Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnd2d | Structured version Visualization version GIF version |
Description: Deduction form of bnd2 9582. (Contributed by Emmett Weisz, 19-Jan-2021.) |
Ref | Expression |
---|---|
bnd2d.1 | ⊢ (𝜑 → 𝐴 ∈ V) |
bnd2d.2 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) |
Ref | Expression |
---|---|
bnd2d | ⊢ (𝜑 → ∃𝑧(𝑧 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑧 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnd2d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ V) | |
2 | bnd2d.2 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) | |
3 | raleq 3333 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ V, 𝐴, ∅) → (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ if (𝐴 ∈ V, 𝐴, ∅)∃𝑦 ∈ 𝐵 𝜓)) | |
4 | raleq 3333 | . . . . . 6 ⊢ (𝐴 = if(𝐴 ∈ V, 𝐴, ∅) → (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑧 𝜓 ↔ ∀𝑥 ∈ if (𝐴 ∈ V, 𝐴, ∅)∃𝑦 ∈ 𝑧 𝜓)) | |
5 | 4 | anbi2d 628 | . . . . 5 ⊢ (𝐴 = if(𝐴 ∈ V, 𝐴, ∅) → ((𝑧 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑧 𝜓) ↔ (𝑧 ⊆ 𝐵 ∧ ∀𝑥 ∈ if (𝐴 ∈ V, 𝐴, ∅)∃𝑦 ∈ 𝑧 𝜓))) |
6 | 5 | exbidv 1925 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ V, 𝐴, ∅) → (∃𝑧(𝑧 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑧 𝜓) ↔ ∃𝑧(𝑧 ⊆ 𝐵 ∧ ∀𝑥 ∈ if (𝐴 ∈ V, 𝐴, ∅)∃𝑦 ∈ 𝑧 𝜓))) |
7 | 3, 6 | imbi12d 344 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ V, 𝐴, ∅) → ((∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 → ∃𝑧(𝑧 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑧 𝜓)) ↔ (∀𝑥 ∈ if (𝐴 ∈ V, 𝐴, ∅)∃𝑦 ∈ 𝐵 𝜓 → ∃𝑧(𝑧 ⊆ 𝐵 ∧ ∀𝑥 ∈ if (𝐴 ∈ V, 𝐴, ∅)∃𝑦 ∈ 𝑧 𝜓)))) |
8 | 0ex 5226 | . . . . 5 ⊢ ∅ ∈ V | |
9 | 8 | elimel 4525 | . . . 4 ⊢ if(𝐴 ∈ V, 𝐴, ∅) ∈ V |
10 | 9 | bnd2 9582 | . . 3 ⊢ (∀𝑥 ∈ if (𝐴 ∈ V, 𝐴, ∅)∃𝑦 ∈ 𝐵 𝜓 → ∃𝑧(𝑧 ⊆ 𝐵 ∧ ∀𝑥 ∈ if (𝐴 ∈ V, 𝐴, ∅)∃𝑦 ∈ 𝑧 𝜓)) |
11 | 7, 10 | dedth 4514 | . 2 ⊢ (𝐴 ∈ V → (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓 → ∃𝑧(𝑧 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑧 𝜓))) |
12 | 1, 2, 11 | sylc 65 | 1 ⊢ (𝜑 → ∃𝑧(𝑧 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑧 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 Vcvv 3422 ⊆ wss 3883 ∅c0 4253 ifcif 4456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-reg 9281 ax-inf2 9329 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-r1 9453 df-rank 9454 |
This theorem is referenced by: setrec1lem3 46281 |
Copyright terms: Public domain | W3C validator |