Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idhe Structured version   Visualization version   GIF version

Theorem idhe 43211
Description: The identity relation is hereditary in any class. (Contributed by RP, 28-Mar-2020.)
Assertion
Ref Expression
idhe I hereditary 𝐴

Proof of Theorem idhe
StepHypRef Expression
1 idssxp 6046 . 2 ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴)
2 dfhe2 43198 . 2 ( I hereditary 𝐴 ↔ ( I ↾ 𝐴) ⊆ (𝐴 × 𝐴))
31, 2mpbir 230 1 I hereditary 𝐴
Colors of variables: wff setvar class
Syntax hints:  wss 3945   I cid 5569   × cxp 5670  cres 5674   hereditary whe 43196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3472  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-br 5143  df-opab 5205  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-he 43197
This theorem is referenced by:  sshepw  43213
  Copyright terms: Public domain W3C validator