Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnd2d Structured version   Visualization version   GIF version

Theorem bnd2d 45164
Description: Deduction form of bnd2 9321. (Contributed by Emmett Weisz, 19-Jan-2021.)
Hypotheses
Ref Expression
bnd2d.1 (𝜑𝐴 ∈ V)
bnd2d.2 (𝜑 → ∀𝑥𝐴𝑦𝐵 𝜓)
Assertion
Ref Expression
bnd2d (𝜑 → ∃𝑧(𝑧𝐵 ∧ ∀𝑥𝐴𝑦𝑧 𝜓))
Distinct variable groups:   𝜓,𝑧   𝑥,𝑧,𝐴   𝑥,𝑦,𝐵,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦)   𝐴(𝑦)

Proof of Theorem bnd2d
StepHypRef Expression
1 bnd2d.1 . 2 (𝜑𝐴 ∈ V)
2 bnd2d.2 . 2 (𝜑 → ∀𝑥𝐴𝑦𝐵 𝜓)
3 raleq 3396 . . . 4 (𝐴 = if(𝐴 ∈ V, 𝐴, ∅) → (∀𝑥𝐴𝑦𝐵 𝜓 ↔ ∀𝑥 ∈ if (𝐴 ∈ V, 𝐴, ∅)∃𝑦𝐵 𝜓))
4 raleq 3396 . . . . . 6 (𝐴 = if(𝐴 ∈ V, 𝐴, ∅) → (∀𝑥𝐴𝑦𝑧 𝜓 ↔ ∀𝑥 ∈ if (𝐴 ∈ V, 𝐴, ∅)∃𝑦𝑧 𝜓))
54anbi2d 631 . . . . 5 (𝐴 = if(𝐴 ∈ V, 𝐴, ∅) → ((𝑧𝐵 ∧ ∀𝑥𝐴𝑦𝑧 𝜓) ↔ (𝑧𝐵 ∧ ∀𝑥 ∈ if (𝐴 ∈ V, 𝐴, ∅)∃𝑦𝑧 𝜓)))
65exbidv 1923 . . . 4 (𝐴 = if(𝐴 ∈ V, 𝐴, ∅) → (∃𝑧(𝑧𝐵 ∧ ∀𝑥𝐴𝑦𝑧 𝜓) ↔ ∃𝑧(𝑧𝐵 ∧ ∀𝑥 ∈ if (𝐴 ∈ V, 𝐴, ∅)∃𝑦𝑧 𝜓)))
73, 6imbi12d 348 . . 3 (𝐴 = if(𝐴 ∈ V, 𝐴, ∅) → ((∀𝑥𝐴𝑦𝐵 𝜓 → ∃𝑧(𝑧𝐵 ∧ ∀𝑥𝐴𝑦𝑧 𝜓)) ↔ (∀𝑥 ∈ if (𝐴 ∈ V, 𝐴, ∅)∃𝑦𝐵 𝜓 → ∃𝑧(𝑧𝐵 ∧ ∀𝑥 ∈ if (𝐴 ∈ V, 𝐴, ∅)∃𝑦𝑧 𝜓))))
8 0ex 5198 . . . . 5 ∅ ∈ V
98elimel 4517 . . . 4 if(𝐴 ∈ V, 𝐴, ∅) ∈ V
109bnd2 9321 . . 3 (∀𝑥 ∈ if (𝐴 ∈ V, 𝐴, ∅)∃𝑦𝐵 𝜓 → ∃𝑧(𝑧𝐵 ∧ ∀𝑥 ∈ if (𝐴 ∈ V, 𝐴, ∅)∃𝑦𝑧 𝜓))
117, 10dedth 4506 . 2 (𝐴 ∈ V → (∀𝑥𝐴𝑦𝐵 𝜓 → ∃𝑧(𝑧𝐵 ∧ ∀𝑥𝐴𝑦𝑧 𝜓)))
121, 2, 11sylc 65 1 (𝜑 → ∃𝑧(𝑧𝐵 ∧ ∀𝑥𝐴𝑦𝑧 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wex 1781  wcel 2115  wral 3133  wrex 3134  Vcvv 3480  wss 3919  c0 4276  ifcif 4450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7457  ax-reg 9055  ax-inf2 9103
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-iin 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6137  df-ord 6183  df-on 6184  df-lim 6185  df-suc 6186  df-iota 6304  df-fun 6347  df-fn 6348  df-f 6349  df-f1 6350  df-fo 6351  df-f1o 6352  df-fv 6353  df-om 7577  df-wrecs 7945  df-recs 8006  df-rdg 8044  df-r1 9192  df-rank 9193
This theorem is referenced by:  setrec1lem3  45172
  Copyright terms: Public domain W3C validator