![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > idhe | Structured version Visualization version GIF version |
Description: The identity relation is hereditary in any class. (Contributed by RP, 28-Mar-2020.) |
Ref | Expression |
---|---|
idhe | ⊢ I hereditary 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relres 5634 | . . . 4 ⊢ Rel ( I ↾ 𝐴) | |
2 | relssdmrn 5873 | . . . 4 ⊢ (Rel ( I ↾ 𝐴) → ( I ↾ 𝐴) ⊆ (dom ( I ↾ 𝐴) × ran ( I ↾ 𝐴))) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ ( I ↾ 𝐴) ⊆ (dom ( I ↾ 𝐴) × ran ( I ↾ 𝐴)) |
4 | dmresi 5674 | . . . . 5 ⊢ dom ( I ↾ 𝐴) = 𝐴 | |
5 | 4 | eqimssi 3853 | . . . 4 ⊢ dom ( I ↾ 𝐴) ⊆ 𝐴 |
6 | rnresi 5694 | . . . . 5 ⊢ ran ( I ↾ 𝐴) = 𝐴 | |
7 | 6 | eqimssi 3853 | . . . 4 ⊢ ran ( I ↾ 𝐴) ⊆ 𝐴 |
8 | xpss12 5325 | . . . 4 ⊢ ((dom ( I ↾ 𝐴) ⊆ 𝐴 ∧ ran ( I ↾ 𝐴) ⊆ 𝐴) → (dom ( I ↾ 𝐴) × ran ( I ↾ 𝐴)) ⊆ (𝐴 × 𝐴)) | |
9 | 5, 7, 8 | mp2an 684 | . . 3 ⊢ (dom ( I ↾ 𝐴) × ran ( I ↾ 𝐴)) ⊆ (𝐴 × 𝐴) |
10 | 3, 9 | sstri 3805 | . 2 ⊢ ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴) |
11 | dfhe2 38837 | . 2 ⊢ ( I hereditary 𝐴 ↔ ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴)) | |
12 | 10, 11 | mpbir 223 | 1 ⊢ I hereditary 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3767 I cid 5217 × cxp 5308 dom cdm 5310 ran crn 5311 ↾ cres 5312 Rel wrel 5315 hereditary whe 38835 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2375 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pr 5095 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-ral 3092 df-rex 3093 df-rab 3096 df-v 3385 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-nul 4114 df-if 4276 df-sn 4367 df-pr 4369 df-op 4373 df-br 4842 df-opab 4904 df-id 5218 df-xp 5316 df-rel 5317 df-cnv 5318 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-he 38836 |
This theorem is referenced by: sshepw 38852 |
Copyright terms: Public domain | W3C validator |