Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idhe Structured version   Visualization version   GIF version

Theorem idhe 43793
Description: The identity relation is hereditary in any class. (Contributed by RP, 28-Mar-2020.)
Assertion
Ref Expression
idhe I hereditary 𝐴

Proof of Theorem idhe
StepHypRef Expression
1 idssxp 6074 . 2 ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴)
2 dfhe2 43780 . 2 ( I hereditary 𝐴 ↔ ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴))
31, 2mpbir 231 1 I hereditary 𝐴
Colors of variables: wff setvar class
Syntax hints:  wss 3966   I cid 5586   × cxp 5691  cres 5695   hereditary whe 43778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-br 5152  df-opab 5214  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-he 43779
This theorem is referenced by:  sshepw  43795
  Copyright terms: Public domain W3C validator