MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwcfsdom Structured version   Visualization version   GIF version

Theorem pwcfsdom 10339
Description: A corollary of Konig's Theorem konigth 10325. Theorem 11.28 of [TakeutiZaring] p. 108. (Contributed by Mario Carneiro, 20-Mar-2013.)
Hypothesis
Ref Expression
pwcfsdom.1 𝐻 = (𝑦 ∈ (cf‘(ℵ‘𝐴)) ↦ (har‘(𝑓𝑦)))
Assertion
Ref Expression
pwcfsdom (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴)))
Distinct variable group:   𝐴,𝑓,𝑦
Allowed substitution hints:   𝐻(𝑦,𝑓)

Proof of Theorem pwcfsdom
Dummy variables 𝑤 𝑧 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onzsl 7693 . . . 4 (𝐴 ∈ On ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴)))
21biimpi 215 . . 3 (𝐴 ∈ On → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴)))
3 cfom 10020 . . . . . . 7 (cf‘ω) = ω
4 aleph0 9822 . . . . . . . 8 (ℵ‘∅) = ω
54fveq2i 6777 . . . . . . 7 (cf‘(ℵ‘∅)) = (cf‘ω)
63, 5, 43eqtr4i 2776 . . . . . 6 (cf‘(ℵ‘∅)) = (ℵ‘∅)
7 2fveq3 6779 . . . . . 6 (𝐴 = ∅ → (cf‘(ℵ‘𝐴)) = (cf‘(ℵ‘∅)))
8 fveq2 6774 . . . . . 6 (𝐴 = ∅ → (ℵ‘𝐴) = (ℵ‘∅))
96, 7, 83eqtr4a 2804 . . . . 5 (𝐴 = ∅ → (cf‘(ℵ‘𝐴)) = (ℵ‘𝐴))
10 fvex 6787 . . . . . . . . 9 (ℵ‘𝐴) ∈ V
1110canth2 8917 . . . . . . . 8 (ℵ‘𝐴) ≺ 𝒫 (ℵ‘𝐴)
1210pw2en 8866 . . . . . . . 8 𝒫 (ℵ‘𝐴) ≈ (2om (ℵ‘𝐴))
13 sdomentr 8898 . . . . . . . 8 (((ℵ‘𝐴) ≺ 𝒫 (ℵ‘𝐴) ∧ 𝒫 (ℵ‘𝐴) ≈ (2om (ℵ‘𝐴))) → (ℵ‘𝐴) ≺ (2om (ℵ‘𝐴)))
1411, 12, 13mp2an 689 . . . . . . 7 (ℵ‘𝐴) ≺ (2om (ℵ‘𝐴))
15 alephon 9825 . . . . . . . . 9 (ℵ‘𝐴) ∈ On
16 alephgeom 9838 . . . . . . . . . 10 (𝐴 ∈ On ↔ ω ⊆ (ℵ‘𝐴))
17 omelon 9404 . . . . . . . . . . . 12 ω ∈ On
18 2onn 8472 . . . . . . . . . . . 12 2o ∈ ω
19 onelss 6308 . . . . . . . . . . . 12 (ω ∈ On → (2o ∈ ω → 2o ⊆ ω))
2017, 18, 19mp2 9 . . . . . . . . . . 11 2o ⊆ ω
21 sstr 3929 . . . . . . . . . . 11 ((2o ⊆ ω ∧ ω ⊆ (ℵ‘𝐴)) → 2o ⊆ (ℵ‘𝐴))
2220, 21mpan 687 . . . . . . . . . 10 (ω ⊆ (ℵ‘𝐴) → 2o ⊆ (ℵ‘𝐴))
2316, 22sylbi 216 . . . . . . . . 9 (𝐴 ∈ On → 2o ⊆ (ℵ‘𝐴))
24 ssdomg 8786 . . . . . . . . 9 ((ℵ‘𝐴) ∈ On → (2o ⊆ (ℵ‘𝐴) → 2o ≼ (ℵ‘𝐴)))
2515, 23, 24mpsyl 68 . . . . . . . 8 (𝐴 ∈ On → 2o ≼ (ℵ‘𝐴))
26 mapdom1 8929 . . . . . . . 8 (2o ≼ (ℵ‘𝐴) → (2om (ℵ‘𝐴)) ≼ ((ℵ‘𝐴) ↑m (ℵ‘𝐴)))
2725, 26syl 17 . . . . . . 7 (𝐴 ∈ On → (2om (ℵ‘𝐴)) ≼ ((ℵ‘𝐴) ↑m (ℵ‘𝐴)))
28 sdomdomtr 8897 . . . . . . 7 (((ℵ‘𝐴) ≺ (2om (ℵ‘𝐴)) ∧ (2om (ℵ‘𝐴)) ≼ ((ℵ‘𝐴) ↑m (ℵ‘𝐴))) → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (ℵ‘𝐴)))
2914, 27, 28sylancr 587 . . . . . 6 (𝐴 ∈ On → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (ℵ‘𝐴)))
30 oveq2 7283 . . . . . . 7 ((cf‘(ℵ‘𝐴)) = (ℵ‘𝐴) → ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴))) = ((ℵ‘𝐴) ↑m (ℵ‘𝐴)))
3130breq2d 5086 . . . . . 6 ((cf‘(ℵ‘𝐴)) = (ℵ‘𝐴) → ((ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴))) ↔ (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (ℵ‘𝐴))))
3229, 31syl5ibrcom 246 . . . . 5 (𝐴 ∈ On → ((cf‘(ℵ‘𝐴)) = (ℵ‘𝐴) → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴)))))
339, 32syl5 34 . . . 4 (𝐴 ∈ On → (𝐴 = ∅ → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴)))))
34 alephreg 10338 . . . . . . 7 (cf‘(ℵ‘suc 𝑥)) = (ℵ‘suc 𝑥)
35 2fveq3 6779 . . . . . . 7 (𝐴 = suc 𝑥 → (cf‘(ℵ‘𝐴)) = (cf‘(ℵ‘suc 𝑥)))
36 fveq2 6774 . . . . . . 7 (𝐴 = suc 𝑥 → (ℵ‘𝐴) = (ℵ‘suc 𝑥))
3734, 35, 363eqtr4a 2804 . . . . . 6 (𝐴 = suc 𝑥 → (cf‘(ℵ‘𝐴)) = (ℵ‘𝐴))
3837rexlimivw 3211 . . . . 5 (∃𝑥 ∈ On 𝐴 = suc 𝑥 → (cf‘(ℵ‘𝐴)) = (ℵ‘𝐴))
3938, 32syl5 34 . . . 4 (𝐴 ∈ On → (∃𝑥 ∈ On 𝐴 = suc 𝑥 → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴)))))
40 cfsmo 10027 . . . . . 6 ((ℵ‘𝐴) ∈ On → ∃𝑓(𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ Smo 𝑓 ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤)))
41 limelon 6329 . . . . . . . . . . 11 ((𝐴 ∈ V ∧ Lim 𝐴) → 𝐴 ∈ On)
42 ffn 6600 . . . . . . . . . . . . . . . 16 (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → 𝑓 Fn (cf‘(ℵ‘𝐴)))
43 fnrnfv 6829 . . . . . . . . . . . . . . . . 17 (𝑓 Fn (cf‘(ℵ‘𝐴)) → ran 𝑓 = {𝑦 ∣ ∃𝑥 ∈ (cf‘(ℵ‘𝐴))𝑦 = (𝑓𝑥)})
4443unieqd 4853 . . . . . . . . . . . . . . . 16 (𝑓 Fn (cf‘(ℵ‘𝐴)) → ran 𝑓 = {𝑦 ∣ ∃𝑥 ∈ (cf‘(ℵ‘𝐴))𝑦 = (𝑓𝑥)})
4542, 44syl 17 . . . . . . . . . . . . . . 15 (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → ran 𝑓 = {𝑦 ∣ ∃𝑥 ∈ (cf‘(ℵ‘𝐴))𝑦 = (𝑓𝑥)})
46 fvex 6787 . . . . . . . . . . . . . . . 16 (𝑓𝑥) ∈ V
4746dfiun2 4963 . . . . . . . . . . . . . . 15 𝑥 ∈ (cf‘(ℵ‘𝐴))(𝑓𝑥) = {𝑦 ∣ ∃𝑥 ∈ (cf‘(ℵ‘𝐴))𝑦 = (𝑓𝑥)}
4845, 47eqtr4di 2796 . . . . . . . . . . . . . 14 (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → ran 𝑓 = 𝑥 ∈ (cf‘(ℵ‘𝐴))(𝑓𝑥))
4948ad2antrl 725 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤))) → ran 𝑓 = 𝑥 ∈ (cf‘(ℵ‘𝐴))(𝑓𝑥))
50 fnfvelrn 6958 . . . . . . . . . . . . . . . . . . . 20 ((𝑓 Fn (cf‘(ℵ‘𝐴)) ∧ 𝑤 ∈ (cf‘(ℵ‘𝐴))) → (𝑓𝑤) ∈ ran 𝑓)
5142, 50sylan 580 . . . . . . . . . . . . . . . . . . 19 ((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ 𝑤 ∈ (cf‘(ℵ‘𝐴))) → (𝑓𝑤) ∈ ran 𝑓)
52 sseq2 3947 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑓𝑤) → (𝑧𝑦𝑧 ⊆ (𝑓𝑤)))
5352rspcev 3561 . . . . . . . . . . . . . . . . . . 19 (((𝑓𝑤) ∈ ran 𝑓𝑧 ⊆ (𝑓𝑤)) → ∃𝑦 ∈ ran 𝑓 𝑧𝑦)
5451, 53sylan 580 . . . . . . . . . . . . . . . . . 18 (((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ 𝑤 ∈ (cf‘(ℵ‘𝐴))) ∧ 𝑧 ⊆ (𝑓𝑤)) → ∃𝑦 ∈ ran 𝑓 𝑧𝑦)
5554rexlimdva2 3216 . . . . . . . . . . . . . . . . 17 (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → (∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤) → ∃𝑦 ∈ ran 𝑓 𝑧𝑦))
5655ralimdv 3109 . . . . . . . . . . . . . . . 16 (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → (∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤) → ∀𝑧 ∈ (ℵ‘𝐴)∃𝑦 ∈ ran 𝑓 𝑧𝑦))
5756imp 407 . . . . . . . . . . . . . . 15 ((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤)) → ∀𝑧 ∈ (ℵ‘𝐴)∃𝑦 ∈ ran 𝑓 𝑧𝑦)
5857adantl 482 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤))) → ∀𝑧 ∈ (ℵ‘𝐴)∃𝑦 ∈ ran 𝑓 𝑧𝑦)
59 alephislim 9839 . . . . . . . . . . . . . . . 16 (𝐴 ∈ On ↔ Lim (ℵ‘𝐴))
6059biimpi 215 . . . . . . . . . . . . . . 15 (𝐴 ∈ On → Lim (ℵ‘𝐴))
61 frn 6607 . . . . . . . . . . . . . . . 16 (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → ran 𝑓 ⊆ (ℵ‘𝐴))
6261adantr 481 . . . . . . . . . . . . . . 15 ((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤)) → ran 𝑓 ⊆ (ℵ‘𝐴))
63 coflim 10017 . . . . . . . . . . . . . . 15 ((Lim (ℵ‘𝐴) ∧ ran 𝑓 ⊆ (ℵ‘𝐴)) → ( ran 𝑓 = (ℵ‘𝐴) ↔ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑦 ∈ ran 𝑓 𝑧𝑦))
6460, 62, 63syl2an 596 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤))) → ( ran 𝑓 = (ℵ‘𝐴) ↔ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑦 ∈ ran 𝑓 𝑧𝑦))
6558, 64mpbird 256 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤))) → ran 𝑓 = (ℵ‘𝐴))
6649, 65eqtr3d 2780 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤))) → 𝑥 ∈ (cf‘(ℵ‘𝐴))(𝑓𝑥) = (ℵ‘𝐴))
67 ffvelrn 6959 . . . . . . . . . . . . . . . . 17 ((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ 𝑥 ∈ (cf‘(ℵ‘𝐴))) → (𝑓𝑥) ∈ (ℵ‘𝐴))
6815oneli 6374 . . . . . . . . . . . . . . . . 17 ((𝑓𝑥) ∈ (ℵ‘𝐴) → (𝑓𝑥) ∈ On)
69 harcard 9736 . . . . . . . . . . . . . . . . . . 19 (card‘(har‘(𝑓𝑥))) = (har‘(𝑓𝑥))
70 iscard 9733 . . . . . . . . . . . . . . . . . . . 20 ((card‘(har‘(𝑓𝑥))) = (har‘(𝑓𝑥)) ↔ ((har‘(𝑓𝑥)) ∈ On ∧ ∀𝑦 ∈ (har‘(𝑓𝑥))𝑦 ≺ (har‘(𝑓𝑥))))
7170simprbi 497 . . . . . . . . . . . . . . . . . . 19 ((card‘(har‘(𝑓𝑥))) = (har‘(𝑓𝑥)) → ∀𝑦 ∈ (har‘(𝑓𝑥))𝑦 ≺ (har‘(𝑓𝑥)))
7269, 71ax-mp 5 . . . . . . . . . . . . . . . . . 18 𝑦 ∈ (har‘(𝑓𝑥))𝑦 ≺ (har‘(𝑓𝑥))
73 domrefg 8775 . . . . . . . . . . . . . . . . . . . 20 ((𝑓𝑥) ∈ V → (𝑓𝑥) ≼ (𝑓𝑥))
7446, 73ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (𝑓𝑥) ≼ (𝑓𝑥)
75 elharval 9320 . . . . . . . . . . . . . . . . . . . 20 ((𝑓𝑥) ∈ (har‘(𝑓𝑥)) ↔ ((𝑓𝑥) ∈ On ∧ (𝑓𝑥) ≼ (𝑓𝑥)))
7675biimpri 227 . . . . . . . . . . . . . . . . . . 19 (((𝑓𝑥) ∈ On ∧ (𝑓𝑥) ≼ (𝑓𝑥)) → (𝑓𝑥) ∈ (har‘(𝑓𝑥)))
7774, 76mpan2 688 . . . . . . . . . . . . . . . . . 18 ((𝑓𝑥) ∈ On → (𝑓𝑥) ∈ (har‘(𝑓𝑥)))
78 breq1 5077 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝑓𝑥) → (𝑦 ≺ (har‘(𝑓𝑥)) ↔ (𝑓𝑥) ≺ (har‘(𝑓𝑥))))
7978rspccv 3558 . . . . . . . . . . . . . . . . . 18 (∀𝑦 ∈ (har‘(𝑓𝑥))𝑦 ≺ (har‘(𝑓𝑥)) → ((𝑓𝑥) ∈ (har‘(𝑓𝑥)) → (𝑓𝑥) ≺ (har‘(𝑓𝑥))))
8072, 77, 79mpsyl 68 . . . . . . . . . . . . . . . . 17 ((𝑓𝑥) ∈ On → (𝑓𝑥) ≺ (har‘(𝑓𝑥)))
8167, 68, 803syl 18 . . . . . . . . . . . . . . . 16 ((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ 𝑥 ∈ (cf‘(ℵ‘𝐴))) → (𝑓𝑥) ≺ (har‘(𝑓𝑥)))
82 harcl 9318 . . . . . . . . . . . . . . . . . . 19 (har‘(𝑓𝑥)) ∈ On
83 2fveq3 6779 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑥 → (har‘(𝑓𝑦)) = (har‘(𝑓𝑥)))
84 pwcfsdom.1 . . . . . . . . . . . . . . . . . . . 20 𝐻 = (𝑦 ∈ (cf‘(ℵ‘𝐴)) ↦ (har‘(𝑓𝑦)))
8583, 84fvmptg 6873 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (cf‘(ℵ‘𝐴)) ∧ (har‘(𝑓𝑥)) ∈ On) → (𝐻𝑥) = (har‘(𝑓𝑥)))
8682, 85mpan2 688 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (cf‘(ℵ‘𝐴)) → (𝐻𝑥) = (har‘(𝑓𝑥)))
8786breq2d 5086 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (cf‘(ℵ‘𝐴)) → ((𝑓𝑥) ≺ (𝐻𝑥) ↔ (𝑓𝑥) ≺ (har‘(𝑓𝑥))))
8887adantl 482 . . . . . . . . . . . . . . . 16 ((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ 𝑥 ∈ (cf‘(ℵ‘𝐴))) → ((𝑓𝑥) ≺ (𝐻𝑥) ↔ (𝑓𝑥) ≺ (har‘(𝑓𝑥))))
8981, 88mpbird 256 . . . . . . . . . . . . . . 15 ((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ 𝑥 ∈ (cf‘(ℵ‘𝐴))) → (𝑓𝑥) ≺ (𝐻𝑥))
9089ralrimiva 3103 . . . . . . . . . . . . . 14 (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → ∀𝑥 ∈ (cf‘(ℵ‘𝐴))(𝑓𝑥) ≺ (𝐻𝑥))
91 fvex 6787 . . . . . . . . . . . . . . 15 (cf‘(ℵ‘𝐴)) ∈ V
92 eqid 2738 . . . . . . . . . . . . . . 15 𝑥 ∈ (cf‘(ℵ‘𝐴))(𝑓𝑥) = 𝑥 ∈ (cf‘(ℵ‘𝐴))(𝑓𝑥)
93 eqid 2738 . . . . . . . . . . . . . . 15 X𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥) = X𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥)
9491, 92, 93konigth 10325 . . . . . . . . . . . . . 14 (∀𝑥 ∈ (cf‘(ℵ‘𝐴))(𝑓𝑥) ≺ (𝐻𝑥) → 𝑥 ∈ (cf‘(ℵ‘𝐴))(𝑓𝑥) ≺ X𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥))
9590, 94syl 17 . . . . . . . . . . . . 13 (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → 𝑥 ∈ (cf‘(ℵ‘𝐴))(𝑓𝑥) ≺ X𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥))
9695ad2antrl 725 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤))) → 𝑥 ∈ (cf‘(ℵ‘𝐴))(𝑓𝑥) ≺ X𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥))
9766, 96eqbrtrrd 5098 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤))) → (ℵ‘𝐴) ≺ X𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥))
9841, 97sylan 580 . . . . . . . . . 10 (((𝐴 ∈ V ∧ Lim 𝐴) ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤))) → (ℵ‘𝐴) ≺ X𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥))
99 ovex 7308 . . . . . . . . . . . 12 ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴))) ∈ V
10067ex 413 . . . . . . . . . . . . . . . 16 (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → (𝑥 ∈ (cf‘(ℵ‘𝐴)) → (𝑓𝑥) ∈ (ℵ‘𝐴)))
101 alephlim 9823 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ V ∧ Lim 𝐴) → (ℵ‘𝐴) = 𝑦𝐴 (ℵ‘𝑦))
102101eleq2d 2824 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ V ∧ Lim 𝐴) → ((𝑓𝑥) ∈ (ℵ‘𝐴) ↔ (𝑓𝑥) ∈ 𝑦𝐴 (ℵ‘𝑦)))
103 eliun 4928 . . . . . . . . . . . . . . . . . . 19 ((𝑓𝑥) ∈ 𝑦𝐴 (ℵ‘𝑦) ↔ ∃𝑦𝐴 (𝑓𝑥) ∈ (ℵ‘𝑦))
104 alephcard 9826 . . . . . . . . . . . . . . . . . . . . . . . 24 (card‘(ℵ‘𝑦)) = (ℵ‘𝑦)
105104eleq2i 2830 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓𝑥) ∈ (card‘(ℵ‘𝑦)) ↔ (𝑓𝑥) ∈ (ℵ‘𝑦))
106 cardsdomelir 9731 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓𝑥) ∈ (card‘(ℵ‘𝑦)) → (𝑓𝑥) ≺ (ℵ‘𝑦))
107105, 106sylbir 234 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓𝑥) ∈ (ℵ‘𝑦) → (𝑓𝑥) ≺ (ℵ‘𝑦))
108 elharval 9320 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((ℵ‘𝑦) ∈ (har‘(𝑓𝑥)) ↔ ((ℵ‘𝑦) ∈ On ∧ (ℵ‘𝑦) ≼ (𝑓𝑥)))
109108simprbi 497 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((ℵ‘𝑦) ∈ (har‘(𝑓𝑥)) → (ℵ‘𝑦) ≼ (𝑓𝑥))
110 domnsym 8886 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((ℵ‘𝑦) ≼ (𝑓𝑥) → ¬ (𝑓𝑥) ≺ (ℵ‘𝑦))
111109, 110syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((ℵ‘𝑦) ∈ (har‘(𝑓𝑥)) → ¬ (𝑓𝑥) ≺ (ℵ‘𝑦))
112111con2i 139 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓𝑥) ≺ (ℵ‘𝑦) → ¬ (ℵ‘𝑦) ∈ (har‘(𝑓𝑥)))
113 alephon 9825 . . . . . . . . . . . . . . . . . . . . . . . 24 (ℵ‘𝑦) ∈ On
114 ontri1 6300 . . . . . . . . . . . . . . . . . . . . . . . 24 (((har‘(𝑓𝑥)) ∈ On ∧ (ℵ‘𝑦) ∈ On) → ((har‘(𝑓𝑥)) ⊆ (ℵ‘𝑦) ↔ ¬ (ℵ‘𝑦) ∈ (har‘(𝑓𝑥))))
11582, 113, 114mp2an 689 . . . . . . . . . . . . . . . . . . . . . . 23 ((har‘(𝑓𝑥)) ⊆ (ℵ‘𝑦) ↔ ¬ (ℵ‘𝑦) ∈ (har‘(𝑓𝑥)))
116112, 115sylibr 233 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓𝑥) ≺ (ℵ‘𝑦) → (har‘(𝑓𝑥)) ⊆ (ℵ‘𝑦))
117107, 116syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓𝑥) ∈ (ℵ‘𝑦) → (har‘(𝑓𝑥)) ⊆ (ℵ‘𝑦))
118 alephord2i 9833 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∈ On → (𝑦𝐴 → (ℵ‘𝑦) ∈ (ℵ‘𝐴)))
119118imp 407 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ On ∧ 𝑦𝐴) → (ℵ‘𝑦) ∈ (ℵ‘𝐴))
120 ontr2 6313 . . . . . . . . . . . . . . . . . . . . . 22 (((har‘(𝑓𝑥)) ∈ On ∧ (ℵ‘𝐴) ∈ On) → (((har‘(𝑓𝑥)) ⊆ (ℵ‘𝑦) ∧ (ℵ‘𝑦) ∈ (ℵ‘𝐴)) → (har‘(𝑓𝑥)) ∈ (ℵ‘𝐴)))
12182, 15, 120mp2an 689 . . . . . . . . . . . . . . . . . . . . 21 (((har‘(𝑓𝑥)) ⊆ (ℵ‘𝑦) ∧ (ℵ‘𝑦) ∈ (ℵ‘𝐴)) → (har‘(𝑓𝑥)) ∈ (ℵ‘𝐴))
122117, 119, 121syl2anr 597 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ On ∧ 𝑦𝐴) ∧ (𝑓𝑥) ∈ (ℵ‘𝑦)) → (har‘(𝑓𝑥)) ∈ (ℵ‘𝐴))
123122rexlimdva2 3216 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ On → (∃𝑦𝐴 (𝑓𝑥) ∈ (ℵ‘𝑦) → (har‘(𝑓𝑥)) ∈ (ℵ‘𝐴)))
124103, 123syl5bi 241 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ On → ((𝑓𝑥) ∈ 𝑦𝐴 (ℵ‘𝑦) → (har‘(𝑓𝑥)) ∈ (ℵ‘𝐴)))
12541, 124syl 17 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ V ∧ Lim 𝐴) → ((𝑓𝑥) ∈ 𝑦𝐴 (ℵ‘𝑦) → (har‘(𝑓𝑥)) ∈ (ℵ‘𝐴)))
126102, 125sylbid 239 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ V ∧ Lim 𝐴) → ((𝑓𝑥) ∈ (ℵ‘𝐴) → (har‘(𝑓𝑥)) ∈ (ℵ‘𝐴)))
127100, 126sylan9r 509 . . . . . . . . . . . . . . 15 (((𝐴 ∈ V ∧ Lim 𝐴) ∧ 𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴)) → (𝑥 ∈ (cf‘(ℵ‘𝐴)) → (har‘(𝑓𝑥)) ∈ (ℵ‘𝐴)))
128127imp 407 . . . . . . . . . . . . . 14 ((((𝐴 ∈ V ∧ Lim 𝐴) ∧ 𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴)) ∧ 𝑥 ∈ (cf‘(ℵ‘𝐴))) → (har‘(𝑓𝑥)) ∈ (ℵ‘𝐴))
12983cbvmptv 5187 . . . . . . . . . . . . . . 15 (𝑦 ∈ (cf‘(ℵ‘𝐴)) ↦ (har‘(𝑓𝑦))) = (𝑥 ∈ (cf‘(ℵ‘𝐴)) ↦ (har‘(𝑓𝑥)))
13084, 129eqtri 2766 . . . . . . . . . . . . . 14 𝐻 = (𝑥 ∈ (cf‘(ℵ‘𝐴)) ↦ (har‘(𝑓𝑥)))
131128, 130fmptd 6988 . . . . . . . . . . . . 13 (((𝐴 ∈ V ∧ Lim 𝐴) ∧ 𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴)) → 𝐻:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴))
132 ffvelrn 6959 . . . . . . . . . . . . . . 15 ((𝐻:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ 𝑥 ∈ (cf‘(ℵ‘𝐴))) → (𝐻𝑥) ∈ (ℵ‘𝐴))
133 onelss 6308 . . . . . . . . . . . . . . 15 ((ℵ‘𝐴) ∈ On → ((𝐻𝑥) ∈ (ℵ‘𝐴) → (𝐻𝑥) ⊆ (ℵ‘𝐴)))
13415, 132, 133mpsyl 68 . . . . . . . . . . . . . 14 ((𝐻:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ 𝑥 ∈ (cf‘(ℵ‘𝐴))) → (𝐻𝑥) ⊆ (ℵ‘𝐴))
135134ralrimiva 3103 . . . . . . . . . . . . 13 (𝐻:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → ∀𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥) ⊆ (ℵ‘𝐴))
136 ss2ixp 8698 . . . . . . . . . . . . . 14 (∀𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥) ⊆ (ℵ‘𝐴) → X𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥) ⊆ X𝑥 ∈ (cf‘(ℵ‘𝐴))(ℵ‘𝐴))
13791, 10ixpconst 8695 . . . . . . . . . . . . . 14 X𝑥 ∈ (cf‘(ℵ‘𝐴))(ℵ‘𝐴) = ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴)))
138136, 137sseqtrdi 3971 . . . . . . . . . . . . 13 (∀𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥) ⊆ (ℵ‘𝐴) → X𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥) ⊆ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴))))
139131, 135, 1383syl 18 . . . . . . . . . . . 12 (((𝐴 ∈ V ∧ Lim 𝐴) ∧ 𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴)) → X𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥) ⊆ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴))))
140 ssdomg 8786 . . . . . . . . . . . 12 (((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴))) ∈ V → (X𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥) ⊆ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴))) → X𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥) ≼ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴)))))
14199, 139, 140mpsyl 68 . . . . . . . . . . 11 (((𝐴 ∈ V ∧ Lim 𝐴) ∧ 𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴)) → X𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥) ≼ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴))))
142141adantrr 714 . . . . . . . . . 10 (((𝐴 ∈ V ∧ Lim 𝐴) ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤))) → X𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥) ≼ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴))))
143 sdomdomtr 8897 . . . . . . . . . 10 (((ℵ‘𝐴) ≺ X𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥) ∧ X𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥) ≼ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴)))) → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴))))
14498, 142, 143syl2anc 584 . . . . . . . . 9 (((𝐴 ∈ V ∧ Lim 𝐴) ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤))) → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴))))
145144expcom 414 . . . . . . . 8 ((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤)) → ((𝐴 ∈ V ∧ Lim 𝐴) → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴)))))
1461453adant2 1130 . . . . . . 7 ((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ Smo 𝑓 ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤)) → ((𝐴 ∈ V ∧ Lim 𝐴) → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴)))))
147146exlimiv 1933 . . . . . 6 (∃𝑓(𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ Smo 𝑓 ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤)) → ((𝐴 ∈ V ∧ Lim 𝐴) → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴)))))
14815, 40, 147mp2b 10 . . . . 5 ((𝐴 ∈ V ∧ Lim 𝐴) → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴))))
149148a1i 11 . . . 4 (𝐴 ∈ On → ((𝐴 ∈ V ∧ Lim 𝐴) → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴)))))
15033, 39, 1493jaod 1427 . . 3 (𝐴 ∈ On → ((𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴)) → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴)))))
1512, 150mpd 15 . 2 (𝐴 ∈ On → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴))))
152 alephfnon 9821 . . . . 5 ℵ Fn On
153152fndmi 6537 . . . 4 dom ℵ = On
154153eleq2i 2830 . . 3 (𝐴 ∈ dom ℵ ↔ 𝐴 ∈ On)
155 ndmfv 6804 . . . 4 𝐴 ∈ dom ℵ → (ℵ‘𝐴) = ∅)
156 1n0 8318 . . . . . 6 1o ≠ ∅
157 1oex 8307 . . . . . . 7 1o ∈ V
1581570sdom 8894 . . . . . 6 (∅ ≺ 1o ↔ 1o ≠ ∅)
159156, 158mpbir 230 . . . . 5 ∅ ≺ 1o
160 id 22 . . . . . 6 ((ℵ‘𝐴) = ∅ → (ℵ‘𝐴) = ∅)
161 fveq2 6774 . . . . . . . . 9 ((ℵ‘𝐴) = ∅ → (cf‘(ℵ‘𝐴)) = (cf‘∅))
162 cf0 10007 . . . . . . . . 9 (cf‘∅) = ∅
163161, 162eqtrdi 2794 . . . . . . . 8 ((ℵ‘𝐴) = ∅ → (cf‘(ℵ‘𝐴)) = ∅)
164160, 163oveq12d 7293 . . . . . . 7 ((ℵ‘𝐴) = ∅ → ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴))) = (∅ ↑m ∅))
165 0ex 5231 . . . . . . . 8 ∅ ∈ V
166 map0e 8670 . . . . . . . 8 (∅ ∈ V → (∅ ↑m ∅) = 1o)
167165, 166ax-mp 5 . . . . . . 7 (∅ ↑m ∅) = 1o
168164, 167eqtrdi 2794 . . . . . 6 ((ℵ‘𝐴) = ∅ → ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴))) = 1o)
169160, 168breq12d 5087 . . . . 5 ((ℵ‘𝐴) = ∅ → ((ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴))) ↔ ∅ ≺ 1o))
170159, 169mpbiri 257 . . . 4 ((ℵ‘𝐴) = ∅ → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴))))
171155, 170syl 17 . . 3 𝐴 ∈ dom ℵ → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴))))
172154, 171sylnbir 331 . 2 𝐴 ∈ On → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴))))
173151, 172pm2.61i 182 1 (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3o 1085  w3a 1086   = wceq 1539  wex 1782  wcel 2106  {cab 2715  wne 2943  wral 3064  wrex 3065  Vcvv 3432  wss 3887  c0 4256  𝒫 cpw 4533   cuni 4839   ciun 4924   class class class wbr 5074  cmpt 5157  dom cdm 5589  ran crn 5590  Oncon0 6266  Lim wlim 6267  suc csuc 6268   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  ωcom 7712  Smo wsmo 8176  1oc1o 8290  2oc2o 8291  m cmap 8615  Xcixp 8685  cen 8730  cdom 8731  csdm 8732  harchar 9315  cardccrd 9693  cale 9694  cfccf 9695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-ac2 10219
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-smo 8177  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-oi 9269  df-har 9316  df-card 9697  df-aleph 9698  df-cf 9699  df-acn 9700  df-ac 9872
This theorem is referenced by:  cfpwsdom  10340  tskcard  10537  bj-pwcfsdom  35233
  Copyright terms: Public domain W3C validator