| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tfrlem8 | Structured version Visualization version GIF version | ||
| Description: Lemma for transfinite recursion. The domain of recs is an ordinal. (Contributed by NM, 14-Aug-1994.) (Proof shortened by Alan Sare, 11-Mar-2008.) |
| Ref | Expression |
|---|---|
| tfrlem.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
| Ref | Expression |
|---|---|
| tfrlem8 | ⊢ Ord dom recs(𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfrlem.1 | . . . . . . . . 9 ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} | |
| 2 | 1 | tfrlem3 8346 | . . . . . . . 8 ⊢ 𝐴 = {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤)))} |
| 3 | 2 | eqabri 2871 | . . . . . . 7 ⊢ (𝑔 ∈ 𝐴 ↔ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤)))) |
| 4 | fndm 6621 | . . . . . . . . . . 11 ⊢ (𝑔 Fn 𝑧 → dom 𝑔 = 𝑧) | |
| 5 | 4 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤))) → dom 𝑔 = 𝑧) |
| 6 | 5 | eleq1d 2813 | . . . . . . . . 9 ⊢ ((𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤))) → (dom 𝑔 ∈ On ↔ 𝑧 ∈ On)) |
| 7 | 6 | biimprcd 250 | . . . . . . . 8 ⊢ (𝑧 ∈ On → ((𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤))) → dom 𝑔 ∈ On)) |
| 8 | 7 | rexlimiv 3127 | . . . . . . 7 ⊢ (∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤))) → dom 𝑔 ∈ On) |
| 9 | 3, 8 | sylbi 217 | . . . . . 6 ⊢ (𝑔 ∈ 𝐴 → dom 𝑔 ∈ On) |
| 10 | eleq1a 2823 | . . . . . 6 ⊢ (dom 𝑔 ∈ On → (𝑧 = dom 𝑔 → 𝑧 ∈ On)) | |
| 11 | 9, 10 | syl 17 | . . . . 5 ⊢ (𝑔 ∈ 𝐴 → (𝑧 = dom 𝑔 → 𝑧 ∈ On)) |
| 12 | 11 | rexlimiv 3127 | . . . 4 ⊢ (∃𝑔 ∈ 𝐴 𝑧 = dom 𝑔 → 𝑧 ∈ On) |
| 13 | 12 | abssi 4033 | . . 3 ⊢ {𝑧 ∣ ∃𝑔 ∈ 𝐴 𝑧 = dom 𝑔} ⊆ On |
| 14 | ssorduni 7755 | . . 3 ⊢ ({𝑧 ∣ ∃𝑔 ∈ 𝐴 𝑧 = dom 𝑔} ⊆ On → Ord ∪ {𝑧 ∣ ∃𝑔 ∈ 𝐴 𝑧 = dom 𝑔}) | |
| 15 | 13, 14 | ax-mp 5 | . 2 ⊢ Ord ∪ {𝑧 ∣ ∃𝑔 ∈ 𝐴 𝑧 = dom 𝑔} |
| 16 | 1 | recsfval 8349 | . . . . 5 ⊢ recs(𝐹) = ∪ 𝐴 |
| 17 | 16 | dmeqi 5868 | . . . 4 ⊢ dom recs(𝐹) = dom ∪ 𝐴 |
| 18 | dmuni 5878 | . . . 4 ⊢ dom ∪ 𝐴 = ∪ 𝑔 ∈ 𝐴 dom 𝑔 | |
| 19 | vex 3451 | . . . . . 6 ⊢ 𝑔 ∈ V | |
| 20 | 19 | dmex 7885 | . . . . 5 ⊢ dom 𝑔 ∈ V |
| 21 | 20 | dfiun2 4997 | . . . 4 ⊢ ∪ 𝑔 ∈ 𝐴 dom 𝑔 = ∪ {𝑧 ∣ ∃𝑔 ∈ 𝐴 𝑧 = dom 𝑔} |
| 22 | 17, 18, 21 | 3eqtri 2756 | . . 3 ⊢ dom recs(𝐹) = ∪ {𝑧 ∣ ∃𝑔 ∈ 𝐴 𝑧 = dom 𝑔} |
| 23 | ordeq 6339 | . . 3 ⊢ (dom recs(𝐹) = ∪ {𝑧 ∣ ∃𝑔 ∈ 𝐴 𝑧 = dom 𝑔} → (Ord dom recs(𝐹) ↔ Ord ∪ {𝑧 ∣ ∃𝑔 ∈ 𝐴 𝑧 = dom 𝑔})) | |
| 24 | 22, 23 | ax-mp 5 | . 2 ⊢ (Ord dom recs(𝐹) ↔ Ord ∪ {𝑧 ∣ ∃𝑔 ∈ 𝐴 𝑧 = dom 𝑔}) |
| 25 | 15, 24 | mpbir 231 | 1 ⊢ Ord dom recs(𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 ∀wral 3044 ∃wrex 3053 ⊆ wss 3914 ∪ cuni 4871 ∪ ciun 4955 dom cdm 5638 ↾ cres 5640 Ord word 6331 Oncon0 6332 Fn wfn 6506 ‘cfv 6511 recscrecs 8339 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fo 6517 df-fv 6519 df-ov 7390 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 |
| This theorem is referenced by: tfrlem10 8355 tfrlem12 8357 tfrlem13 8358 tfrlem14 8359 tfrlem15 8360 tfrlem16 8361 |
| Copyright terms: Public domain | W3C validator |