Step | Hyp | Ref
| Expression |
1 | | onzsl 7668 |
. . . 4
⊢ (𝐴 ∈ On ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴))) |
2 | 1 | biimpi 215 |
. . 3
⊢ (𝐴 ∈ On → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴))) |
3 | | cfom 9951 |
. . . . . . 7
⊢
(cf‘ω) = ω |
4 | | aleph0 9753 |
. . . . . . . 8
⊢
(ℵ‘∅) = ω |
5 | 4 | fveq2i 6759 |
. . . . . . 7
⊢
(cf‘(ℵ‘∅)) = (cf‘ω) |
6 | 3, 5, 4 | 3eqtr4i 2776 |
. . . . . 6
⊢
(cf‘(ℵ‘∅)) =
(ℵ‘∅) |
7 | | 2fveq3 6761 |
. . . . . 6
⊢ (𝐴 = ∅ →
(cf‘(ℵ‘𝐴)) =
(cf‘(ℵ‘∅))) |
8 | | fveq2 6756 |
. . . . . 6
⊢ (𝐴 = ∅ →
(ℵ‘𝐴) =
(ℵ‘∅)) |
9 | 6, 7, 8 | 3eqtr4a 2805 |
. . . . 5
⊢ (𝐴 = ∅ →
(cf‘(ℵ‘𝐴)) = (ℵ‘𝐴)) |
10 | | fvex 6769 |
. . . . . . . . 9
⊢
(ℵ‘𝐴)
∈ V |
11 | 10 | canth2 8866 |
. . . . . . . 8
⊢
(ℵ‘𝐴)
≺ 𝒫 (ℵ‘𝐴) |
12 | 10 | pw2en 8819 |
. . . . . . . 8
⊢ 𝒫
(ℵ‘𝐴) ≈
(2o ↑m (ℵ‘𝐴)) |
13 | | sdomentr 8847 |
. . . . . . . 8
⊢
(((ℵ‘𝐴)
≺ 𝒫 (ℵ‘𝐴) ∧ 𝒫 (ℵ‘𝐴) ≈ (2o
↑m (ℵ‘𝐴))) → (ℵ‘𝐴) ≺ (2o ↑m
(ℵ‘𝐴))) |
14 | 11, 12, 13 | mp2an 688 |
. . . . . . 7
⊢
(ℵ‘𝐴)
≺ (2o ↑m (ℵ‘𝐴)) |
15 | | alephon 9756 |
. . . . . . . . 9
⊢
(ℵ‘𝐴)
∈ On |
16 | | alephgeom 9769 |
. . . . . . . . . 10
⊢ (𝐴 ∈ On ↔ ω
⊆ (ℵ‘𝐴)) |
17 | | omelon 9334 |
. . . . . . . . . . . 12
⊢ ω
∈ On |
18 | | 2onn 8433 |
. . . . . . . . . . . 12
⊢
2o ∈ ω |
19 | | onelss 6293 |
. . . . . . . . . . . 12
⊢ (ω
∈ On → (2o ∈ ω → 2o ⊆
ω)) |
20 | 17, 18, 19 | mp2 9 |
. . . . . . . . . . 11
⊢
2o ⊆ ω |
21 | | sstr 3925 |
. . . . . . . . . . 11
⊢
((2o ⊆ ω ∧ ω ⊆
(ℵ‘𝐴)) →
2o ⊆ (ℵ‘𝐴)) |
22 | 20, 21 | mpan 686 |
. . . . . . . . . 10
⊢ (ω
⊆ (ℵ‘𝐴)
→ 2o ⊆ (ℵ‘𝐴)) |
23 | 16, 22 | sylbi 216 |
. . . . . . . . 9
⊢ (𝐴 ∈ On → 2o
⊆ (ℵ‘𝐴)) |
24 | | ssdomg 8741 |
. . . . . . . . 9
⊢
((ℵ‘𝐴)
∈ On → (2o ⊆ (ℵ‘𝐴) → 2o ≼
(ℵ‘𝐴))) |
25 | 15, 23, 24 | mpsyl 68 |
. . . . . . . 8
⊢ (𝐴 ∈ On → 2o
≼ (ℵ‘𝐴)) |
26 | | mapdom1 8878 |
. . . . . . . 8
⊢
(2o ≼ (ℵ‘𝐴) → (2o ↑m
(ℵ‘𝐴)) ≼
((ℵ‘𝐴)
↑m (ℵ‘𝐴))) |
27 | 25, 26 | syl 17 |
. . . . . . 7
⊢ (𝐴 ∈ On → (2o
↑m (ℵ‘𝐴)) ≼ ((ℵ‘𝐴) ↑m (ℵ‘𝐴))) |
28 | | sdomdomtr 8846 |
. . . . . . 7
⊢
(((ℵ‘𝐴)
≺ (2o ↑m (ℵ‘𝐴)) ∧ (2o ↑m
(ℵ‘𝐴)) ≼
((ℵ‘𝐴)
↑m (ℵ‘𝐴))) → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (ℵ‘𝐴))) |
29 | 14, 27, 28 | sylancr 586 |
. . . . . 6
⊢ (𝐴 ∈ On →
(ℵ‘𝐴) ≺
((ℵ‘𝐴)
↑m (ℵ‘𝐴))) |
30 | | oveq2 7263 |
. . . . . . 7
⊢
((cf‘(ℵ‘𝐴)) = (ℵ‘𝐴) → ((ℵ‘𝐴) ↑m
(cf‘(ℵ‘𝐴))) = ((ℵ‘𝐴) ↑m (ℵ‘𝐴))) |
31 | 30 | breq2d 5082 |
. . . . . 6
⊢
((cf‘(ℵ‘𝐴)) = (ℵ‘𝐴) → ((ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m
(cf‘(ℵ‘𝐴))) ↔ (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (ℵ‘𝐴)))) |
32 | 29, 31 | syl5ibrcom 246 |
. . . . 5
⊢ (𝐴 ∈ On →
((cf‘(ℵ‘𝐴)) = (ℵ‘𝐴) → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m
(cf‘(ℵ‘𝐴))))) |
33 | 9, 32 | syl5 34 |
. . . 4
⊢ (𝐴 ∈ On → (𝐴 = ∅ →
(ℵ‘𝐴) ≺
((ℵ‘𝐴)
↑m (cf‘(ℵ‘𝐴))))) |
34 | | alephreg 10269 |
. . . . . . 7
⊢
(cf‘(ℵ‘suc 𝑥)) = (ℵ‘suc 𝑥) |
35 | | 2fveq3 6761 |
. . . . . . 7
⊢ (𝐴 = suc 𝑥 → (cf‘(ℵ‘𝐴)) =
(cf‘(ℵ‘suc 𝑥))) |
36 | | fveq2 6756 |
. . . . . . 7
⊢ (𝐴 = suc 𝑥 → (ℵ‘𝐴) = (ℵ‘suc 𝑥)) |
37 | 34, 35, 36 | 3eqtr4a 2805 |
. . . . . 6
⊢ (𝐴 = suc 𝑥 → (cf‘(ℵ‘𝐴)) = (ℵ‘𝐴)) |
38 | 37 | rexlimivw 3210 |
. . . . 5
⊢
(∃𝑥 ∈ On
𝐴 = suc 𝑥 → (cf‘(ℵ‘𝐴)) = (ℵ‘𝐴)) |
39 | 38, 32 | syl5 34 |
. . . 4
⊢ (𝐴 ∈ On → (∃𝑥 ∈ On 𝐴 = suc 𝑥 → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m
(cf‘(ℵ‘𝐴))))) |
40 | | cfsmo 9958 |
. . . . . 6
⊢
((ℵ‘𝐴)
∈ On → ∃𝑓(𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ Smo 𝑓 ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓‘𝑤))) |
41 | | limelon 6314 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ V ∧ Lim 𝐴) → 𝐴 ∈ On) |
42 | | ffn 6584 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → 𝑓 Fn (cf‘(ℵ‘𝐴))) |
43 | | fnrnfv 6811 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 Fn
(cf‘(ℵ‘𝐴)) → ran 𝑓 = {𝑦 ∣ ∃𝑥 ∈ (cf‘(ℵ‘𝐴))𝑦 = (𝑓‘𝑥)}) |
44 | 43 | unieqd 4850 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 Fn
(cf‘(ℵ‘𝐴)) → ∪ ran
𝑓 = ∪ {𝑦
∣ ∃𝑥 ∈
(cf‘(ℵ‘𝐴))𝑦 = (𝑓‘𝑥)}) |
45 | 42, 44 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → ∪ ran 𝑓 = ∪ {𝑦 ∣ ∃𝑥 ∈
(cf‘(ℵ‘𝐴))𝑦 = (𝑓‘𝑥)}) |
46 | | fvex 6769 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓‘𝑥) ∈ V |
47 | 46 | dfiun2 4959 |
. . . . . . . . . . . . . . 15
⊢ ∪ 𝑥 ∈ (cf‘(ℵ‘𝐴))(𝑓‘𝑥) = ∪ {𝑦 ∣ ∃𝑥 ∈
(cf‘(ℵ‘𝐴))𝑦 = (𝑓‘𝑥)} |
48 | 45, 47 | eqtr4di 2797 |
. . . . . . . . . . . . . 14
⊢ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → ∪ ran 𝑓 = ∪ 𝑥 ∈
(cf‘(ℵ‘𝐴))(𝑓‘𝑥)) |
49 | 48 | ad2antrl 724 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ On ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓‘𝑤))) → ∪ ran
𝑓 = ∪ 𝑥 ∈ (cf‘(ℵ‘𝐴))(𝑓‘𝑥)) |
50 | | fnfvelrn 6940 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑓 Fn
(cf‘(ℵ‘𝐴)) ∧ 𝑤 ∈ (cf‘(ℵ‘𝐴))) → (𝑓‘𝑤) ∈ ran 𝑓) |
51 | 42, 50 | sylan 579 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ 𝑤 ∈ (cf‘(ℵ‘𝐴))) → (𝑓‘𝑤) ∈ ran 𝑓) |
52 | | sseq2 3943 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = (𝑓‘𝑤) → (𝑧 ⊆ 𝑦 ↔ 𝑧 ⊆ (𝑓‘𝑤))) |
53 | 52 | rspcev 3552 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑓‘𝑤) ∈ ran 𝑓 ∧ 𝑧 ⊆ (𝑓‘𝑤)) → ∃𝑦 ∈ ran 𝑓 𝑧 ⊆ 𝑦) |
54 | 51, 53 | sylan 579 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ 𝑤 ∈ (cf‘(ℵ‘𝐴))) ∧ 𝑧 ⊆ (𝑓‘𝑤)) → ∃𝑦 ∈ ran 𝑓 𝑧 ⊆ 𝑦) |
55 | 54 | rexlimdva2 3215 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → (∃𝑤 ∈
(cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓‘𝑤) → ∃𝑦 ∈ ran 𝑓 𝑧 ⊆ 𝑦)) |
56 | 55 | ralimdv 3103 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → (∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓‘𝑤) → ∀𝑧 ∈ (ℵ‘𝐴)∃𝑦 ∈ ran 𝑓 𝑧 ⊆ 𝑦)) |
57 | 56 | imp 406 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓‘𝑤)) → ∀𝑧 ∈ (ℵ‘𝐴)∃𝑦 ∈ ran 𝑓 𝑧 ⊆ 𝑦) |
58 | 57 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ On ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓‘𝑤))) → ∀𝑧 ∈ (ℵ‘𝐴)∃𝑦 ∈ ran 𝑓 𝑧 ⊆ 𝑦) |
59 | | alephislim 9770 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ On ↔ Lim
(ℵ‘𝐴)) |
60 | 59 | biimpi 215 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ On → Lim
(ℵ‘𝐴)) |
61 | | frn 6591 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → ran 𝑓 ⊆ (ℵ‘𝐴)) |
62 | 61 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓‘𝑤)) → ran 𝑓 ⊆ (ℵ‘𝐴)) |
63 | | coflim 9948 |
. . . . . . . . . . . . . . 15
⊢ ((Lim
(ℵ‘𝐴) ∧ ran
𝑓 ⊆
(ℵ‘𝐴)) →
(∪ ran 𝑓 = (ℵ‘𝐴) ↔ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑦 ∈ ran 𝑓 𝑧 ⊆ 𝑦)) |
64 | 60, 62, 63 | syl2an 595 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ On ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓‘𝑤))) → (∪ ran
𝑓 = (ℵ‘𝐴) ↔ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑦 ∈ ran 𝑓 𝑧 ⊆ 𝑦)) |
65 | 58, 64 | mpbird 256 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ On ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓‘𝑤))) → ∪ ran
𝑓 = (ℵ‘𝐴)) |
66 | 49, 65 | eqtr3d 2780 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ On ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓‘𝑤))) → ∪ 𝑥 ∈ (cf‘(ℵ‘𝐴))(𝑓‘𝑥) = (ℵ‘𝐴)) |
67 | | ffvelrn 6941 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ 𝑥 ∈ (cf‘(ℵ‘𝐴))) → (𝑓‘𝑥) ∈ (ℵ‘𝐴)) |
68 | 15 | oneli 6359 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓‘𝑥) ∈ (ℵ‘𝐴) → (𝑓‘𝑥) ∈ On) |
69 | | harcard 9667 |
. . . . . . . . . . . . . . . . . . 19
⊢
(card‘(har‘(𝑓‘𝑥))) = (har‘(𝑓‘𝑥)) |
70 | | iscard 9664 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((card‘(har‘(𝑓‘𝑥))) = (har‘(𝑓‘𝑥)) ↔ ((har‘(𝑓‘𝑥)) ∈ On ∧ ∀𝑦 ∈ (har‘(𝑓‘𝑥))𝑦 ≺ (har‘(𝑓‘𝑥)))) |
71 | 70 | simprbi 496 |
. . . . . . . . . . . . . . . . . . 19
⊢
((card‘(har‘(𝑓‘𝑥))) = (har‘(𝑓‘𝑥)) → ∀𝑦 ∈ (har‘(𝑓‘𝑥))𝑦 ≺ (har‘(𝑓‘𝑥))) |
72 | 69, 71 | ax-mp 5 |
. . . . . . . . . . . . . . . . . 18
⊢
∀𝑦 ∈
(har‘(𝑓‘𝑥))𝑦 ≺ (har‘(𝑓‘𝑥)) |
73 | | domrefg 8730 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑓‘𝑥) ∈ V → (𝑓‘𝑥) ≼ (𝑓‘𝑥)) |
74 | 46, 73 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓‘𝑥) ≼ (𝑓‘𝑥) |
75 | | elharval 9250 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑓‘𝑥) ∈ (har‘(𝑓‘𝑥)) ↔ ((𝑓‘𝑥) ∈ On ∧ (𝑓‘𝑥) ≼ (𝑓‘𝑥))) |
76 | 75 | biimpri 227 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑓‘𝑥) ∈ On ∧ (𝑓‘𝑥) ≼ (𝑓‘𝑥)) → (𝑓‘𝑥) ∈ (har‘(𝑓‘𝑥))) |
77 | 74, 76 | mpan2 687 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓‘𝑥) ∈ On → (𝑓‘𝑥) ∈ (har‘(𝑓‘𝑥))) |
78 | | breq1 5073 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = (𝑓‘𝑥) → (𝑦 ≺ (har‘(𝑓‘𝑥)) ↔ (𝑓‘𝑥) ≺ (har‘(𝑓‘𝑥)))) |
79 | 78 | rspccv 3549 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑦 ∈
(har‘(𝑓‘𝑥))𝑦 ≺ (har‘(𝑓‘𝑥)) → ((𝑓‘𝑥) ∈ (har‘(𝑓‘𝑥)) → (𝑓‘𝑥) ≺ (har‘(𝑓‘𝑥)))) |
80 | 72, 77, 79 | mpsyl 68 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓‘𝑥) ∈ On → (𝑓‘𝑥) ≺ (har‘(𝑓‘𝑥))) |
81 | 67, 68, 80 | 3syl 18 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ 𝑥 ∈ (cf‘(ℵ‘𝐴))) → (𝑓‘𝑥) ≺ (har‘(𝑓‘𝑥))) |
82 | | harcl 9248 |
. . . . . . . . . . . . . . . . . . 19
⊢
(har‘(𝑓‘𝑥)) ∈ On |
83 | | 2fveq3 6761 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 𝑥 → (har‘(𝑓‘𝑦)) = (har‘(𝑓‘𝑥))) |
84 | | pwcfsdom.1 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝐻 = (𝑦 ∈ (cf‘(ℵ‘𝐴)) ↦ (har‘(𝑓‘𝑦))) |
85 | 83, 84 | fvmptg 6855 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ∈
(cf‘(ℵ‘𝐴)) ∧ (har‘(𝑓‘𝑥)) ∈ On) → (𝐻‘𝑥) = (har‘(𝑓‘𝑥))) |
86 | 82, 85 | mpan2 687 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈
(cf‘(ℵ‘𝐴)) → (𝐻‘𝑥) = (har‘(𝑓‘𝑥))) |
87 | 86 | breq2d 5082 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈
(cf‘(ℵ‘𝐴)) → ((𝑓‘𝑥) ≺ (𝐻‘𝑥) ↔ (𝑓‘𝑥) ≺ (har‘(𝑓‘𝑥)))) |
88 | 87 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ 𝑥 ∈ (cf‘(ℵ‘𝐴))) → ((𝑓‘𝑥) ≺ (𝐻‘𝑥) ↔ (𝑓‘𝑥) ≺ (har‘(𝑓‘𝑥)))) |
89 | 81, 88 | mpbird 256 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ 𝑥 ∈ (cf‘(ℵ‘𝐴))) → (𝑓‘𝑥) ≺ (𝐻‘𝑥)) |
90 | 89 | ralrimiva 3107 |
. . . . . . . . . . . . . 14
⊢ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → ∀𝑥 ∈
(cf‘(ℵ‘𝐴))(𝑓‘𝑥) ≺ (𝐻‘𝑥)) |
91 | | fvex 6769 |
. . . . . . . . . . . . . . 15
⊢
(cf‘(ℵ‘𝐴)) ∈ V |
92 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢ ∪ 𝑥 ∈ (cf‘(ℵ‘𝐴))(𝑓‘𝑥) = ∪ 𝑥 ∈
(cf‘(ℵ‘𝐴))(𝑓‘𝑥) |
93 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢ X𝑥 ∈
(cf‘(ℵ‘𝐴))(𝐻‘𝑥) = X𝑥 ∈
(cf‘(ℵ‘𝐴))(𝐻‘𝑥) |
94 | 91, 92, 93 | konigth 10256 |
. . . . . . . . . . . . . 14
⊢
(∀𝑥 ∈
(cf‘(ℵ‘𝐴))(𝑓‘𝑥) ≺ (𝐻‘𝑥) → ∪
𝑥 ∈
(cf‘(ℵ‘𝐴))(𝑓‘𝑥) ≺ X𝑥 ∈
(cf‘(ℵ‘𝐴))(𝐻‘𝑥)) |
95 | 90, 94 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → ∪ 𝑥 ∈ (cf‘(ℵ‘𝐴))(𝑓‘𝑥) ≺ X𝑥 ∈
(cf‘(ℵ‘𝐴))(𝐻‘𝑥)) |
96 | 95 | ad2antrl 724 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ On ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓‘𝑤))) → ∪ 𝑥 ∈ (cf‘(ℵ‘𝐴))(𝑓‘𝑥) ≺ X𝑥 ∈
(cf‘(ℵ‘𝐴))(𝐻‘𝑥)) |
97 | 66, 96 | eqbrtrrd 5094 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ On ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓‘𝑤))) → (ℵ‘𝐴) ≺ X𝑥 ∈
(cf‘(ℵ‘𝐴))(𝐻‘𝑥)) |
98 | 41, 97 | sylan 579 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ V ∧ Lim 𝐴) ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓‘𝑤))) → (ℵ‘𝐴) ≺ X𝑥 ∈
(cf‘(ℵ‘𝐴))(𝐻‘𝑥)) |
99 | | ovex 7288 |
. . . . . . . . . . . 12
⊢
((ℵ‘𝐴)
↑m (cf‘(ℵ‘𝐴))) ∈ V |
100 | 67 | ex 412 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → (𝑥 ∈ (cf‘(ℵ‘𝐴)) → (𝑓‘𝑥) ∈ (ℵ‘𝐴))) |
101 | | alephlim 9754 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ V ∧ Lim 𝐴) → (ℵ‘𝐴) = ∪ 𝑦 ∈ 𝐴 (ℵ‘𝑦)) |
102 | 101 | eleq2d 2824 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ V ∧ Lim 𝐴) → ((𝑓‘𝑥) ∈ (ℵ‘𝐴) ↔ (𝑓‘𝑥) ∈ ∪
𝑦 ∈ 𝐴 (ℵ‘𝑦))) |
103 | | eliun 4925 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓‘𝑥) ∈ ∪
𝑦 ∈ 𝐴 (ℵ‘𝑦) ↔ ∃𝑦 ∈ 𝐴 (𝑓‘𝑥) ∈ (ℵ‘𝑦)) |
104 | | alephcard 9757 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(card‘(ℵ‘𝑦)) = (ℵ‘𝑦) |
105 | 104 | eleq2i 2830 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑓‘𝑥) ∈ (card‘(ℵ‘𝑦)) ↔ (𝑓‘𝑥) ∈ (ℵ‘𝑦)) |
106 | | cardsdomelir 9662 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑓‘𝑥) ∈ (card‘(ℵ‘𝑦)) → (𝑓‘𝑥) ≺ (ℵ‘𝑦)) |
107 | 105, 106 | sylbir 234 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑓‘𝑥) ∈ (ℵ‘𝑦) → (𝑓‘𝑥) ≺ (ℵ‘𝑦)) |
108 | | elharval 9250 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((ℵ‘𝑦)
∈ (har‘(𝑓‘𝑥)) ↔ ((ℵ‘𝑦) ∈ On ∧ (ℵ‘𝑦) ≼ (𝑓‘𝑥))) |
109 | 108 | simprbi 496 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((ℵ‘𝑦)
∈ (har‘(𝑓‘𝑥)) → (ℵ‘𝑦) ≼ (𝑓‘𝑥)) |
110 | | domnsym 8839 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((ℵ‘𝑦)
≼ (𝑓‘𝑥) → ¬ (𝑓‘𝑥) ≺ (ℵ‘𝑦)) |
111 | 109, 110 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((ℵ‘𝑦)
∈ (har‘(𝑓‘𝑥)) → ¬ (𝑓‘𝑥) ≺ (ℵ‘𝑦)) |
112 | 111 | con2i 139 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑓‘𝑥) ≺ (ℵ‘𝑦) → ¬ (ℵ‘𝑦) ∈ (har‘(𝑓‘𝑥))) |
113 | | alephon 9756 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(ℵ‘𝑦)
∈ On |
114 | | ontri1 6285 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((har‘(𝑓‘𝑥)) ∈ On ∧ (ℵ‘𝑦) ∈ On) →
((har‘(𝑓‘𝑥)) ⊆ (ℵ‘𝑦) ↔ ¬
(ℵ‘𝑦) ∈
(har‘(𝑓‘𝑥)))) |
115 | 82, 113, 114 | mp2an 688 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((har‘(𝑓‘𝑥)) ⊆ (ℵ‘𝑦) ↔ ¬ (ℵ‘𝑦) ∈ (har‘(𝑓‘𝑥))) |
116 | 112, 115 | sylibr 233 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑓‘𝑥) ≺ (ℵ‘𝑦) → (har‘(𝑓‘𝑥)) ⊆ (ℵ‘𝑦)) |
117 | 107, 116 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑓‘𝑥) ∈ (ℵ‘𝑦) → (har‘(𝑓‘𝑥)) ⊆ (ℵ‘𝑦)) |
118 | | alephord2i 9764 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐴 ∈ On → (𝑦 ∈ 𝐴 → (ℵ‘𝑦) ∈ (ℵ‘𝐴))) |
119 | 118 | imp 406 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ 𝐴) → (ℵ‘𝑦) ∈ (ℵ‘𝐴)) |
120 | | ontr2 6298 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((har‘(𝑓‘𝑥)) ∈ On ∧ (ℵ‘𝐴) ∈ On) →
(((har‘(𝑓‘𝑥)) ⊆ (ℵ‘𝑦) ∧ (ℵ‘𝑦) ∈ (ℵ‘𝐴)) → (har‘(𝑓‘𝑥)) ∈ (ℵ‘𝐴))) |
121 | 82, 15, 120 | mp2an 688 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((har‘(𝑓‘𝑥)) ⊆ (ℵ‘𝑦) ∧ (ℵ‘𝑦) ∈ (ℵ‘𝐴)) → (har‘(𝑓‘𝑥)) ∈ (ℵ‘𝐴)) |
122 | 117, 119,
121 | syl2anr 596 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐴 ∈ On ∧ 𝑦 ∈ 𝐴) ∧ (𝑓‘𝑥) ∈ (ℵ‘𝑦)) → (har‘(𝑓‘𝑥)) ∈ (ℵ‘𝐴)) |
123 | 122 | rexlimdva2 3215 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐴 ∈ On → (∃𝑦 ∈ 𝐴 (𝑓‘𝑥) ∈ (ℵ‘𝑦) → (har‘(𝑓‘𝑥)) ∈ (ℵ‘𝐴))) |
124 | 103, 123 | syl5bi 241 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐴 ∈ On → ((𝑓‘𝑥) ∈ ∪
𝑦 ∈ 𝐴 (ℵ‘𝑦) → (har‘(𝑓‘𝑥)) ∈ (ℵ‘𝐴))) |
125 | 41, 124 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ V ∧ Lim 𝐴) → ((𝑓‘𝑥) ∈ ∪
𝑦 ∈ 𝐴 (ℵ‘𝑦) → (har‘(𝑓‘𝑥)) ∈ (ℵ‘𝐴))) |
126 | 102, 125 | sylbid 239 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ V ∧ Lim 𝐴) → ((𝑓‘𝑥) ∈ (ℵ‘𝐴) → (har‘(𝑓‘𝑥)) ∈ (ℵ‘𝐴))) |
127 | 100, 126 | sylan9r 508 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ V ∧ Lim 𝐴) ∧ 𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴)) → (𝑥 ∈ (cf‘(ℵ‘𝐴)) → (har‘(𝑓‘𝑥)) ∈ (ℵ‘𝐴))) |
128 | 127 | imp 406 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ V ∧ Lim 𝐴) ∧ 𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴)) ∧ 𝑥 ∈ (cf‘(ℵ‘𝐴))) → (har‘(𝑓‘𝑥)) ∈ (ℵ‘𝐴)) |
129 | 83 | cbvmptv 5183 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈
(cf‘(ℵ‘𝐴)) ↦ (har‘(𝑓‘𝑦))) = (𝑥 ∈ (cf‘(ℵ‘𝐴)) ↦ (har‘(𝑓‘𝑥))) |
130 | 84, 129 | eqtri 2766 |
. . . . . . . . . . . . . 14
⊢ 𝐻 = (𝑥 ∈ (cf‘(ℵ‘𝐴)) ↦ (har‘(𝑓‘𝑥))) |
131 | 128, 130 | fmptd 6970 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ V ∧ Lim 𝐴) ∧ 𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴)) → 𝐻:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴)) |
132 | | ffvelrn 6941 |
. . . . . . . . . . . . . . 15
⊢ ((𝐻:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ 𝑥 ∈ (cf‘(ℵ‘𝐴))) → (𝐻‘𝑥) ∈ (ℵ‘𝐴)) |
133 | | onelss 6293 |
. . . . . . . . . . . . . . 15
⊢
((ℵ‘𝐴)
∈ On → ((𝐻‘𝑥) ∈ (ℵ‘𝐴) → (𝐻‘𝑥) ⊆ (ℵ‘𝐴))) |
134 | 15, 132, 133 | mpsyl 68 |
. . . . . . . . . . . . . 14
⊢ ((𝐻:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ 𝑥 ∈ (cf‘(ℵ‘𝐴))) → (𝐻‘𝑥) ⊆ (ℵ‘𝐴)) |
135 | 134 | ralrimiva 3107 |
. . . . . . . . . . . . 13
⊢ (𝐻:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → ∀𝑥 ∈
(cf‘(ℵ‘𝐴))(𝐻‘𝑥) ⊆ (ℵ‘𝐴)) |
136 | | ss2ixp 8656 |
. . . . . . . . . . . . . 14
⊢
(∀𝑥 ∈
(cf‘(ℵ‘𝐴))(𝐻‘𝑥) ⊆ (ℵ‘𝐴) → X𝑥 ∈
(cf‘(ℵ‘𝐴))(𝐻‘𝑥) ⊆ X𝑥 ∈
(cf‘(ℵ‘𝐴))(ℵ‘𝐴)) |
137 | 91, 10 | ixpconst 8653 |
. . . . . . . . . . . . . 14
⊢ X𝑥 ∈
(cf‘(ℵ‘𝐴))(ℵ‘𝐴) = ((ℵ‘𝐴) ↑m
(cf‘(ℵ‘𝐴))) |
138 | 136, 137 | sseqtrdi 3967 |
. . . . . . . . . . . . 13
⊢
(∀𝑥 ∈
(cf‘(ℵ‘𝐴))(𝐻‘𝑥) ⊆ (ℵ‘𝐴) → X𝑥 ∈
(cf‘(ℵ‘𝐴))(𝐻‘𝑥) ⊆ ((ℵ‘𝐴) ↑m
(cf‘(ℵ‘𝐴)))) |
139 | 131, 135,
138 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ V ∧ Lim 𝐴) ∧ 𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴)) → X𝑥 ∈
(cf‘(ℵ‘𝐴))(𝐻‘𝑥) ⊆ ((ℵ‘𝐴) ↑m
(cf‘(ℵ‘𝐴)))) |
140 | | ssdomg 8741 |
. . . . . . . . . . . 12
⊢
(((ℵ‘𝐴)
↑m (cf‘(ℵ‘𝐴))) ∈ V → (X𝑥 ∈
(cf‘(ℵ‘𝐴))(𝐻‘𝑥) ⊆ ((ℵ‘𝐴) ↑m
(cf‘(ℵ‘𝐴))) → X𝑥 ∈
(cf‘(ℵ‘𝐴))(𝐻‘𝑥) ≼ ((ℵ‘𝐴) ↑m
(cf‘(ℵ‘𝐴))))) |
141 | 99, 139, 140 | mpsyl 68 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ V ∧ Lim 𝐴) ∧ 𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴)) → X𝑥 ∈
(cf‘(ℵ‘𝐴))(𝐻‘𝑥) ≼ ((ℵ‘𝐴) ↑m
(cf‘(ℵ‘𝐴)))) |
142 | 141 | adantrr 713 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ V ∧ Lim 𝐴) ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓‘𝑤))) → X𝑥 ∈
(cf‘(ℵ‘𝐴))(𝐻‘𝑥) ≼ ((ℵ‘𝐴) ↑m
(cf‘(ℵ‘𝐴)))) |
143 | | sdomdomtr 8846 |
. . . . . . . . . 10
⊢
(((ℵ‘𝐴)
≺ X𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻‘𝑥) ∧ X𝑥 ∈
(cf‘(ℵ‘𝐴))(𝐻‘𝑥) ≼ ((ℵ‘𝐴) ↑m
(cf‘(ℵ‘𝐴)))) → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m
(cf‘(ℵ‘𝐴)))) |
144 | 98, 142, 143 | syl2anc 583 |
. . . . . . . . 9
⊢ (((𝐴 ∈ V ∧ Lim 𝐴) ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓‘𝑤))) → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m
(cf‘(ℵ‘𝐴)))) |
145 | 144 | expcom 413 |
. . . . . . . 8
⊢ ((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓‘𝑤)) → ((𝐴 ∈ V ∧ Lim 𝐴) → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m
(cf‘(ℵ‘𝐴))))) |
146 | 145 | 3adant2 1129 |
. . . . . . 7
⊢ ((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ Smo 𝑓 ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓‘𝑤)) → ((𝐴 ∈ V ∧ Lim 𝐴) → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m
(cf‘(ℵ‘𝐴))))) |
147 | 146 | exlimiv 1934 |
. . . . . 6
⊢
(∃𝑓(𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ Smo 𝑓 ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓‘𝑤)) → ((𝐴 ∈ V ∧ Lim 𝐴) → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m
(cf‘(ℵ‘𝐴))))) |
148 | 15, 40, 147 | mp2b 10 |
. . . . 5
⊢ ((𝐴 ∈ V ∧ Lim 𝐴) → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m
(cf‘(ℵ‘𝐴)))) |
149 | 148 | a1i 11 |
. . . 4
⊢ (𝐴 ∈ On → ((𝐴 ∈ V ∧ Lim 𝐴) → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m
(cf‘(ℵ‘𝐴))))) |
150 | 33, 39, 149 | 3jaod 1426 |
. . 3
⊢ (𝐴 ∈ On → ((𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴)) → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m
(cf‘(ℵ‘𝐴))))) |
151 | 2, 150 | mpd 15 |
. 2
⊢ (𝐴 ∈ On →
(ℵ‘𝐴) ≺
((ℵ‘𝐴)
↑m (cf‘(ℵ‘𝐴)))) |
152 | | alephfnon 9752 |
. . . . 5
⊢ ℵ
Fn On |
153 | 152 | fndmi 6521 |
. . . 4
⊢ dom
ℵ = On |
154 | 153 | eleq2i 2830 |
. . 3
⊢ (𝐴 ∈ dom ℵ ↔ 𝐴 ∈ On) |
155 | | ndmfv 6786 |
. . . 4
⊢ (¬
𝐴 ∈ dom ℵ →
(ℵ‘𝐴) =
∅) |
156 | | 1n0 8286 |
. . . . . 6
⊢
1o ≠ ∅ |
157 | | 1oex 8280 |
. . . . . . 7
⊢
1o ∈ V |
158 | 157 | 0sdom 8844 |
. . . . . 6
⊢ (∅
≺ 1o ↔ 1o ≠ ∅) |
159 | 156, 158 | mpbir 230 |
. . . . 5
⊢ ∅
≺ 1o |
160 | | id 22 |
. . . . . 6
⊢
((ℵ‘𝐴) =
∅ → (ℵ‘𝐴) = ∅) |
161 | | fveq2 6756 |
. . . . . . . . 9
⊢
((ℵ‘𝐴) =
∅ → (cf‘(ℵ‘𝐴)) = (cf‘∅)) |
162 | | cf0 9938 |
. . . . . . . . 9
⊢
(cf‘∅) = ∅ |
163 | 161, 162 | eqtrdi 2795 |
. . . . . . . 8
⊢
((ℵ‘𝐴) =
∅ → (cf‘(ℵ‘𝐴)) = ∅) |
164 | 160, 163 | oveq12d 7273 |
. . . . . . 7
⊢
((ℵ‘𝐴) =
∅ → ((ℵ‘𝐴) ↑m
(cf‘(ℵ‘𝐴))) = (∅ ↑m
∅)) |
165 | | 0ex 5226 |
. . . . . . . 8
⊢ ∅
∈ V |
166 | | map0e 8628 |
. . . . . . . 8
⊢ (∅
∈ V → (∅ ↑m ∅) =
1o) |
167 | 165, 166 | ax-mp 5 |
. . . . . . 7
⊢ (∅
↑m ∅) = 1o |
168 | 164, 167 | eqtrdi 2795 |
. . . . . 6
⊢
((ℵ‘𝐴) =
∅ → ((ℵ‘𝐴) ↑m
(cf‘(ℵ‘𝐴))) = 1o) |
169 | 160, 168 | breq12d 5083 |
. . . . 5
⊢
((ℵ‘𝐴) =
∅ → ((ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m
(cf‘(ℵ‘𝐴))) ↔ ∅ ≺
1o)) |
170 | 159, 169 | mpbiri 257 |
. . . 4
⊢
((ℵ‘𝐴) =
∅ → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m
(cf‘(ℵ‘𝐴)))) |
171 | 155, 170 | syl 17 |
. . 3
⊢ (¬
𝐴 ∈ dom ℵ →
(ℵ‘𝐴) ≺
((ℵ‘𝐴)
↑m (cf‘(ℵ‘𝐴)))) |
172 | 154, 171 | sylnbir 330 |
. 2
⊢ (¬
𝐴 ∈ On →
(ℵ‘𝐴) ≺
((ℵ‘𝐴)
↑m (cf‘(ℵ‘𝐴)))) |
173 | 151, 172 | pm2.61i 182 |
1
⊢
(ℵ‘𝐴)
≺ ((ℵ‘𝐴)
↑m (cf‘(ℵ‘𝐴))) |