝑓𝑥))
51, 4sylbi 216 . . 3 (𝑓:𝐴onto𝐵 → (∀𝑥𝐴 ∃!𝑦𝐵 𝑥𝑓𝑦 ∧ ∀𝑥𝐵𝑦𝐴 𝑦𝑓𝑥))
65eximi 1837 . 2 (∃𝑓 𝑓:𝐴onto𝐵 → ∃𝑓(∀𝑥𝐴 ∃!𝑦𝐵 𝑥𝑓𝑦 ∧ ∀𝑥𝐵𝑦𝐴 𝑦𝑓𝑥))
7 brinxp 5752 . . . . . . . . . . . 12 ((𝑥𝐴𝑦𝐵) → (𝑥𝑓𝑦𝑥(𝑓 ∩ (𝐴 × 𝐵))𝑦))
87reubidva 3392 . . . . . . . . . . 11 (𝑥𝐴 → (∃!𝑦𝐵 𝑥𝑓𝑦 ↔ ∃!𝑦𝐵 𝑥(𝑓 ∩ (𝐴 × 𝐵))𝑦))
98biimpd 228 . . . . . . . . . 10 (𝑥𝐴 → (∃!𝑦𝐵 𝑥𝑓𝑦 → ∃!𝑦𝐵 𝑥(𝑓 ∩ (𝐴 × 𝐵))𝑦))
109ralimia 3080 . . . . . . . . 9 (∀𝑥𝐴 ∃!𝑦𝐵 𝑥𝑓𝑦 → ∀𝑥𝐴 ∃!𝑦𝐵 𝑥(𝑓 ∩ (𝐴 × 𝐵))𝑦)
11 inss2 4228 . . . . . . . . 9 (𝑓 ∩ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵)
1210, 11jctil 520 . . . . . . . 8 (∀𝑥𝐴 ∃!𝑦𝐵 𝑥𝑓𝑦 → ((𝑓 ∩ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦𝐵 𝑥(𝑓 ∩ (𝐴 × 𝐵))𝑦))
13 dff4 7099 . . . . . . . 8 ((𝑓 ∩ (𝐴 × 𝐵)):𝐴𝐵 ↔ ((𝑓 ∩ (𝐴 × 𝐵)) ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦𝐵 𝑥(𝑓 ∩ (𝐴 × 𝐵))𝑦))
1412, 13sylibr 233 . . . . . . 7 (∀𝑥𝐴 ∃!𝑦𝐵 𝑥𝑓𝑦 → (𝑓 ∩ (𝐴 × 𝐵)):𝐴𝐵)
15 rninxp 6175 . . . . . . . 8 (ran (𝑓 ∩ (𝐴 × 𝐵)) = 𝐵 ↔ ∀𝑥𝐵𝑦𝐴 𝑦𝑓𝑥)
1615biimpri 227 . . . . . . 7 (∀𝑥𝐵𝑦𝐴 𝑦𝑓𝑥 → ran (𝑓 ∩ (𝐴 × 𝐵)) = 𝐵)
1714, 16anim12i 613 . . . . . 6 ((∀𝑥𝐴 ∃!𝑦𝐵 𝑥𝑓𝑦 ∧ ∀𝑥𝐵𝑦𝐴 𝑦𝑓𝑥) → ((𝑓 ∩ (𝐴 × 𝐵)):𝐴𝐵 ∧ ran (𝑓 ∩ (𝐴 × 𝐵)) = 𝐵))
18 dffo2 6806 . . . . . 6 ((𝑓 ∩ (𝐴 × 𝐵)):𝐴onto𝐵 ↔ ((𝑓 ∩ (𝐴 × 𝐵)):𝐴𝐵 ∧ ran (𝑓 ∩ (𝐴 × 𝐵)) = 𝐵))
1917, 18sylibr 233 . . . . 5 ((∀𝑥𝐴 ∃!𝑦𝐵 𝑥𝑓𝑦 ∧ ∀𝑥𝐵𝑦𝐴 𝑦𝑓𝑥) → (𝑓 ∩ (𝐴 × 𝐵)):𝐴onto𝐵)
20 vex 3478 . . . . . . 7 𝑓 ∈ V
2120inex1 5316 . . . . . 6 (𝑓 ∩ (𝐴 × 𝐵)) ∈ V
22 foeq1 6798 . . . . . 6 (𝑔 = (𝑓 ∩ (𝐴 × 𝐵)) → (𝑔:𝐴onto𝐵 ↔ (𝑓 ∩ (𝐴 × 𝐵)):𝐴onto𝐵))
2321, 22spcev 3596 . . . . 5 ((𝑓 ∩ (𝐴 × 𝐵)):𝐴onto𝐵 → ∃𝑔 𝑔:𝐴onto𝐵)
2419, 23syl 17 . . . 4 ((∀𝑥𝐴 ∃!𝑦𝐵 𝑥𝑓𝑦 ∧ ∀𝑥𝐵𝑦𝐴 𝑦𝑓𝑥) → ∃𝑔 𝑔:𝐴onto𝐵)
2524exlimiv 1933 . . 3 (∃𝑓(∀𝑥𝐴 ∃!𝑦𝐵 𝑥𝑓𝑦 ∧ ∀𝑥𝐵𝑦𝐴 𝑦𝑓𝑥) → ∃𝑔 𝑔:𝐴onto𝐵)
26 foeq1 6798 . . . 4 (𝑔 = 𝑓 → (𝑔:𝐴onto𝐵𝑓:𝐴onto𝐵))
2726cbvexvw 2040 . . 3 (∃𝑔 𝑔:𝐴onto𝐵 ↔ ∃𝑓 𝑓:𝐴onto𝐵)
2825, 27sylib 217 . 2 (∃𝑓(∀𝑥𝐴 ∃!𝑦𝐵 𝑥𝑓𝑦 ∧ ∀𝑥𝐵𝑦𝐴 𝑦𝑓𝑥) → ∃𝑓 𝑓:𝐴onto𝐵)
296, 28impbii 208 1 (∃𝑓 𝑓:𝐴onto𝐵 ↔ ∃𝑓(∀𝑥𝐴 ∃!𝑦𝐵 𝑥𝑓𝑦 ∧ ∀𝑥𝐵𝑦𝐴 𝑦𝑓𝑥))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1541  wex 1781  wcel 2106  wral 3061  wrex 3070  ∃!wreu 3374  cin 3946  wss 3947   class class class wbr 5147   × cxp 5673  ran crn 5676  wf 6536  ontowfo 6538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fo 6546  df-fv 6548
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator