MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem8 Structured version   Visualization version   GIF version

Theorem tfrlem8 8331
Description: Lemma for transfinite recursion. The domain of recs is an ordinal. (Contributed by NM, 14-Aug-1994.) (Proof shortened by Alan Sare, 11-Mar-2008.)
Hypothesis
Ref Expression
tfrlem.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
Assertion
Ref Expression
tfrlem8 Ord dom recs(𝐹)
Distinct variable group:   𝑥,𝑓,𝑦,𝐹
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑓)

Proof of Theorem tfrlem8
Dummy variables 𝑔 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrlem.1 . . . . . . . . 9 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
21tfrlem3 8325 . . . . . . . 8 𝐴 = {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔𝑤)))}
32eqabi 2878 . . . . . . 7 (𝑔𝐴 ↔ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔𝑤))))
4 fndm 6606 . . . . . . . . . . 11 (𝑔 Fn 𝑧 → dom 𝑔 = 𝑧)
54adantr 482 . . . . . . . . . 10 ((𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔𝑤))) → dom 𝑔 = 𝑧)
65eleq1d 2819 . . . . . . . . 9 ((𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔𝑤))) → (dom 𝑔 ∈ On ↔ 𝑧 ∈ On))
76biimprcd 250 . . . . . . . 8 (𝑧 ∈ On → ((𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔𝑤))) → dom 𝑔 ∈ On))
87rexlimiv 3142 . . . . . . 7 (∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔𝑤))) → dom 𝑔 ∈ On)
93, 8sylbi 216 . . . . . 6 (𝑔𝐴 → dom 𝑔 ∈ On)
10 eleq1a 2829 . . . . . 6 (dom 𝑔 ∈ On → (𝑧 = dom 𝑔𝑧 ∈ On))
119, 10syl 17 . . . . 5 (𝑔𝐴 → (𝑧 = dom 𝑔𝑧 ∈ On))
1211rexlimiv 3142 . . . 4 (∃𝑔𝐴 𝑧 = dom 𝑔𝑧 ∈ On)
1312abssi 4028 . . 3 {𝑧 ∣ ∃𝑔𝐴 𝑧 = dom 𝑔} ⊆ On
14 ssorduni 7714 . . 3 ({𝑧 ∣ ∃𝑔𝐴 𝑧 = dom 𝑔} ⊆ On → Ord {𝑧 ∣ ∃𝑔𝐴 𝑧 = dom 𝑔})
1513, 14ax-mp 5 . 2 Ord {𝑧 ∣ ∃𝑔𝐴 𝑧 = dom 𝑔}
161recsfval 8328 . . . . 5 recs(𝐹) = 𝐴
1716dmeqi 5861 . . . 4 dom recs(𝐹) = dom 𝐴
18 dmuni 5871 . . . 4 dom 𝐴 = 𝑔𝐴 dom 𝑔
19 vex 3448 . . . . . 6 𝑔 ∈ V
2019dmex 7849 . . . . 5 dom 𝑔 ∈ V
2120dfiun2 4994 . . . 4 𝑔𝐴 dom 𝑔 = {𝑧 ∣ ∃𝑔𝐴 𝑧 = dom 𝑔}
2217, 18, 213eqtri 2765 . . 3 dom recs(𝐹) = {𝑧 ∣ ∃𝑔𝐴 𝑧 = dom 𝑔}
23 ordeq 6325 . . 3 (dom recs(𝐹) = {𝑧 ∣ ∃𝑔𝐴 𝑧 = dom 𝑔} → (Ord dom recs(𝐹) ↔ Ord {𝑧 ∣ ∃𝑔𝐴 𝑧 = dom 𝑔}))
2422, 23ax-mp 5 . 2 (Ord dom recs(𝐹) ↔ Ord {𝑧 ∣ ∃𝑔𝐴 𝑧 = dom 𝑔})
2515, 24mpbir 230 1 Ord dom recs(𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  {cab 2710  wral 3061  wrex 3070  wss 3911   cuni 4866   ciun 4955  dom cdm 5634  cres 5636  Ord word 6317  Oncon0 6318   Fn wfn 6492  cfv 6497  recscrecs 8317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-fo 6503  df-fv 6505  df-ov 7361  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318
This theorem is referenced by:  tfrlem10  8334  tfrlem12  8336  tfrlem13  8337  tfrlem14  8338  tfrlem15  8339  tfrlem16  8340
  Copyright terms: Public domain W3C validator