Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnd2d Structured version   Visualization version   GIF version

Theorem bnd2d 46387
Description: Deduction form of bnd2 9651. (Contributed by Emmett Weisz, 19-Jan-2021.)
Hypotheses
Ref Expression
bnd2d.1 (𝜑𝐴 ∈ V)
bnd2d.2 (𝜑 → ∀𝑥𝐴𝑦𝐵 𝜓)
Assertion
Ref Expression
bnd2d (𝜑 → ∃𝑧(𝑧𝐵 ∧ ∀𝑥𝐴𝑦𝑧 𝜓))
Distinct variable groups:   𝜓,𝑧   𝑥,𝑧,𝐴   𝑥,𝑦,𝐵,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦)   𝐴(𝑦)

Proof of Theorem bnd2d
StepHypRef Expression
1 bnd2d.1 . 2 (𝜑𝐴 ∈ V)
2 bnd2d.2 . 2 (𝜑 → ∀𝑥𝐴𝑦𝐵 𝜓)
3 raleq 3342 . . . 4 (𝐴 = if(𝐴 ∈ V, 𝐴, ∅) → (∀𝑥𝐴𝑦𝐵 𝜓 ↔ ∀𝑥 ∈ if (𝐴 ∈ V, 𝐴, ∅)∃𝑦𝐵 𝜓))
4 raleq 3342 . . . . . 6 (𝐴 = if(𝐴 ∈ V, 𝐴, ∅) → (∀𝑥𝐴𝑦𝑧 𝜓 ↔ ∀𝑥 ∈ if (𝐴 ∈ V, 𝐴, ∅)∃𝑦𝑧 𝜓))
54anbi2d 629 . . . . 5 (𝐴 = if(𝐴 ∈ V, 𝐴, ∅) → ((𝑧𝐵 ∧ ∀𝑥𝐴𝑦𝑧 𝜓) ↔ (𝑧𝐵 ∧ ∀𝑥 ∈ if (𝐴 ∈ V, 𝐴, ∅)∃𝑦𝑧 𝜓)))
65exbidv 1924 . . . 4 (𝐴 = if(𝐴 ∈ V, 𝐴, ∅) → (∃𝑧(𝑧𝐵 ∧ ∀𝑥𝐴𝑦𝑧 𝜓) ↔ ∃𝑧(𝑧𝐵 ∧ ∀𝑥 ∈ if (𝐴 ∈ V, 𝐴, ∅)∃𝑦𝑧 𝜓)))
73, 6imbi12d 345 . . 3 (𝐴 = if(𝐴 ∈ V, 𝐴, ∅) → ((∀𝑥𝐴𝑦𝐵 𝜓 → ∃𝑧(𝑧𝐵 ∧ ∀𝑥𝐴𝑦𝑧 𝜓)) ↔ (∀𝑥 ∈ if (𝐴 ∈ V, 𝐴, ∅)∃𝑦𝐵 𝜓 → ∃𝑧(𝑧𝐵 ∧ ∀𝑥 ∈ if (𝐴 ∈ V, 𝐴, ∅)∃𝑦𝑧 𝜓))))
8 0ex 5231 . . . . 5 ∅ ∈ V
98elimel 4528 . . . 4 if(𝐴 ∈ V, 𝐴, ∅) ∈ V
109bnd2 9651 . . 3 (∀𝑥 ∈ if (𝐴 ∈ V, 𝐴, ∅)∃𝑦𝐵 𝜓 → ∃𝑧(𝑧𝐵 ∧ ∀𝑥 ∈ if (𝐴 ∈ V, 𝐴, ∅)∃𝑦𝑧 𝜓))
117, 10dedth 4517 . 2 (𝐴 ∈ V → (∀𝑥𝐴𝑦𝐵 𝜓 → ∃𝑧(𝑧𝐵 ∧ ∀𝑥𝐴𝑦𝑧 𝜓)))
121, 2, 11sylc 65 1 (𝜑 → ∃𝑧(𝑧𝐵 ∧ ∀𝑥𝐴𝑦𝑧 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wex 1782  wcel 2106  wral 3064  wrex 3065  Vcvv 3432  wss 3887  c0 4256  ifcif 4459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-reg 9351  ax-inf2 9399
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-r1 9522  df-rank 9523
This theorem is referenced by:  setrec1lem3  46395
  Copyright terms: Public domain W3C validator