| Step | Hyp | Ref
| Expression |
| 1 | | onzsl 7846 |
. . . 4
⊢ (𝐴 ∈ On ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴))) |
| 2 | 1 | biimpi 216 |
. . 3
⊢ (𝐴 ∈ On → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴))) |
| 3 | | cfom 10283 |
. . . . . . 7
⊢
(cf‘ω) = ω |
| 4 | | aleph0 10085 |
. . . . . . . 8
⊢
(ℵ‘∅) = ω |
| 5 | 4 | fveq2i 6884 |
. . . . . . 7
⊢
(cf‘(ℵ‘∅)) = (cf‘ω) |
| 6 | 3, 5, 4 | 3eqtr4i 2769 |
. . . . . 6
⊢
(cf‘(ℵ‘∅)) =
(ℵ‘∅) |
| 7 | | 2fveq3 6886 |
. . . . . 6
⊢ (𝐴 = ∅ →
(cf‘(ℵ‘𝐴)) =
(cf‘(ℵ‘∅))) |
| 8 | | fveq2 6881 |
. . . . . 6
⊢ (𝐴 = ∅ →
(ℵ‘𝐴) =
(ℵ‘∅)) |
| 9 | 6, 7, 8 | 3eqtr4a 2797 |
. . . . 5
⊢ (𝐴 = ∅ →
(cf‘(ℵ‘𝐴)) = (ℵ‘𝐴)) |
| 10 | | fvex 6894 |
. . . . . . . . 9
⊢
(ℵ‘𝐴)
∈ V |
| 11 | 10 | canth2 9149 |
. . . . . . . 8
⊢
(ℵ‘𝐴)
≺ 𝒫 (ℵ‘𝐴) |
| 12 | 10 | pw2en 9098 |
. . . . . . . 8
⊢ 𝒫
(ℵ‘𝐴) ≈
(2o ↑m (ℵ‘𝐴)) |
| 13 | | sdomentr 9130 |
. . . . . . . 8
⊢
(((ℵ‘𝐴)
≺ 𝒫 (ℵ‘𝐴) ∧ 𝒫 (ℵ‘𝐴) ≈ (2o
↑m (ℵ‘𝐴))) → (ℵ‘𝐴) ≺ (2o ↑m
(ℵ‘𝐴))) |
| 14 | 11, 12, 13 | mp2an 692 |
. . . . . . 7
⊢
(ℵ‘𝐴)
≺ (2o ↑m (ℵ‘𝐴)) |
| 15 | | alephon 10088 |
. . . . . . . . 9
⊢
(ℵ‘𝐴)
∈ On |
| 16 | | alephgeom 10101 |
. . . . . . . . . 10
⊢ (𝐴 ∈ On ↔ ω
⊆ (ℵ‘𝐴)) |
| 17 | | omelon 9665 |
. . . . . . . . . . . 12
⊢ ω
∈ On |
| 18 | | 2onn 8659 |
. . . . . . . . . . . 12
⊢
2o ∈ ω |
| 19 | | onelss 6399 |
. . . . . . . . . . . 12
⊢ (ω
∈ On → (2o ∈ ω → 2o ⊆
ω)) |
| 20 | 17, 18, 19 | mp2 9 |
. . . . . . . . . . 11
⊢
2o ⊆ ω |
| 21 | | sstr 3972 |
. . . . . . . . . . 11
⊢
((2o ⊆ ω ∧ ω ⊆
(ℵ‘𝐴)) →
2o ⊆ (ℵ‘𝐴)) |
| 22 | 20, 21 | mpan 690 |
. . . . . . . . . 10
⊢ (ω
⊆ (ℵ‘𝐴)
→ 2o ⊆ (ℵ‘𝐴)) |
| 23 | 16, 22 | sylbi 217 |
. . . . . . . . 9
⊢ (𝐴 ∈ On → 2o
⊆ (ℵ‘𝐴)) |
| 24 | | ssdomg 9019 |
. . . . . . . . 9
⊢
((ℵ‘𝐴)
∈ On → (2o ⊆ (ℵ‘𝐴) → 2o ≼
(ℵ‘𝐴))) |
| 25 | 15, 23, 24 | mpsyl 68 |
. . . . . . . 8
⊢ (𝐴 ∈ On → 2o
≼ (ℵ‘𝐴)) |
| 26 | | mapdom1 9161 |
. . . . . . . 8
⊢
(2o ≼ (ℵ‘𝐴) → (2o ↑m
(ℵ‘𝐴)) ≼
((ℵ‘𝐴)
↑m (ℵ‘𝐴))) |
| 27 | 25, 26 | syl 17 |
. . . . . . 7
⊢ (𝐴 ∈ On → (2o
↑m (ℵ‘𝐴)) ≼ ((ℵ‘𝐴) ↑m (ℵ‘𝐴))) |
| 28 | | sdomdomtr 9129 |
. . . . . . 7
⊢
(((ℵ‘𝐴)
≺ (2o ↑m (ℵ‘𝐴)) ∧ (2o ↑m
(ℵ‘𝐴)) ≼
((ℵ‘𝐴)
↑m (ℵ‘𝐴))) → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (ℵ‘𝐴))) |
| 29 | 14, 27, 28 | sylancr 587 |
. . . . . 6
⊢ (𝐴 ∈ On →
(ℵ‘𝐴) ≺
((ℵ‘𝐴)
↑m (ℵ‘𝐴))) |
| 30 | | oveq2 7418 |
. . . . . . 7
⊢
((cf‘(ℵ‘𝐴)) = (ℵ‘𝐴) → ((ℵ‘𝐴) ↑m
(cf‘(ℵ‘𝐴))) = ((ℵ‘𝐴) ↑m (ℵ‘𝐴))) |
| 31 | 30 | breq2d 5136 |
. . . . . 6
⊢
((cf‘(ℵ‘𝐴)) = (ℵ‘𝐴) → ((ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m
(cf‘(ℵ‘𝐴))) ↔ (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (ℵ‘𝐴)))) |
| 32 | 29, 31 | syl5ibrcom 247 |
. . . . 5
⊢ (𝐴 ∈ On →
((cf‘(ℵ‘𝐴)) = (ℵ‘𝐴) → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m
(cf‘(ℵ‘𝐴))))) |
| 33 | 9, 32 | syl5 34 |
. . . 4
⊢ (𝐴 ∈ On → (𝐴 = ∅ →
(ℵ‘𝐴) ≺
((ℵ‘𝐴)
↑m (cf‘(ℵ‘𝐴))))) |
| 34 | | alephreg 10601 |
. . . . . . 7
⊢
(cf‘(ℵ‘suc 𝑥)) = (ℵ‘suc 𝑥) |
| 35 | | 2fveq3 6886 |
. . . . . . 7
⊢ (𝐴 = suc 𝑥 → (cf‘(ℵ‘𝐴)) =
(cf‘(ℵ‘suc 𝑥))) |
| 36 | | fveq2 6881 |
. . . . . . 7
⊢ (𝐴 = suc 𝑥 → (ℵ‘𝐴) = (ℵ‘suc 𝑥)) |
| 37 | 34, 35, 36 | 3eqtr4a 2797 |
. . . . . 6
⊢ (𝐴 = suc 𝑥 → (cf‘(ℵ‘𝐴)) = (ℵ‘𝐴)) |
| 38 | 37 | rexlimivw 3138 |
. . . . 5
⊢
(∃𝑥 ∈ On
𝐴 = suc 𝑥 → (cf‘(ℵ‘𝐴)) = (ℵ‘𝐴)) |
| 39 | 38, 32 | syl5 34 |
. . . 4
⊢ (𝐴 ∈ On → (∃𝑥 ∈ On 𝐴 = suc 𝑥 → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m
(cf‘(ℵ‘𝐴))))) |
| 40 | | limelon 6422 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ V ∧ Lim 𝐴) → 𝐴 ∈ On) |
| 41 | | ffn 6711 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → 𝑓 Fn (cf‘(ℵ‘𝐴))) |
| 42 | | fnrnfv 6943 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 Fn
(cf‘(ℵ‘𝐴)) → ran 𝑓 = {𝑦 ∣ ∃𝑥 ∈ (cf‘(ℵ‘𝐴))𝑦 = (𝑓‘𝑥)}) |
| 43 | 42 | unieqd 4901 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 Fn
(cf‘(ℵ‘𝐴)) → ∪ ran
𝑓 = ∪ {𝑦
∣ ∃𝑥 ∈
(cf‘(ℵ‘𝐴))𝑦 = (𝑓‘𝑥)}) |
| 44 | 41, 43 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → ∪ ran 𝑓 = ∪ {𝑦 ∣ ∃𝑥 ∈
(cf‘(ℵ‘𝐴))𝑦 = (𝑓‘𝑥)}) |
| 45 | | fvex 6894 |
. . . . . . . . . . . . . . 15
⊢ (𝑓‘𝑥) ∈ V |
| 46 | 45 | dfiun2 5014 |
. . . . . . . . . . . . . 14
⊢ ∪ 𝑥 ∈ (cf‘(ℵ‘𝐴))(𝑓‘𝑥) = ∪ {𝑦 ∣ ∃𝑥 ∈
(cf‘(ℵ‘𝐴))𝑦 = (𝑓‘𝑥)} |
| 47 | 44, 46 | eqtr4di 2789 |
. . . . . . . . . . . . 13
⊢ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → ∪ ran 𝑓 = ∪ 𝑥 ∈
(cf‘(ℵ‘𝐴))(𝑓‘𝑥)) |
| 48 | 47 | ad2antrl 728 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ On ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓‘𝑤))) → ∪ ran
𝑓 = ∪ 𝑥 ∈ (cf‘(ℵ‘𝐴))(𝑓‘𝑥)) |
| 49 | | fnfvelrn 7075 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓 Fn
(cf‘(ℵ‘𝐴)) ∧ 𝑤 ∈ (cf‘(ℵ‘𝐴))) → (𝑓‘𝑤) ∈ ran 𝑓) |
| 50 | 41, 49 | sylan 580 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ 𝑤 ∈ (cf‘(ℵ‘𝐴))) → (𝑓‘𝑤) ∈ ran 𝑓) |
| 51 | | sseq2 3990 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = (𝑓‘𝑤) → (𝑧 ⊆ 𝑦 ↔ 𝑧 ⊆ (𝑓‘𝑤))) |
| 52 | 51 | rspcev 3606 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑓‘𝑤) ∈ ran 𝑓 ∧ 𝑧 ⊆ (𝑓‘𝑤)) → ∃𝑦 ∈ ran 𝑓 𝑧 ⊆ 𝑦) |
| 53 | 50, 52 | sylan 580 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ 𝑤 ∈ (cf‘(ℵ‘𝐴))) ∧ 𝑧 ⊆ (𝑓‘𝑤)) → ∃𝑦 ∈ ran 𝑓 𝑧 ⊆ 𝑦) |
| 54 | 53 | rexlimdva2 3144 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → (∃𝑤 ∈
(cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓‘𝑤) → ∃𝑦 ∈ ran 𝑓 𝑧 ⊆ 𝑦)) |
| 55 | 54 | ralimdv 3155 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → (∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓‘𝑤) → ∀𝑧 ∈ (ℵ‘𝐴)∃𝑦 ∈ ran 𝑓 𝑧 ⊆ 𝑦)) |
| 56 | 55 | imp 406 |
. . . . . . . . . . . . . 14
⊢ ((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓‘𝑤)) → ∀𝑧 ∈ (ℵ‘𝐴)∃𝑦 ∈ ran 𝑓 𝑧 ⊆ 𝑦) |
| 57 | 56 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ On ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓‘𝑤))) → ∀𝑧 ∈ (ℵ‘𝐴)∃𝑦 ∈ ran 𝑓 𝑧 ⊆ 𝑦) |
| 58 | | alephislim 10102 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ On ↔ Lim
(ℵ‘𝐴)) |
| 59 | 58 | biimpi 216 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ On → Lim
(ℵ‘𝐴)) |
| 60 | | frn 6718 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → ran 𝑓 ⊆ (ℵ‘𝐴)) |
| 61 | 60 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓‘𝑤)) → ran 𝑓 ⊆ (ℵ‘𝐴)) |
| 62 | | coflim 10280 |
. . . . . . . . . . . . . 14
⊢ ((Lim
(ℵ‘𝐴) ∧ ran
𝑓 ⊆
(ℵ‘𝐴)) →
(∪ ran 𝑓 = (ℵ‘𝐴) ↔ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑦 ∈ ran 𝑓 𝑧 ⊆ 𝑦)) |
| 63 | 59, 61, 62 | syl2an 596 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ On ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓‘𝑤))) → (∪ ran
𝑓 = (ℵ‘𝐴) ↔ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑦 ∈ ran 𝑓 𝑧 ⊆ 𝑦)) |
| 64 | 57, 63 | mpbird 257 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ On ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓‘𝑤))) → ∪ ran
𝑓 = (ℵ‘𝐴)) |
| 65 | 48, 64 | eqtr3d 2773 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ On ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓‘𝑤))) → ∪ 𝑥 ∈ (cf‘(ℵ‘𝐴))(𝑓‘𝑥) = (ℵ‘𝐴)) |
| 66 | | ffvelcdm 7076 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ 𝑥 ∈ (cf‘(ℵ‘𝐴))) → (𝑓‘𝑥) ∈ (ℵ‘𝐴)) |
| 67 | 15 | oneli 6473 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓‘𝑥) ∈ (ℵ‘𝐴) → (𝑓‘𝑥) ∈ On) |
| 68 | | harcard 9997 |
. . . . . . . . . . . . . . . . . 18
⊢
(card‘(har‘(𝑓‘𝑥))) = (har‘(𝑓‘𝑥)) |
| 69 | | iscard 9994 |
. . . . . . . . . . . . . . . . . . 19
⊢
((card‘(har‘(𝑓‘𝑥))) = (har‘(𝑓‘𝑥)) ↔ ((har‘(𝑓‘𝑥)) ∈ On ∧ ∀𝑦 ∈ (har‘(𝑓‘𝑥))𝑦 ≺ (har‘(𝑓‘𝑥)))) |
| 70 | 69 | simprbi 496 |
. . . . . . . . . . . . . . . . . 18
⊢
((card‘(har‘(𝑓‘𝑥))) = (har‘(𝑓‘𝑥)) → ∀𝑦 ∈ (har‘(𝑓‘𝑥))𝑦 ≺ (har‘(𝑓‘𝑥))) |
| 71 | 68, 70 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢
∀𝑦 ∈
(har‘(𝑓‘𝑥))𝑦 ≺ (har‘(𝑓‘𝑥)) |
| 72 | | domrefg 9006 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓‘𝑥) ∈ V → (𝑓‘𝑥) ≼ (𝑓‘𝑥)) |
| 73 | 45, 72 | ax-mp 5 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓‘𝑥) ≼ (𝑓‘𝑥) |
| 74 | | elharval 9580 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓‘𝑥) ∈ (har‘(𝑓‘𝑥)) ↔ ((𝑓‘𝑥) ∈ On ∧ (𝑓‘𝑥) ≼ (𝑓‘𝑥))) |
| 75 | 74 | biimpri 228 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑓‘𝑥) ∈ On ∧ (𝑓‘𝑥) ≼ (𝑓‘𝑥)) → (𝑓‘𝑥) ∈ (har‘(𝑓‘𝑥))) |
| 76 | 73, 75 | mpan2 691 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓‘𝑥) ∈ On → (𝑓‘𝑥) ∈ (har‘(𝑓‘𝑥))) |
| 77 | | breq1 5127 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = (𝑓‘𝑥) → (𝑦 ≺ (har‘(𝑓‘𝑥)) ↔ (𝑓‘𝑥) ≺ (har‘(𝑓‘𝑥)))) |
| 78 | 77 | rspccv 3603 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑦 ∈
(har‘(𝑓‘𝑥))𝑦 ≺ (har‘(𝑓‘𝑥)) → ((𝑓‘𝑥) ∈ (har‘(𝑓‘𝑥)) → (𝑓‘𝑥) ≺ (har‘(𝑓‘𝑥)))) |
| 79 | 71, 76, 78 | mpsyl 68 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓‘𝑥) ∈ On → (𝑓‘𝑥) ≺ (har‘(𝑓‘𝑥))) |
| 80 | 66, 67, 79 | 3syl 18 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ 𝑥 ∈ (cf‘(ℵ‘𝐴))) → (𝑓‘𝑥) ≺ (har‘(𝑓‘𝑥))) |
| 81 | | harcl 9578 |
. . . . . . . . . . . . . . . . . 18
⊢
(har‘(𝑓‘𝑥)) ∈ On |
| 82 | | 2fveq3 6886 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑥 → (har‘(𝑓‘𝑦)) = (har‘(𝑓‘𝑥))) |
| 83 | | pwcfsdom.1 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝐻 = (𝑦 ∈ (cf‘(ℵ‘𝐴)) ↦ (har‘(𝑓‘𝑦))) |
| 84 | 82, 83 | fvmptg 6989 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈
(cf‘(ℵ‘𝐴)) ∧ (har‘(𝑓‘𝑥)) ∈ On) → (𝐻‘𝑥) = (har‘(𝑓‘𝑥))) |
| 85 | 81, 84 | mpan2 691 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈
(cf‘(ℵ‘𝐴)) → (𝐻‘𝑥) = (har‘(𝑓‘𝑥))) |
| 86 | 85 | breq2d 5136 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈
(cf‘(ℵ‘𝐴)) → ((𝑓‘𝑥) ≺ (𝐻‘𝑥) ↔ (𝑓‘𝑥) ≺ (har‘(𝑓‘𝑥)))) |
| 87 | 86 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ 𝑥 ∈ (cf‘(ℵ‘𝐴))) → ((𝑓‘𝑥) ≺ (𝐻‘𝑥) ↔ (𝑓‘𝑥) ≺ (har‘(𝑓‘𝑥)))) |
| 88 | 80, 87 | mpbird 257 |
. . . . . . . . . . . . . 14
⊢ ((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ 𝑥 ∈ (cf‘(ℵ‘𝐴))) → (𝑓‘𝑥) ≺ (𝐻‘𝑥)) |
| 89 | 88 | ralrimiva 3133 |
. . . . . . . . . . . . 13
⊢ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → ∀𝑥 ∈
(cf‘(ℵ‘𝐴))(𝑓‘𝑥) ≺ (𝐻‘𝑥)) |
| 90 | | fvex 6894 |
. . . . . . . . . . . . . 14
⊢
(cf‘(ℵ‘𝐴)) ∈ V |
| 91 | | eqid 2736 |
. . . . . . . . . . . . . 14
⊢ ∪ 𝑥 ∈ (cf‘(ℵ‘𝐴))(𝑓‘𝑥) = ∪ 𝑥 ∈
(cf‘(ℵ‘𝐴))(𝑓‘𝑥) |
| 92 | | eqid 2736 |
. . . . . . . . . . . . . 14
⊢ X𝑥 ∈
(cf‘(ℵ‘𝐴))(𝐻‘𝑥) = X𝑥 ∈
(cf‘(ℵ‘𝐴))(𝐻‘𝑥) |
| 93 | 90, 91, 92 | konigth 10588 |
. . . . . . . . . . . . 13
⊢
(∀𝑥 ∈
(cf‘(ℵ‘𝐴))(𝑓‘𝑥) ≺ (𝐻‘𝑥) → ∪
𝑥 ∈
(cf‘(ℵ‘𝐴))(𝑓‘𝑥) ≺ X𝑥 ∈
(cf‘(ℵ‘𝐴))(𝐻‘𝑥)) |
| 94 | 89, 93 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → ∪ 𝑥 ∈ (cf‘(ℵ‘𝐴))(𝑓‘𝑥) ≺ X𝑥 ∈
(cf‘(ℵ‘𝐴))(𝐻‘𝑥)) |
| 95 | 94 | ad2antrl 728 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ On ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓‘𝑤))) → ∪ 𝑥 ∈ (cf‘(ℵ‘𝐴))(𝑓‘𝑥) ≺ X𝑥 ∈
(cf‘(ℵ‘𝐴))(𝐻‘𝑥)) |
| 96 | 65, 95 | eqbrtrrd 5148 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ On ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓‘𝑤))) → (ℵ‘𝐴) ≺ X𝑥 ∈
(cf‘(ℵ‘𝐴))(𝐻‘𝑥)) |
| 97 | 40, 96 | sylan 580 |
. . . . . . . . 9
⊢ (((𝐴 ∈ V ∧ Lim 𝐴) ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓‘𝑤))) → (ℵ‘𝐴) ≺ X𝑥 ∈
(cf‘(ℵ‘𝐴))(𝐻‘𝑥)) |
| 98 | | ovex 7443 |
. . . . . . . . . . 11
⊢
((ℵ‘𝐴)
↑m (cf‘(ℵ‘𝐴))) ∈ V |
| 99 | 66 | ex 412 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → (𝑥 ∈ (cf‘(ℵ‘𝐴)) → (𝑓‘𝑥) ∈ (ℵ‘𝐴))) |
| 100 | | alephlim 10086 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ V ∧ Lim 𝐴) → (ℵ‘𝐴) = ∪ 𝑦 ∈ 𝐴 (ℵ‘𝑦)) |
| 101 | 100 | eleq2d 2821 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ V ∧ Lim 𝐴) → ((𝑓‘𝑥) ∈ (ℵ‘𝐴) ↔ (𝑓‘𝑥) ∈ ∪
𝑦 ∈ 𝐴 (ℵ‘𝑦))) |
| 102 | | eliun 4976 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓‘𝑥) ∈ ∪
𝑦 ∈ 𝐴 (ℵ‘𝑦) ↔ ∃𝑦 ∈ 𝐴 (𝑓‘𝑥) ∈ (ℵ‘𝑦)) |
| 103 | | alephcard 10089 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(card‘(ℵ‘𝑦)) = (ℵ‘𝑦) |
| 104 | 103 | eleq2i 2827 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑓‘𝑥) ∈ (card‘(ℵ‘𝑦)) ↔ (𝑓‘𝑥) ∈ (ℵ‘𝑦)) |
| 105 | | cardsdomelir 9992 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑓‘𝑥) ∈ (card‘(ℵ‘𝑦)) → (𝑓‘𝑥) ≺ (ℵ‘𝑦)) |
| 106 | 104, 105 | sylbir 235 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑓‘𝑥) ∈ (ℵ‘𝑦) → (𝑓‘𝑥) ≺ (ℵ‘𝑦)) |
| 107 | | elharval 9580 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((ℵ‘𝑦)
∈ (har‘(𝑓‘𝑥)) ↔ ((ℵ‘𝑦) ∈ On ∧ (ℵ‘𝑦) ≼ (𝑓‘𝑥))) |
| 108 | 107 | simprbi 496 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((ℵ‘𝑦)
∈ (har‘(𝑓‘𝑥)) → (ℵ‘𝑦) ≼ (𝑓‘𝑥)) |
| 109 | | domnsym 9118 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((ℵ‘𝑦)
≼ (𝑓‘𝑥) → ¬ (𝑓‘𝑥) ≺ (ℵ‘𝑦)) |
| 110 | 108, 109 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((ℵ‘𝑦)
∈ (har‘(𝑓‘𝑥)) → ¬ (𝑓‘𝑥) ≺ (ℵ‘𝑦)) |
| 111 | 110 | con2i 139 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑓‘𝑥) ≺ (ℵ‘𝑦) → ¬ (ℵ‘𝑦) ∈ (har‘(𝑓‘𝑥))) |
| 112 | | alephon 10088 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(ℵ‘𝑦)
∈ On |
| 113 | | ontri1 6391 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((har‘(𝑓‘𝑥)) ∈ On ∧ (ℵ‘𝑦) ∈ On) →
((har‘(𝑓‘𝑥)) ⊆ (ℵ‘𝑦) ↔ ¬
(ℵ‘𝑦) ∈
(har‘(𝑓‘𝑥)))) |
| 114 | 81, 112, 113 | mp2an 692 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((har‘(𝑓‘𝑥)) ⊆ (ℵ‘𝑦) ↔ ¬ (ℵ‘𝑦) ∈ (har‘(𝑓‘𝑥))) |
| 115 | 111, 114 | sylibr 234 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑓‘𝑥) ≺ (ℵ‘𝑦) → (har‘(𝑓‘𝑥)) ⊆ (ℵ‘𝑦)) |
| 116 | 106, 115 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑓‘𝑥) ∈ (ℵ‘𝑦) → (har‘(𝑓‘𝑥)) ⊆ (ℵ‘𝑦)) |
| 117 | | alephord2i 10096 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐴 ∈ On → (𝑦 ∈ 𝐴 → (ℵ‘𝑦) ∈ (ℵ‘𝐴))) |
| 118 | 117 | imp 406 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ 𝐴) → (ℵ‘𝑦) ∈ (ℵ‘𝐴)) |
| 119 | | ontr2 6405 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((har‘(𝑓‘𝑥)) ∈ On ∧ (ℵ‘𝐴) ∈ On) →
(((har‘(𝑓‘𝑥)) ⊆ (ℵ‘𝑦) ∧ (ℵ‘𝑦) ∈ (ℵ‘𝐴)) → (har‘(𝑓‘𝑥)) ∈ (ℵ‘𝐴))) |
| 120 | 81, 15, 119 | mp2an 692 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((har‘(𝑓‘𝑥)) ⊆ (ℵ‘𝑦) ∧ (ℵ‘𝑦) ∈ (ℵ‘𝐴)) → (har‘(𝑓‘𝑥)) ∈ (ℵ‘𝐴)) |
| 121 | 116, 118,
120 | syl2anr 597 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 ∈ On ∧ 𝑦 ∈ 𝐴) ∧ (𝑓‘𝑥) ∈ (ℵ‘𝑦)) → (har‘(𝑓‘𝑥)) ∈ (ℵ‘𝐴)) |
| 122 | 121 | rexlimdva2 3144 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐴 ∈ On → (∃𝑦 ∈ 𝐴 (𝑓‘𝑥) ∈ (ℵ‘𝑦) → (har‘(𝑓‘𝑥)) ∈ (ℵ‘𝐴))) |
| 123 | 102, 122 | biimtrid 242 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ On → ((𝑓‘𝑥) ∈ ∪
𝑦 ∈ 𝐴 (ℵ‘𝑦) → (har‘(𝑓‘𝑥)) ∈ (ℵ‘𝐴))) |
| 124 | 40, 123 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ V ∧ Lim 𝐴) → ((𝑓‘𝑥) ∈ ∪
𝑦 ∈ 𝐴 (ℵ‘𝑦) → (har‘(𝑓‘𝑥)) ∈ (ℵ‘𝐴))) |
| 125 | 101, 124 | sylbid 240 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ V ∧ Lim 𝐴) → ((𝑓‘𝑥) ∈ (ℵ‘𝐴) → (har‘(𝑓‘𝑥)) ∈ (ℵ‘𝐴))) |
| 126 | 99, 125 | sylan9r 508 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ V ∧ Lim 𝐴) ∧ 𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴)) → (𝑥 ∈ (cf‘(ℵ‘𝐴)) → (har‘(𝑓‘𝑥)) ∈ (ℵ‘𝐴))) |
| 127 | 126 | imp 406 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ V ∧ Lim 𝐴) ∧ 𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴)) ∧ 𝑥 ∈ (cf‘(ℵ‘𝐴))) → (har‘(𝑓‘𝑥)) ∈ (ℵ‘𝐴)) |
| 128 | 82 | cbvmptv 5230 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈
(cf‘(ℵ‘𝐴)) ↦ (har‘(𝑓‘𝑦))) = (𝑥 ∈ (cf‘(ℵ‘𝐴)) ↦ (har‘(𝑓‘𝑥))) |
| 129 | 83, 128 | eqtri 2759 |
. . . . . . . . . . . . 13
⊢ 𝐻 = (𝑥 ∈ (cf‘(ℵ‘𝐴)) ↦ (har‘(𝑓‘𝑥))) |
| 130 | 127, 129 | fmptd 7109 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ V ∧ Lim 𝐴) ∧ 𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴)) → 𝐻:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴)) |
| 131 | | ffvelcdm 7076 |
. . . . . . . . . . . . . 14
⊢ ((𝐻:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ 𝑥 ∈ (cf‘(ℵ‘𝐴))) → (𝐻‘𝑥) ∈ (ℵ‘𝐴)) |
| 132 | | onelss 6399 |
. . . . . . . . . . . . . 14
⊢
((ℵ‘𝐴)
∈ On → ((𝐻‘𝑥) ∈ (ℵ‘𝐴) → (𝐻‘𝑥) ⊆ (ℵ‘𝐴))) |
| 133 | 15, 131, 132 | mpsyl 68 |
. . . . . . . . . . . . 13
⊢ ((𝐻:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ 𝑥 ∈ (cf‘(ℵ‘𝐴))) → (𝐻‘𝑥) ⊆ (ℵ‘𝐴)) |
| 134 | 133 | ralrimiva 3133 |
. . . . . . . . . . . 12
⊢ (𝐻:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → ∀𝑥 ∈
(cf‘(ℵ‘𝐴))(𝐻‘𝑥) ⊆ (ℵ‘𝐴)) |
| 135 | | ss2ixp 8929 |
. . . . . . . . . . . . 13
⊢
(∀𝑥 ∈
(cf‘(ℵ‘𝐴))(𝐻‘𝑥) ⊆ (ℵ‘𝐴) → X𝑥 ∈
(cf‘(ℵ‘𝐴))(𝐻‘𝑥) ⊆ X𝑥 ∈
(cf‘(ℵ‘𝐴))(ℵ‘𝐴)) |
| 136 | 90, 10 | ixpconst 8926 |
. . . . . . . . . . . . 13
⊢ X𝑥 ∈
(cf‘(ℵ‘𝐴))(ℵ‘𝐴) = ((ℵ‘𝐴) ↑m
(cf‘(ℵ‘𝐴))) |
| 137 | 135, 136 | sseqtrdi 4004 |
. . . . . . . . . . . 12
⊢
(∀𝑥 ∈
(cf‘(ℵ‘𝐴))(𝐻‘𝑥) ⊆ (ℵ‘𝐴) → X𝑥 ∈
(cf‘(ℵ‘𝐴))(𝐻‘𝑥) ⊆ ((ℵ‘𝐴) ↑m
(cf‘(ℵ‘𝐴)))) |
| 138 | 130, 134,
137 | 3syl 18 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ V ∧ Lim 𝐴) ∧ 𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴)) → X𝑥 ∈
(cf‘(ℵ‘𝐴))(𝐻‘𝑥) ⊆ ((ℵ‘𝐴) ↑m
(cf‘(ℵ‘𝐴)))) |
| 139 | | ssdomg 9019 |
. . . . . . . . . . 11
⊢
(((ℵ‘𝐴)
↑m (cf‘(ℵ‘𝐴))) ∈ V → (X𝑥 ∈
(cf‘(ℵ‘𝐴))(𝐻‘𝑥) ⊆ ((ℵ‘𝐴) ↑m
(cf‘(ℵ‘𝐴))) → X𝑥 ∈
(cf‘(ℵ‘𝐴))(𝐻‘𝑥) ≼ ((ℵ‘𝐴) ↑m
(cf‘(ℵ‘𝐴))))) |
| 140 | 98, 138, 139 | mpsyl 68 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ V ∧ Lim 𝐴) ∧ 𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴)) → X𝑥 ∈
(cf‘(ℵ‘𝐴))(𝐻‘𝑥) ≼ ((ℵ‘𝐴) ↑m
(cf‘(ℵ‘𝐴)))) |
| 141 | 140 | adantrr 717 |
. . . . . . . . 9
⊢ (((𝐴 ∈ V ∧ Lim 𝐴) ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓‘𝑤))) → X𝑥 ∈
(cf‘(ℵ‘𝐴))(𝐻‘𝑥) ≼ ((ℵ‘𝐴) ↑m
(cf‘(ℵ‘𝐴)))) |
| 142 | | sdomdomtr 9129 |
. . . . . . . . 9
⊢
(((ℵ‘𝐴)
≺ X𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻‘𝑥) ∧ X𝑥 ∈
(cf‘(ℵ‘𝐴))(𝐻‘𝑥) ≼ ((ℵ‘𝐴) ↑m
(cf‘(ℵ‘𝐴)))) → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m
(cf‘(ℵ‘𝐴)))) |
| 143 | 97, 141, 142 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝐴 ∈ V ∧ Lim 𝐴) ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓‘𝑤))) → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m
(cf‘(ℵ‘𝐴)))) |
| 144 | 143 | expcom 413 |
. . . . . . 7
⊢ ((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓‘𝑤)) → ((𝐴 ∈ V ∧ Lim 𝐴) → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m
(cf‘(ℵ‘𝐴))))) |
| 145 | 144 | 3adant2 1131 |
. . . . . 6
⊢ ((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ Smo 𝑓 ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓‘𝑤)) → ((𝐴 ∈ V ∧ Lim 𝐴) → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m
(cf‘(ℵ‘𝐴))))) |
| 146 | | cfsmo 10290 |
. . . . . . 7
⊢
((ℵ‘𝐴)
∈ On → ∃𝑓(𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ Smo 𝑓 ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓‘𝑤))) |
| 147 | 15, 146 | ax-mp 5 |
. . . . . 6
⊢
∃𝑓(𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ Smo 𝑓 ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓‘𝑤)) |
| 148 | 145, 147 | exlimiiv 1931 |
. . . . 5
⊢ ((𝐴 ∈ V ∧ Lim 𝐴) → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m
(cf‘(ℵ‘𝐴)))) |
| 149 | 148 | a1i 11 |
. . . 4
⊢ (𝐴 ∈ On → ((𝐴 ∈ V ∧ Lim 𝐴) → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m
(cf‘(ℵ‘𝐴))))) |
| 150 | 33, 39, 149 | 3jaod 1431 |
. . 3
⊢ (𝐴 ∈ On → ((𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴)) → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m
(cf‘(ℵ‘𝐴))))) |
| 151 | 2, 150 | mpd 15 |
. 2
⊢ (𝐴 ∈ On →
(ℵ‘𝐴) ≺
((ℵ‘𝐴)
↑m (cf‘(ℵ‘𝐴)))) |
| 152 | | alephfnon 10084 |
. . . . 5
⊢ ℵ
Fn On |
| 153 | 152 | fndmi 6647 |
. . . 4
⊢ dom
ℵ = On |
| 154 | 153 | eleq2i 2827 |
. . 3
⊢ (𝐴 ∈ dom ℵ ↔ 𝐴 ∈ On) |
| 155 | | ndmfv 6916 |
. . . 4
⊢ (¬
𝐴 ∈ dom ℵ →
(ℵ‘𝐴) =
∅) |
| 156 | | 1n0 8505 |
. . . . . 6
⊢
1o ≠ ∅ |
| 157 | | 1oex 8495 |
. . . . . . 7
⊢
1o ∈ V |
| 158 | 157 | 0sdom 9126 |
. . . . . 6
⊢ (∅
≺ 1o ↔ 1o ≠ ∅) |
| 159 | 156, 158 | mpbir 231 |
. . . . 5
⊢ ∅
≺ 1o |
| 160 | | id 22 |
. . . . . 6
⊢
((ℵ‘𝐴) =
∅ → (ℵ‘𝐴) = ∅) |
| 161 | | fveq2 6881 |
. . . . . . . . 9
⊢
((ℵ‘𝐴) =
∅ → (cf‘(ℵ‘𝐴)) = (cf‘∅)) |
| 162 | | cf0 10270 |
. . . . . . . . 9
⊢
(cf‘∅) = ∅ |
| 163 | 161, 162 | eqtrdi 2787 |
. . . . . . . 8
⊢
((ℵ‘𝐴) =
∅ → (cf‘(ℵ‘𝐴)) = ∅) |
| 164 | 160, 163 | oveq12d 7428 |
. . . . . . 7
⊢
((ℵ‘𝐴) =
∅ → ((ℵ‘𝐴) ↑m
(cf‘(ℵ‘𝐴))) = (∅ ↑m
∅)) |
| 165 | | 0ex 5282 |
. . . . . . . 8
⊢ ∅
∈ V |
| 166 | | map0e 8901 |
. . . . . . . 8
⊢ (∅
∈ V → (∅ ↑m ∅) =
1o) |
| 167 | 165, 166 | ax-mp 5 |
. . . . . . 7
⊢ (∅
↑m ∅) = 1o |
| 168 | 164, 167 | eqtrdi 2787 |
. . . . . 6
⊢
((ℵ‘𝐴) =
∅ → ((ℵ‘𝐴) ↑m
(cf‘(ℵ‘𝐴))) = 1o) |
| 169 | 160, 168 | breq12d 5137 |
. . . . 5
⊢
((ℵ‘𝐴) =
∅ → ((ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m
(cf‘(ℵ‘𝐴))) ↔ ∅ ≺
1o)) |
| 170 | 159, 169 | mpbiri 258 |
. . . 4
⊢
((ℵ‘𝐴) =
∅ → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m
(cf‘(ℵ‘𝐴)))) |
| 171 | 155, 170 | syl 17 |
. . 3
⊢ (¬
𝐴 ∈ dom ℵ →
(ℵ‘𝐴) ≺
((ℵ‘𝐴)
↑m (cf‘(ℵ‘𝐴)))) |
| 172 | 154, 171 | sylnbir 331 |
. 2
⊢ (¬
𝐴 ∈ On →
(ℵ‘𝐴) ≺
((ℵ‘𝐴)
↑m (cf‘(ℵ‘𝐴)))) |
| 173 | 151, 172 | pm2.61i 182 |
1
⊢
(ℵ‘𝐴)
≺ ((ℵ‘𝐴)
↑m (cf‘(ℵ‘𝐴))) |