Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnd2d Structured version   Visualization version   GIF version

Theorem bnd2d 49667
Description: Deduction form of bnd2 9808. (Contributed by Emmett Weisz, 19-Jan-2021.)
Hypotheses
Ref Expression
bnd2d.1 (𝜑𝐴 ∈ V)
bnd2d.2 (𝜑 → ∀𝑥𝐴𝑦𝐵 𝜓)
Assertion
Ref Expression
bnd2d (𝜑 → ∃𝑧(𝑧𝐵 ∧ ∀𝑥𝐴𝑦𝑧 𝜓))
Distinct variable groups:   𝜓,𝑧   𝑥,𝑧,𝐴   𝑥,𝑦,𝐵,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦)   𝐴(𝑦)

Proof of Theorem bnd2d
StepHypRef Expression
1 bnd2d.1 . 2 (𝜑𝐴 ∈ V)
2 bnd2d.2 . 2 (𝜑 → ∀𝑥𝐴𝑦𝐵 𝜓)
3 raleq 3287 . . . 4 (𝐴 = if(𝐴 ∈ V, 𝐴, ∅) → (∀𝑥𝐴𝑦𝐵 𝜓 ↔ ∀𝑥 ∈ if (𝐴 ∈ V, 𝐴, ∅)∃𝑦𝐵 𝜓))
4 raleq 3287 . . . . . 6 (𝐴 = if(𝐴 ∈ V, 𝐴, ∅) → (∀𝑥𝐴𝑦𝑧 𝜓 ↔ ∀𝑥 ∈ if (𝐴 ∈ V, 𝐴, ∅)∃𝑦𝑧 𝜓))
54anbi2d 630 . . . . 5 (𝐴 = if(𝐴 ∈ V, 𝐴, ∅) → ((𝑧𝐵 ∧ ∀𝑥𝐴𝑦𝑧 𝜓) ↔ (𝑧𝐵 ∧ ∀𝑥 ∈ if (𝐴 ∈ V, 𝐴, ∅)∃𝑦𝑧 𝜓)))
65exbidv 1921 . . . 4 (𝐴 = if(𝐴 ∈ V, 𝐴, ∅) → (∃𝑧(𝑧𝐵 ∧ ∀𝑥𝐴𝑦𝑧 𝜓) ↔ ∃𝑧(𝑧𝐵 ∧ ∀𝑥 ∈ if (𝐴 ∈ V, 𝐴, ∅)∃𝑦𝑧 𝜓)))
73, 6imbi12d 344 . . 3 (𝐴 = if(𝐴 ∈ V, 𝐴, ∅) → ((∀𝑥𝐴𝑦𝐵 𝜓 → ∃𝑧(𝑧𝐵 ∧ ∀𝑥𝐴𝑦𝑧 𝜓)) ↔ (∀𝑥 ∈ if (𝐴 ∈ V, 𝐴, ∅)∃𝑦𝐵 𝜓 → ∃𝑧(𝑧𝐵 ∧ ∀𝑥 ∈ if (𝐴 ∈ V, 𝐴, ∅)∃𝑦𝑧 𝜓))))
8 0ex 5249 . . . . 5 ∅ ∈ V
98elimel 4548 . . . 4 if(𝐴 ∈ V, 𝐴, ∅) ∈ V
109bnd2 9808 . . 3 (∀𝑥 ∈ if (𝐴 ∈ V, 𝐴, ∅)∃𝑦𝐵 𝜓 → ∃𝑧(𝑧𝐵 ∧ ∀𝑥 ∈ if (𝐴 ∈ V, 𝐴, ∅)∃𝑦𝑧 𝜓))
117, 10dedth 4537 . 2 (𝐴 ∈ V → (∀𝑥𝐴𝑦𝐵 𝜓 → ∃𝑧(𝑧𝐵 ∧ ∀𝑥𝐴𝑦𝑧 𝜓)))
121, 2, 11sylc 65 1 (𝜑 → ∃𝑧(𝑧𝐵 ∧ ∀𝑥𝐴𝑦𝑧 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wral 3044  wrex 3053  Vcvv 3438  wss 3905  c0 4286  ifcif 4478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-reg 9503  ax-inf2 9556
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-r1 9679  df-rank 9680
This theorem is referenced by:  setrec1lem3  49675
  Copyright terms: Public domain W3C validator