![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tfrlem8 | Structured version Visualization version GIF version |
Description: Lemma for transfinite recursion. The domain of recs is an ordinal. (Contributed by NM, 14-Aug-1994.) (Proof shortened by Alan Sare, 11-Mar-2008.) |
Ref | Expression |
---|---|
tfrlem.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
Ref | Expression |
---|---|
tfrlem8 | ⊢ Ord dom recs(𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfrlem.1 | . . . . . . . . 9 ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} | |
2 | 1 | tfrlem3 8434 | . . . . . . . 8 ⊢ 𝐴 = {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤)))} |
3 | 2 | eqabri 2888 | . . . . . . 7 ⊢ (𝑔 ∈ 𝐴 ↔ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤)))) |
4 | fndm 6682 | . . . . . . . . . . 11 ⊢ (𝑔 Fn 𝑧 → dom 𝑔 = 𝑧) | |
5 | 4 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤))) → dom 𝑔 = 𝑧) |
6 | 5 | eleq1d 2829 | . . . . . . . . 9 ⊢ ((𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤))) → (dom 𝑔 ∈ On ↔ 𝑧 ∈ On)) |
7 | 6 | biimprcd 250 | . . . . . . . 8 ⊢ (𝑧 ∈ On → ((𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤))) → dom 𝑔 ∈ On)) |
8 | 7 | rexlimiv 3154 | . . . . . . 7 ⊢ (∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤))) → dom 𝑔 ∈ On) |
9 | 3, 8 | sylbi 217 | . . . . . 6 ⊢ (𝑔 ∈ 𝐴 → dom 𝑔 ∈ On) |
10 | eleq1a 2839 | . . . . . 6 ⊢ (dom 𝑔 ∈ On → (𝑧 = dom 𝑔 → 𝑧 ∈ On)) | |
11 | 9, 10 | syl 17 | . . . . 5 ⊢ (𝑔 ∈ 𝐴 → (𝑧 = dom 𝑔 → 𝑧 ∈ On)) |
12 | 11 | rexlimiv 3154 | . . . 4 ⊢ (∃𝑔 ∈ 𝐴 𝑧 = dom 𝑔 → 𝑧 ∈ On) |
13 | 12 | abssi 4093 | . . 3 ⊢ {𝑧 ∣ ∃𝑔 ∈ 𝐴 𝑧 = dom 𝑔} ⊆ On |
14 | ssorduni 7814 | . . 3 ⊢ ({𝑧 ∣ ∃𝑔 ∈ 𝐴 𝑧 = dom 𝑔} ⊆ On → Ord ∪ {𝑧 ∣ ∃𝑔 ∈ 𝐴 𝑧 = dom 𝑔}) | |
15 | 13, 14 | ax-mp 5 | . 2 ⊢ Ord ∪ {𝑧 ∣ ∃𝑔 ∈ 𝐴 𝑧 = dom 𝑔} |
16 | 1 | recsfval 8437 | . . . . 5 ⊢ recs(𝐹) = ∪ 𝐴 |
17 | 16 | dmeqi 5929 | . . . 4 ⊢ dom recs(𝐹) = dom ∪ 𝐴 |
18 | dmuni 5939 | . . . 4 ⊢ dom ∪ 𝐴 = ∪ 𝑔 ∈ 𝐴 dom 𝑔 | |
19 | vex 3492 | . . . . . 6 ⊢ 𝑔 ∈ V | |
20 | 19 | dmex 7949 | . . . . 5 ⊢ dom 𝑔 ∈ V |
21 | 20 | dfiun2 5056 | . . . 4 ⊢ ∪ 𝑔 ∈ 𝐴 dom 𝑔 = ∪ {𝑧 ∣ ∃𝑔 ∈ 𝐴 𝑧 = dom 𝑔} |
22 | 17, 18, 21 | 3eqtri 2772 | . . 3 ⊢ dom recs(𝐹) = ∪ {𝑧 ∣ ∃𝑔 ∈ 𝐴 𝑧 = dom 𝑔} |
23 | ordeq 6402 | . . 3 ⊢ (dom recs(𝐹) = ∪ {𝑧 ∣ ∃𝑔 ∈ 𝐴 𝑧 = dom 𝑔} → (Ord dom recs(𝐹) ↔ Ord ∪ {𝑧 ∣ ∃𝑔 ∈ 𝐴 𝑧 = dom 𝑔})) | |
24 | 22, 23 | ax-mp 5 | . 2 ⊢ (Ord dom recs(𝐹) ↔ Ord ∪ {𝑧 ∣ ∃𝑔 ∈ 𝐴 𝑧 = dom 𝑔}) |
25 | 15, 24 | mpbir 231 | 1 ⊢ Ord dom recs(𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {cab 2717 ∀wral 3067 ∃wrex 3076 ⊆ wss 3976 ∪ cuni 4931 ∪ ciun 5015 dom cdm 5700 ↾ cres 5702 Ord word 6394 Oncon0 6395 Fn wfn 6568 ‘cfv 6573 recscrecs 8426 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fo 6579 df-fv 6581 df-ov 7451 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 |
This theorem is referenced by: tfrlem10 8443 tfrlem12 8445 tfrlem13 8446 tfrlem14 8447 tfrlem15 8448 tfrlem16 8449 |
Copyright terms: Public domain | W3C validator |