MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwcfsdom Structured version   Visualization version   GIF version

Theorem pwcfsdom 10652
Description: A corollary of Konig's Theorem konigth 10638. Theorem 11.28 of [TakeutiZaring] p. 108. (Contributed by Mario Carneiro, 20-Mar-2013.)
Hypothesis
Ref Expression
pwcfsdom.1 𝐻 = (𝑦 ∈ (cf‘(ℵ‘𝐴)) ↦ (har‘(𝑓𝑦)))
Assertion
Ref Expression
pwcfsdom (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴)))
Distinct variable group:   𝐴,𝑓,𝑦
Allowed substitution hints:   𝐻(𝑦,𝑓)

Proof of Theorem pwcfsdom
Dummy variables 𝑤 𝑧 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onzsl 7883 . . . 4 (𝐴 ∈ On ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴)))
21biimpi 216 . . 3 (𝐴 ∈ On → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴)))
3 cfom 10333 . . . . . . 7 (cf‘ω) = ω
4 aleph0 10135 . . . . . . . 8 (ℵ‘∅) = ω
54fveq2i 6923 . . . . . . 7 (cf‘(ℵ‘∅)) = (cf‘ω)
63, 5, 43eqtr4i 2778 . . . . . 6 (cf‘(ℵ‘∅)) = (ℵ‘∅)
7 2fveq3 6925 . . . . . 6 (𝐴 = ∅ → (cf‘(ℵ‘𝐴)) = (cf‘(ℵ‘∅)))
8 fveq2 6920 . . . . . 6 (𝐴 = ∅ → (ℵ‘𝐴) = (ℵ‘∅))
96, 7, 83eqtr4a 2806 . . . . 5 (𝐴 = ∅ → (cf‘(ℵ‘𝐴)) = (ℵ‘𝐴))
10 fvex 6933 . . . . . . . . 9 (ℵ‘𝐴) ∈ V
1110canth2 9196 . . . . . . . 8 (ℵ‘𝐴) ≺ 𝒫 (ℵ‘𝐴)
1210pw2en 9145 . . . . . . . 8 𝒫 (ℵ‘𝐴) ≈ (2om (ℵ‘𝐴))
13 sdomentr 9177 . . . . . . . 8 (((ℵ‘𝐴) ≺ 𝒫 (ℵ‘𝐴) ∧ 𝒫 (ℵ‘𝐴) ≈ (2om (ℵ‘𝐴))) → (ℵ‘𝐴) ≺ (2om (ℵ‘𝐴)))
1411, 12, 13mp2an 691 . . . . . . 7 (ℵ‘𝐴) ≺ (2om (ℵ‘𝐴))
15 alephon 10138 . . . . . . . . 9 (ℵ‘𝐴) ∈ On
16 alephgeom 10151 . . . . . . . . . 10 (𝐴 ∈ On ↔ ω ⊆ (ℵ‘𝐴))
17 omelon 9715 . . . . . . . . . . . 12 ω ∈ On
18 2onn 8698 . . . . . . . . . . . 12 2o ∈ ω
19 onelss 6437 . . . . . . . . . . . 12 (ω ∈ On → (2o ∈ ω → 2o ⊆ ω))
2017, 18, 19mp2 9 . . . . . . . . . . 11 2o ⊆ ω
21 sstr 4017 . . . . . . . . . . 11 ((2o ⊆ ω ∧ ω ⊆ (ℵ‘𝐴)) → 2o ⊆ (ℵ‘𝐴))
2220, 21mpan 689 . . . . . . . . . 10 (ω ⊆ (ℵ‘𝐴) → 2o ⊆ (ℵ‘𝐴))
2316, 22sylbi 217 . . . . . . . . 9 (𝐴 ∈ On → 2o ⊆ (ℵ‘𝐴))
24 ssdomg 9060 . . . . . . . . 9 ((ℵ‘𝐴) ∈ On → (2o ⊆ (ℵ‘𝐴) → 2o ≼ (ℵ‘𝐴)))
2515, 23, 24mpsyl 68 . . . . . . . 8 (𝐴 ∈ On → 2o ≼ (ℵ‘𝐴))
26 mapdom1 9208 . . . . . . . 8 (2o ≼ (ℵ‘𝐴) → (2om (ℵ‘𝐴)) ≼ ((ℵ‘𝐴) ↑m (ℵ‘𝐴)))
2725, 26syl 17 . . . . . . 7 (𝐴 ∈ On → (2om (ℵ‘𝐴)) ≼ ((ℵ‘𝐴) ↑m (ℵ‘𝐴)))
28 sdomdomtr 9176 . . . . . . 7 (((ℵ‘𝐴) ≺ (2om (ℵ‘𝐴)) ∧ (2om (ℵ‘𝐴)) ≼ ((ℵ‘𝐴) ↑m (ℵ‘𝐴))) → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (ℵ‘𝐴)))
2914, 27, 28sylancr 586 . . . . . 6 (𝐴 ∈ On → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (ℵ‘𝐴)))
30 oveq2 7456 . . . . . . 7 ((cf‘(ℵ‘𝐴)) = (ℵ‘𝐴) → ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴))) = ((ℵ‘𝐴) ↑m (ℵ‘𝐴)))
3130breq2d 5178 . . . . . 6 ((cf‘(ℵ‘𝐴)) = (ℵ‘𝐴) → ((ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴))) ↔ (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (ℵ‘𝐴))))
3229, 31syl5ibrcom 247 . . . . 5 (𝐴 ∈ On → ((cf‘(ℵ‘𝐴)) = (ℵ‘𝐴) → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴)))))
339, 32syl5 34 . . . 4 (𝐴 ∈ On → (𝐴 = ∅ → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴)))))
34 alephreg 10651 . . . . . . 7 (cf‘(ℵ‘suc 𝑥)) = (ℵ‘suc 𝑥)
35 2fveq3 6925 . . . . . . 7 (𝐴 = suc 𝑥 → (cf‘(ℵ‘𝐴)) = (cf‘(ℵ‘suc 𝑥)))
36 fveq2 6920 . . . . . . 7 (𝐴 = suc 𝑥 → (ℵ‘𝐴) = (ℵ‘suc 𝑥))
3734, 35, 363eqtr4a 2806 . . . . . 6 (𝐴 = suc 𝑥 → (cf‘(ℵ‘𝐴)) = (ℵ‘𝐴))
3837rexlimivw 3157 . . . . 5 (∃𝑥 ∈ On 𝐴 = suc 𝑥 → (cf‘(ℵ‘𝐴)) = (ℵ‘𝐴))
3938, 32syl5 34 . . . 4 (𝐴 ∈ On → (∃𝑥 ∈ On 𝐴 = suc 𝑥 → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴)))))
40 cfsmo 10340 . . . . . 6 ((ℵ‘𝐴) ∈ On → ∃𝑓(𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ Smo 𝑓 ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤)))
41 limelon 6459 . . . . . . . . . . 11 ((𝐴 ∈ V ∧ Lim 𝐴) → 𝐴 ∈ On)
42 ffn 6747 . . . . . . . . . . . . . . . 16 (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → 𝑓 Fn (cf‘(ℵ‘𝐴)))
43 fnrnfv 6981 . . . . . . . . . . . . . . . . 17 (𝑓 Fn (cf‘(ℵ‘𝐴)) → ran 𝑓 = {𝑦 ∣ ∃𝑥 ∈ (cf‘(ℵ‘𝐴))𝑦 = (𝑓𝑥)})
4443unieqd 4944 . . . . . . . . . . . . . . . 16 (𝑓 Fn (cf‘(ℵ‘𝐴)) → ran 𝑓 = {𝑦 ∣ ∃𝑥 ∈ (cf‘(ℵ‘𝐴))𝑦 = (𝑓𝑥)})
4542, 44syl 17 . . . . . . . . . . . . . . 15 (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → ran 𝑓 = {𝑦 ∣ ∃𝑥 ∈ (cf‘(ℵ‘𝐴))𝑦 = (𝑓𝑥)})
46 fvex 6933 . . . . . . . . . . . . . . . 16 (𝑓𝑥) ∈ V
4746dfiun2 5056 . . . . . . . . . . . . . . 15 𝑥 ∈ (cf‘(ℵ‘𝐴))(𝑓𝑥) = {𝑦 ∣ ∃𝑥 ∈ (cf‘(ℵ‘𝐴))𝑦 = (𝑓𝑥)}
4845, 47eqtr4di 2798 . . . . . . . . . . . . . 14 (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → ran 𝑓 = 𝑥 ∈ (cf‘(ℵ‘𝐴))(𝑓𝑥))
4948ad2antrl 727 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤))) → ran 𝑓 = 𝑥 ∈ (cf‘(ℵ‘𝐴))(𝑓𝑥))
50 fnfvelrn 7114 . . . . . . . . . . . . . . . . . . . 20 ((𝑓 Fn (cf‘(ℵ‘𝐴)) ∧ 𝑤 ∈ (cf‘(ℵ‘𝐴))) → (𝑓𝑤) ∈ ran 𝑓)
5142, 50sylan 579 . . . . . . . . . . . . . . . . . . 19 ((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ 𝑤 ∈ (cf‘(ℵ‘𝐴))) → (𝑓𝑤) ∈ ran 𝑓)
52 sseq2 4035 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑓𝑤) → (𝑧𝑦𝑧 ⊆ (𝑓𝑤)))
5352rspcev 3635 . . . . . . . . . . . . . . . . . . 19 (((𝑓𝑤) ∈ ran 𝑓𝑧 ⊆ (𝑓𝑤)) → ∃𝑦 ∈ ran 𝑓 𝑧𝑦)
5451, 53sylan 579 . . . . . . . . . . . . . . . . . 18 (((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ 𝑤 ∈ (cf‘(ℵ‘𝐴))) ∧ 𝑧 ⊆ (𝑓𝑤)) → ∃𝑦 ∈ ran 𝑓 𝑧𝑦)
5554rexlimdva2 3163 . . . . . . . . . . . . . . . . 17 (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → (∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤) → ∃𝑦 ∈ ran 𝑓 𝑧𝑦))
5655ralimdv 3175 . . . . . . . . . . . . . . . 16 (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → (∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤) → ∀𝑧 ∈ (ℵ‘𝐴)∃𝑦 ∈ ran 𝑓 𝑧𝑦))
5756imp 406 . . . . . . . . . . . . . . 15 ((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤)) → ∀𝑧 ∈ (ℵ‘𝐴)∃𝑦 ∈ ran 𝑓 𝑧𝑦)
5857adantl 481 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤))) → ∀𝑧 ∈ (ℵ‘𝐴)∃𝑦 ∈ ran 𝑓 𝑧𝑦)
59 alephislim 10152 . . . . . . . . . . . . . . . 16 (𝐴 ∈ On ↔ Lim (ℵ‘𝐴))
6059biimpi 216 . . . . . . . . . . . . . . 15 (𝐴 ∈ On → Lim (ℵ‘𝐴))
61 frn 6754 . . . . . . . . . . . . . . . 16 (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → ran 𝑓 ⊆ (ℵ‘𝐴))
6261adantr 480 . . . . . . . . . . . . . . 15 ((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤)) → ran 𝑓 ⊆ (ℵ‘𝐴))
63 coflim 10330 . . . . . . . . . . . . . . 15 ((Lim (ℵ‘𝐴) ∧ ran 𝑓 ⊆ (ℵ‘𝐴)) → ( ran 𝑓 = (ℵ‘𝐴) ↔ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑦 ∈ ran 𝑓 𝑧𝑦))
6460, 62, 63syl2an 595 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤))) → ( ran 𝑓 = (ℵ‘𝐴) ↔ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑦 ∈ ran 𝑓 𝑧𝑦))
6558, 64mpbird 257 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤))) → ran 𝑓 = (ℵ‘𝐴))
6649, 65eqtr3d 2782 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤))) → 𝑥 ∈ (cf‘(ℵ‘𝐴))(𝑓𝑥) = (ℵ‘𝐴))
67 ffvelcdm 7115 . . . . . . . . . . . . . . . . 17 ((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ 𝑥 ∈ (cf‘(ℵ‘𝐴))) → (𝑓𝑥) ∈ (ℵ‘𝐴))
6815oneli 6509 . . . . . . . . . . . . . . . . 17 ((𝑓𝑥) ∈ (ℵ‘𝐴) → (𝑓𝑥) ∈ On)
69 harcard 10047 . . . . . . . . . . . . . . . . . . 19 (card‘(har‘(𝑓𝑥))) = (har‘(𝑓𝑥))
70 iscard 10044 . . . . . . . . . . . . . . . . . . . 20 ((card‘(har‘(𝑓𝑥))) = (har‘(𝑓𝑥)) ↔ ((har‘(𝑓𝑥)) ∈ On ∧ ∀𝑦 ∈ (har‘(𝑓𝑥))𝑦 ≺ (har‘(𝑓𝑥))))
7170simprbi 496 . . . . . . . . . . . . . . . . . . 19 ((card‘(har‘(𝑓𝑥))) = (har‘(𝑓𝑥)) → ∀𝑦 ∈ (har‘(𝑓𝑥))𝑦 ≺ (har‘(𝑓𝑥)))
7269, 71ax-mp 5 . . . . . . . . . . . . . . . . . 18 𝑦 ∈ (har‘(𝑓𝑥))𝑦 ≺ (har‘(𝑓𝑥))
73 domrefg 9047 . . . . . . . . . . . . . . . . . . . 20 ((𝑓𝑥) ∈ V → (𝑓𝑥) ≼ (𝑓𝑥))
7446, 73ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (𝑓𝑥) ≼ (𝑓𝑥)
75 elharval 9630 . . . . . . . . . . . . . . . . . . . 20 ((𝑓𝑥) ∈ (har‘(𝑓𝑥)) ↔ ((𝑓𝑥) ∈ On ∧ (𝑓𝑥) ≼ (𝑓𝑥)))
7675biimpri 228 . . . . . . . . . . . . . . . . . . 19 (((𝑓𝑥) ∈ On ∧ (𝑓𝑥) ≼ (𝑓𝑥)) → (𝑓𝑥) ∈ (har‘(𝑓𝑥)))
7774, 76mpan2 690 . . . . . . . . . . . . . . . . . 18 ((𝑓𝑥) ∈ On → (𝑓𝑥) ∈ (har‘(𝑓𝑥)))
78 breq1 5169 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝑓𝑥) → (𝑦 ≺ (har‘(𝑓𝑥)) ↔ (𝑓𝑥) ≺ (har‘(𝑓𝑥))))
7978rspccv 3632 . . . . . . . . . . . . . . . . . 18 (∀𝑦 ∈ (har‘(𝑓𝑥))𝑦 ≺ (har‘(𝑓𝑥)) → ((𝑓𝑥) ∈ (har‘(𝑓𝑥)) → (𝑓𝑥) ≺ (har‘(𝑓𝑥))))
8072, 77, 79mpsyl 68 . . . . . . . . . . . . . . . . 17 ((𝑓𝑥) ∈ On → (𝑓𝑥) ≺ (har‘(𝑓𝑥)))
8167, 68, 803syl 18 . . . . . . . . . . . . . . . 16 ((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ 𝑥 ∈ (cf‘(ℵ‘𝐴))) → (𝑓𝑥) ≺ (har‘(𝑓𝑥)))
82 harcl 9628 . . . . . . . . . . . . . . . . . . 19 (har‘(𝑓𝑥)) ∈ On
83 2fveq3 6925 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑥 → (har‘(𝑓𝑦)) = (har‘(𝑓𝑥)))
84 pwcfsdom.1 . . . . . . . . . . . . . . . . . . . 20 𝐻 = (𝑦 ∈ (cf‘(ℵ‘𝐴)) ↦ (har‘(𝑓𝑦)))
8583, 84fvmptg 7027 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (cf‘(ℵ‘𝐴)) ∧ (har‘(𝑓𝑥)) ∈ On) → (𝐻𝑥) = (har‘(𝑓𝑥)))
8682, 85mpan2 690 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (cf‘(ℵ‘𝐴)) → (𝐻𝑥) = (har‘(𝑓𝑥)))
8786breq2d 5178 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (cf‘(ℵ‘𝐴)) → ((𝑓𝑥) ≺ (𝐻𝑥) ↔ (𝑓𝑥) ≺ (har‘(𝑓𝑥))))
8887adantl 481 . . . . . . . . . . . . . . . 16 ((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ 𝑥 ∈ (cf‘(ℵ‘𝐴))) → ((𝑓𝑥) ≺ (𝐻𝑥) ↔ (𝑓𝑥) ≺ (har‘(𝑓𝑥))))
8981, 88mpbird 257 . . . . . . . . . . . . . . 15 ((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ 𝑥 ∈ (cf‘(ℵ‘𝐴))) → (𝑓𝑥) ≺ (𝐻𝑥))
9089ralrimiva 3152 . . . . . . . . . . . . . 14 (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → ∀𝑥 ∈ (cf‘(ℵ‘𝐴))(𝑓𝑥) ≺ (𝐻𝑥))
91 fvex 6933 . . . . . . . . . . . . . . 15 (cf‘(ℵ‘𝐴)) ∈ V
92 eqid 2740 . . . . . . . . . . . . . . 15 𝑥 ∈ (cf‘(ℵ‘𝐴))(𝑓𝑥) = 𝑥 ∈ (cf‘(ℵ‘𝐴))(𝑓𝑥)
93 eqid 2740 . . . . . . . . . . . . . . 15 X𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥) = X𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥)
9491, 92, 93konigth 10638 . . . . . . . . . . . . . 14 (∀𝑥 ∈ (cf‘(ℵ‘𝐴))(𝑓𝑥) ≺ (𝐻𝑥) → 𝑥 ∈ (cf‘(ℵ‘𝐴))(𝑓𝑥) ≺ X𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥))
9590, 94syl 17 . . . . . . . . . . . . 13 (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → 𝑥 ∈ (cf‘(ℵ‘𝐴))(𝑓𝑥) ≺ X𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥))
9695ad2antrl 727 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤))) → 𝑥 ∈ (cf‘(ℵ‘𝐴))(𝑓𝑥) ≺ X𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥))
9766, 96eqbrtrrd 5190 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤))) → (ℵ‘𝐴) ≺ X𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥))
9841, 97sylan 579 . . . . . . . . . 10 (((𝐴 ∈ V ∧ Lim 𝐴) ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤))) → (ℵ‘𝐴) ≺ X𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥))
99 ovex 7481 . . . . . . . . . . . 12 ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴))) ∈ V
10067ex 412 . . . . . . . . . . . . . . . 16 (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → (𝑥 ∈ (cf‘(ℵ‘𝐴)) → (𝑓𝑥) ∈ (ℵ‘𝐴)))
101 alephlim 10136 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ V ∧ Lim 𝐴) → (ℵ‘𝐴) = 𝑦𝐴 (ℵ‘𝑦))
102101eleq2d 2830 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ V ∧ Lim 𝐴) → ((𝑓𝑥) ∈ (ℵ‘𝐴) ↔ (𝑓𝑥) ∈ 𝑦𝐴 (ℵ‘𝑦)))
103 eliun 5019 . . . . . . . . . . . . . . . . . . 19 ((𝑓𝑥) ∈ 𝑦𝐴 (ℵ‘𝑦) ↔ ∃𝑦𝐴 (𝑓𝑥) ∈ (ℵ‘𝑦))
104 alephcard 10139 . . . . . . . . . . . . . . . . . . . . . . . 24 (card‘(ℵ‘𝑦)) = (ℵ‘𝑦)
105104eleq2i 2836 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓𝑥) ∈ (card‘(ℵ‘𝑦)) ↔ (𝑓𝑥) ∈ (ℵ‘𝑦))
106 cardsdomelir 10042 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓𝑥) ∈ (card‘(ℵ‘𝑦)) → (𝑓𝑥) ≺ (ℵ‘𝑦))
107105, 106sylbir 235 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓𝑥) ∈ (ℵ‘𝑦) → (𝑓𝑥) ≺ (ℵ‘𝑦))
108 elharval 9630 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((ℵ‘𝑦) ∈ (har‘(𝑓𝑥)) ↔ ((ℵ‘𝑦) ∈ On ∧ (ℵ‘𝑦) ≼ (𝑓𝑥)))
109108simprbi 496 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((ℵ‘𝑦) ∈ (har‘(𝑓𝑥)) → (ℵ‘𝑦) ≼ (𝑓𝑥))
110 domnsym 9165 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((ℵ‘𝑦) ≼ (𝑓𝑥) → ¬ (𝑓𝑥) ≺ (ℵ‘𝑦))
111109, 110syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((ℵ‘𝑦) ∈ (har‘(𝑓𝑥)) → ¬ (𝑓𝑥) ≺ (ℵ‘𝑦))
112111con2i 139 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑓𝑥) ≺ (ℵ‘𝑦) → ¬ (ℵ‘𝑦) ∈ (har‘(𝑓𝑥)))
113 alephon 10138 . . . . . . . . . . . . . . . . . . . . . . . 24 (ℵ‘𝑦) ∈ On
114 ontri1 6429 . . . . . . . . . . . . . . . . . . . . . . . 24 (((har‘(𝑓𝑥)) ∈ On ∧ (ℵ‘𝑦) ∈ On) → ((har‘(𝑓𝑥)) ⊆ (ℵ‘𝑦) ↔ ¬ (ℵ‘𝑦) ∈ (har‘(𝑓𝑥))))
11582, 113, 114mp2an 691 . . . . . . . . . . . . . . . . . . . . . . 23 ((har‘(𝑓𝑥)) ⊆ (ℵ‘𝑦) ↔ ¬ (ℵ‘𝑦) ∈ (har‘(𝑓𝑥)))
116112, 115sylibr 234 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓𝑥) ≺ (ℵ‘𝑦) → (har‘(𝑓𝑥)) ⊆ (ℵ‘𝑦))
117107, 116syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓𝑥) ∈ (ℵ‘𝑦) → (har‘(𝑓𝑥)) ⊆ (ℵ‘𝑦))
118 alephord2i 10146 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∈ On → (𝑦𝐴 → (ℵ‘𝑦) ∈ (ℵ‘𝐴)))
119118imp 406 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ On ∧ 𝑦𝐴) → (ℵ‘𝑦) ∈ (ℵ‘𝐴))
120 ontr2 6442 . . . . . . . . . . . . . . . . . . . . . 22 (((har‘(𝑓𝑥)) ∈ On ∧ (ℵ‘𝐴) ∈ On) → (((har‘(𝑓𝑥)) ⊆ (ℵ‘𝑦) ∧ (ℵ‘𝑦) ∈ (ℵ‘𝐴)) → (har‘(𝑓𝑥)) ∈ (ℵ‘𝐴)))
12182, 15, 120mp2an 691 . . . . . . . . . . . . . . . . . . . . 21 (((har‘(𝑓𝑥)) ⊆ (ℵ‘𝑦) ∧ (ℵ‘𝑦) ∈ (ℵ‘𝐴)) → (har‘(𝑓𝑥)) ∈ (ℵ‘𝐴))
122117, 119, 121syl2anr 596 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ On ∧ 𝑦𝐴) ∧ (𝑓𝑥) ∈ (ℵ‘𝑦)) → (har‘(𝑓𝑥)) ∈ (ℵ‘𝐴))
123122rexlimdva2 3163 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ On → (∃𝑦𝐴 (𝑓𝑥) ∈ (ℵ‘𝑦) → (har‘(𝑓𝑥)) ∈ (ℵ‘𝐴)))
124103, 123biimtrid 242 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ On → ((𝑓𝑥) ∈ 𝑦𝐴 (ℵ‘𝑦) → (har‘(𝑓𝑥)) ∈ (ℵ‘𝐴)))
12541, 124syl 17 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ V ∧ Lim 𝐴) → ((𝑓𝑥) ∈ 𝑦𝐴 (ℵ‘𝑦) → (har‘(𝑓𝑥)) ∈ (ℵ‘𝐴)))
126102, 125sylbid 240 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ V ∧ Lim 𝐴) → ((𝑓𝑥) ∈ (ℵ‘𝐴) → (har‘(𝑓𝑥)) ∈ (ℵ‘𝐴)))
127100, 126sylan9r 508 . . . . . . . . . . . . . . 15 (((𝐴 ∈ V ∧ Lim 𝐴) ∧ 𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴)) → (𝑥 ∈ (cf‘(ℵ‘𝐴)) → (har‘(𝑓𝑥)) ∈ (ℵ‘𝐴)))
128127imp 406 . . . . . . . . . . . . . 14 ((((𝐴 ∈ V ∧ Lim 𝐴) ∧ 𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴)) ∧ 𝑥 ∈ (cf‘(ℵ‘𝐴))) → (har‘(𝑓𝑥)) ∈ (ℵ‘𝐴))
12983cbvmptv 5279 . . . . . . . . . . . . . . 15 (𝑦 ∈ (cf‘(ℵ‘𝐴)) ↦ (har‘(𝑓𝑦))) = (𝑥 ∈ (cf‘(ℵ‘𝐴)) ↦ (har‘(𝑓𝑥)))
13084, 129eqtri 2768 . . . . . . . . . . . . . 14 𝐻 = (𝑥 ∈ (cf‘(ℵ‘𝐴)) ↦ (har‘(𝑓𝑥)))
131128, 130fmptd 7148 . . . . . . . . . . . . 13 (((𝐴 ∈ V ∧ Lim 𝐴) ∧ 𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴)) → 𝐻:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴))
132 ffvelcdm 7115 . . . . . . . . . . . . . . 15 ((𝐻:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ 𝑥 ∈ (cf‘(ℵ‘𝐴))) → (𝐻𝑥) ∈ (ℵ‘𝐴))
133 onelss 6437 . . . . . . . . . . . . . . 15 ((ℵ‘𝐴) ∈ On → ((𝐻𝑥) ∈ (ℵ‘𝐴) → (𝐻𝑥) ⊆ (ℵ‘𝐴)))
13415, 132, 133mpsyl 68 . . . . . . . . . . . . . 14 ((𝐻:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ 𝑥 ∈ (cf‘(ℵ‘𝐴))) → (𝐻𝑥) ⊆ (ℵ‘𝐴))
135134ralrimiva 3152 . . . . . . . . . . . . 13 (𝐻:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → ∀𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥) ⊆ (ℵ‘𝐴))
136 ss2ixp 8968 . . . . . . . . . . . . . 14 (∀𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥) ⊆ (ℵ‘𝐴) → X𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥) ⊆ X𝑥 ∈ (cf‘(ℵ‘𝐴))(ℵ‘𝐴))
13791, 10ixpconst 8965 . . . . . . . . . . . . . 14 X𝑥 ∈ (cf‘(ℵ‘𝐴))(ℵ‘𝐴) = ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴)))
138136, 137sseqtrdi 4059 . . . . . . . . . . . . 13 (∀𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥) ⊆ (ℵ‘𝐴) → X𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥) ⊆ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴))))
139131, 135, 1383syl 18 . . . . . . . . . . . 12 (((𝐴 ∈ V ∧ Lim 𝐴) ∧ 𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴)) → X𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥) ⊆ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴))))
140 ssdomg 9060 . . . . . . . . . . . 12 (((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴))) ∈ V → (X𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥) ⊆ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴))) → X𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥) ≼ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴)))))
14199, 139, 140mpsyl 68 . . . . . . . . . . 11 (((𝐴 ∈ V ∧ Lim 𝐴) ∧ 𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴)) → X𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥) ≼ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴))))
142141adantrr 716 . . . . . . . . . 10 (((𝐴 ∈ V ∧ Lim 𝐴) ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤))) → X𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥) ≼ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴))))
143 sdomdomtr 9176 . . . . . . . . . 10 (((ℵ‘𝐴) ≺ X𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥) ∧ X𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥) ≼ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴)))) → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴))))
14498, 142, 143syl2anc 583 . . . . . . . . 9 (((𝐴 ∈ V ∧ Lim 𝐴) ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤))) → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴))))
145144expcom 413 . . . . . . . 8 ((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤)) → ((𝐴 ∈ V ∧ Lim 𝐴) → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴)))))
1461453adant2 1131 . . . . . . 7 ((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ Smo 𝑓 ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤)) → ((𝐴 ∈ V ∧ Lim 𝐴) → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴)))))
147146exlimiv 1929 . . . . . 6 (∃𝑓(𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ Smo 𝑓 ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤)) → ((𝐴 ∈ V ∧ Lim 𝐴) → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴)))))
14815, 40, 147mp2b 10 . . . . 5 ((𝐴 ∈ V ∧ Lim 𝐴) → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴))))
149148a1i 11 . . . 4 (𝐴 ∈ On → ((𝐴 ∈ V ∧ Lim 𝐴) → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴)))))
15033, 39, 1493jaod 1429 . . 3 (𝐴 ∈ On → ((𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴)) → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴)))))
1512, 150mpd 15 . 2 (𝐴 ∈ On → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴))))
152 alephfnon 10134 . . . . 5 ℵ Fn On
153152fndmi 6683 . . . 4 dom ℵ = On
154153eleq2i 2836 . . 3 (𝐴 ∈ dom ℵ ↔ 𝐴 ∈ On)
155 ndmfv 6955 . . . 4 𝐴 ∈ dom ℵ → (ℵ‘𝐴) = ∅)
156 1n0 8544 . . . . . 6 1o ≠ ∅
157 1oex 8532 . . . . . . 7 1o ∈ V
1581570sdom 9173 . . . . . 6 (∅ ≺ 1o ↔ 1o ≠ ∅)
159156, 158mpbir 231 . . . . 5 ∅ ≺ 1o
160 id 22 . . . . . 6 ((ℵ‘𝐴) = ∅ → (ℵ‘𝐴) = ∅)
161 fveq2 6920 . . . . . . . . 9 ((ℵ‘𝐴) = ∅ → (cf‘(ℵ‘𝐴)) = (cf‘∅))
162 cf0 10320 . . . . . . . . 9 (cf‘∅) = ∅
163161, 162eqtrdi 2796 . . . . . . . 8 ((ℵ‘𝐴) = ∅ → (cf‘(ℵ‘𝐴)) = ∅)
164160, 163oveq12d 7466 . . . . . . 7 ((ℵ‘𝐴) = ∅ → ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴))) = (∅ ↑m ∅))
165 0ex 5325 . . . . . . . 8 ∅ ∈ V
166 map0e 8940 . . . . . . . 8 (∅ ∈ V → (∅ ↑m ∅) = 1o)
167165, 166ax-mp 5 . . . . . . 7 (∅ ↑m ∅) = 1o
168164, 167eqtrdi 2796 . . . . . 6 ((ℵ‘𝐴) = ∅ → ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴))) = 1o)
169160, 168breq12d 5179 . . . . 5 ((ℵ‘𝐴) = ∅ → ((ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴))) ↔ ∅ ≺ 1o))
170159, 169mpbiri 258 . . . 4 ((ℵ‘𝐴) = ∅ → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴))))
171155, 170syl 17 . . 3 𝐴 ∈ dom ℵ → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴))))
172154, 171sylnbir 331 . 2 𝐴 ∈ On → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴))))
173151, 172pm2.61i 182 1 (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1086  w3a 1087   = wceq 1537  wex 1777  wcel 2108  {cab 2717  wne 2946  wral 3067  wrex 3076  Vcvv 3488  wss 3976  c0 4352  𝒫 cpw 4622   cuni 4931   ciun 5015   class class class wbr 5166  cmpt 5249  dom cdm 5700  ran crn 5701  Oncon0 6395  Lim wlim 6396  suc csuc 6397   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  ωcom 7903  Smo wsmo 8401  1oc1o 8515  2oc2o 8516  m cmap 8884  Xcixp 8955  cen 9000  cdom 9001  csdm 9002  harchar 9625  cardccrd 10004  cale 10005  cfccf 10006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-ac2 10532
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-smo 8402  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-oi 9579  df-har 9626  df-card 10008  df-aleph 10009  df-cf 10010  df-acn 10011  df-ac 10185
This theorem is referenced by:  cfpwsdom  10653  tskcard  10850  bj-pwcfsdom  37028
  Copyright terms: Public domain W3C validator