![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tfrlem8 | Structured version Visualization version GIF version |
Description: Lemma for transfinite recursion. The domain of recs is an ordinal. (Contributed by NM, 14-Aug-1994.) (Proof shortened by Alan Sare, 11-Mar-2008.) |
Ref | Expression |
---|---|
tfrlem.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
Ref | Expression |
---|---|
tfrlem8 | ⊢ Ord dom recs(𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfrlem.1 | . . . . . . . . 9 ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} | |
2 | 1 | tfrlem3 8325 | . . . . . . . 8 ⊢ 𝐴 = {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤)))} |
3 | 2 | eqabi 2878 | . . . . . . 7 ⊢ (𝑔 ∈ 𝐴 ↔ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤)))) |
4 | fndm 6606 | . . . . . . . . . . 11 ⊢ (𝑔 Fn 𝑧 → dom 𝑔 = 𝑧) | |
5 | 4 | adantr 482 | . . . . . . . . . 10 ⊢ ((𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤))) → dom 𝑔 = 𝑧) |
6 | 5 | eleq1d 2819 | . . . . . . . . 9 ⊢ ((𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤))) → (dom 𝑔 ∈ On ↔ 𝑧 ∈ On)) |
7 | 6 | biimprcd 250 | . . . . . . . 8 ⊢ (𝑧 ∈ On → ((𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤))) → dom 𝑔 ∈ On)) |
8 | 7 | rexlimiv 3142 | . . . . . . 7 ⊢ (∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤))) → dom 𝑔 ∈ On) |
9 | 3, 8 | sylbi 216 | . . . . . 6 ⊢ (𝑔 ∈ 𝐴 → dom 𝑔 ∈ On) |
10 | eleq1a 2829 | . . . . . 6 ⊢ (dom 𝑔 ∈ On → (𝑧 = dom 𝑔 → 𝑧 ∈ On)) | |
11 | 9, 10 | syl 17 | . . . . 5 ⊢ (𝑔 ∈ 𝐴 → (𝑧 = dom 𝑔 → 𝑧 ∈ On)) |
12 | 11 | rexlimiv 3142 | . . . 4 ⊢ (∃𝑔 ∈ 𝐴 𝑧 = dom 𝑔 → 𝑧 ∈ On) |
13 | 12 | abssi 4028 | . . 3 ⊢ {𝑧 ∣ ∃𝑔 ∈ 𝐴 𝑧 = dom 𝑔} ⊆ On |
14 | ssorduni 7714 | . . 3 ⊢ ({𝑧 ∣ ∃𝑔 ∈ 𝐴 𝑧 = dom 𝑔} ⊆ On → Ord ∪ {𝑧 ∣ ∃𝑔 ∈ 𝐴 𝑧 = dom 𝑔}) | |
15 | 13, 14 | ax-mp 5 | . 2 ⊢ Ord ∪ {𝑧 ∣ ∃𝑔 ∈ 𝐴 𝑧 = dom 𝑔} |
16 | 1 | recsfval 8328 | . . . . 5 ⊢ recs(𝐹) = ∪ 𝐴 |
17 | 16 | dmeqi 5861 | . . . 4 ⊢ dom recs(𝐹) = dom ∪ 𝐴 |
18 | dmuni 5871 | . . . 4 ⊢ dom ∪ 𝐴 = ∪ 𝑔 ∈ 𝐴 dom 𝑔 | |
19 | vex 3448 | . . . . . 6 ⊢ 𝑔 ∈ V | |
20 | 19 | dmex 7849 | . . . . 5 ⊢ dom 𝑔 ∈ V |
21 | 20 | dfiun2 4994 | . . . 4 ⊢ ∪ 𝑔 ∈ 𝐴 dom 𝑔 = ∪ {𝑧 ∣ ∃𝑔 ∈ 𝐴 𝑧 = dom 𝑔} |
22 | 17, 18, 21 | 3eqtri 2765 | . . 3 ⊢ dom recs(𝐹) = ∪ {𝑧 ∣ ∃𝑔 ∈ 𝐴 𝑧 = dom 𝑔} |
23 | ordeq 6325 | . . 3 ⊢ (dom recs(𝐹) = ∪ {𝑧 ∣ ∃𝑔 ∈ 𝐴 𝑧 = dom 𝑔} → (Ord dom recs(𝐹) ↔ Ord ∪ {𝑧 ∣ ∃𝑔 ∈ 𝐴 𝑧 = dom 𝑔})) | |
24 | 22, 23 | ax-mp 5 | . 2 ⊢ (Ord dom recs(𝐹) ↔ Ord ∪ {𝑧 ∣ ∃𝑔 ∈ 𝐴 𝑧 = dom 𝑔}) |
25 | 15, 24 | mpbir 230 | 1 ⊢ Ord dom recs(𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 {cab 2710 ∀wral 3061 ∃wrex 3070 ⊆ wss 3911 ∪ cuni 4866 ∪ ciun 4955 dom cdm 5634 ↾ cres 5636 Ord word 6317 Oncon0 6318 Fn wfn 6492 ‘cfv 6497 recscrecs 8317 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pr 5385 ax-un 7673 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-fo 6503 df-fv 6505 df-ov 7361 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-recs 8318 |
This theorem is referenced by: tfrlem10 8334 tfrlem12 8336 tfrlem13 8337 tfrlem14 8338 tfrlem15 8339 tfrlem16 8340 |
Copyright terms: Public domain | W3C validator |