MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwcfsdom Structured version   Visualization version   GIF version

Theorem pwcfsdom 10480
Description: A corollary of Konig's Theorem konigth 10466. Theorem 11.28 of [TakeutiZaring] p. 108. (Contributed by Mario Carneiro, 20-Mar-2013.)
Hypothesis
Ref Expression
pwcfsdom.1 𝐻 = (𝑦 ∈ (cf‘(ℵ‘𝐴)) ↦ (har‘(𝑓𝑦)))
Assertion
Ref Expression
pwcfsdom (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴)))
Distinct variable group:   𝐴,𝑓,𝑦
Allowed substitution hints:   𝐻(𝑦,𝑓)

Proof of Theorem pwcfsdom
Dummy variables 𝑤 𝑧 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onzsl 7782 . . . 4 (𝐴 ∈ On ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴)))
21biimpi 216 . . 3 (𝐴 ∈ On → (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴)))
3 cfom 10161 . . . . . . 7 (cf‘ω) = ω
4 aleph0 9963 . . . . . . . 8 (ℵ‘∅) = ω
54fveq2i 6831 . . . . . . 7 (cf‘(ℵ‘∅)) = (cf‘ω)
63, 5, 43eqtr4i 2764 . . . . . 6 (cf‘(ℵ‘∅)) = (ℵ‘∅)
7 2fveq3 6833 . . . . . 6 (𝐴 = ∅ → (cf‘(ℵ‘𝐴)) = (cf‘(ℵ‘∅)))
8 fveq2 6828 . . . . . 6 (𝐴 = ∅ → (ℵ‘𝐴) = (ℵ‘∅))
96, 7, 83eqtr4a 2792 . . . . 5 (𝐴 = ∅ → (cf‘(ℵ‘𝐴)) = (ℵ‘𝐴))
10 fvex 6841 . . . . . . . . 9 (ℵ‘𝐴) ∈ V
1110canth2 9049 . . . . . . . 8 (ℵ‘𝐴) ≺ 𝒫 (ℵ‘𝐴)
1210pw2en 9003 . . . . . . . 8 𝒫 (ℵ‘𝐴) ≈ (2om (ℵ‘𝐴))
13 sdomentr 9030 . . . . . . . 8 (((ℵ‘𝐴) ≺ 𝒫 (ℵ‘𝐴) ∧ 𝒫 (ℵ‘𝐴) ≈ (2om (ℵ‘𝐴))) → (ℵ‘𝐴) ≺ (2om (ℵ‘𝐴)))
1411, 12, 13mp2an 692 . . . . . . 7 (ℵ‘𝐴) ≺ (2om (ℵ‘𝐴))
15 alephon 9966 . . . . . . . . 9 (ℵ‘𝐴) ∈ On
16 alephgeom 9979 . . . . . . . . . 10 (𝐴 ∈ On ↔ ω ⊆ (ℵ‘𝐴))
17 omelon 9542 . . . . . . . . . . . 12 ω ∈ On
18 2onn 8563 . . . . . . . . . . . 12 2o ∈ ω
19 onelss 6354 . . . . . . . . . . . 12 (ω ∈ On → (2o ∈ ω → 2o ⊆ ω))
2017, 18, 19mp2 9 . . . . . . . . . . 11 2o ⊆ ω
21 sstr 3938 . . . . . . . . . . 11 ((2o ⊆ ω ∧ ω ⊆ (ℵ‘𝐴)) → 2o ⊆ (ℵ‘𝐴))
2220, 21mpan 690 . . . . . . . . . 10 (ω ⊆ (ℵ‘𝐴) → 2o ⊆ (ℵ‘𝐴))
2316, 22sylbi 217 . . . . . . . . 9 (𝐴 ∈ On → 2o ⊆ (ℵ‘𝐴))
24 ssdomg 8928 . . . . . . . . 9 ((ℵ‘𝐴) ∈ On → (2o ⊆ (ℵ‘𝐴) → 2o ≼ (ℵ‘𝐴)))
2515, 23, 24mpsyl 68 . . . . . . . 8 (𝐴 ∈ On → 2o ≼ (ℵ‘𝐴))
26 mapdom1 9061 . . . . . . . 8 (2o ≼ (ℵ‘𝐴) → (2om (ℵ‘𝐴)) ≼ ((ℵ‘𝐴) ↑m (ℵ‘𝐴)))
2725, 26syl 17 . . . . . . 7 (𝐴 ∈ On → (2om (ℵ‘𝐴)) ≼ ((ℵ‘𝐴) ↑m (ℵ‘𝐴)))
28 sdomdomtr 9029 . . . . . . 7 (((ℵ‘𝐴) ≺ (2om (ℵ‘𝐴)) ∧ (2om (ℵ‘𝐴)) ≼ ((ℵ‘𝐴) ↑m (ℵ‘𝐴))) → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (ℵ‘𝐴)))
2914, 27, 28sylancr 587 . . . . . 6 (𝐴 ∈ On → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (ℵ‘𝐴)))
30 oveq2 7360 . . . . . . 7 ((cf‘(ℵ‘𝐴)) = (ℵ‘𝐴) → ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴))) = ((ℵ‘𝐴) ↑m (ℵ‘𝐴)))
3130breq2d 5105 . . . . . 6 ((cf‘(ℵ‘𝐴)) = (ℵ‘𝐴) → ((ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴))) ↔ (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (ℵ‘𝐴))))
3229, 31syl5ibrcom 247 . . . . 5 (𝐴 ∈ On → ((cf‘(ℵ‘𝐴)) = (ℵ‘𝐴) → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴)))))
339, 32syl5 34 . . . 4 (𝐴 ∈ On → (𝐴 = ∅ → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴)))))
34 alephreg 10479 . . . . . . 7 (cf‘(ℵ‘suc 𝑥)) = (ℵ‘suc 𝑥)
35 2fveq3 6833 . . . . . . 7 (𝐴 = suc 𝑥 → (cf‘(ℵ‘𝐴)) = (cf‘(ℵ‘suc 𝑥)))
36 fveq2 6828 . . . . . . 7 (𝐴 = suc 𝑥 → (ℵ‘𝐴) = (ℵ‘suc 𝑥))
3734, 35, 363eqtr4a 2792 . . . . . 6 (𝐴 = suc 𝑥 → (cf‘(ℵ‘𝐴)) = (ℵ‘𝐴))
3837rexlimivw 3129 . . . . 5 (∃𝑥 ∈ On 𝐴 = suc 𝑥 → (cf‘(ℵ‘𝐴)) = (ℵ‘𝐴))
3938, 32syl5 34 . . . 4 (𝐴 ∈ On → (∃𝑥 ∈ On 𝐴 = suc 𝑥 → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴)))))
40 limelon 6377 . . . . . . . . . 10 ((𝐴 ∈ V ∧ Lim 𝐴) → 𝐴 ∈ On)
41 ffn 6657 . . . . . . . . . . . . . . 15 (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → 𝑓 Fn (cf‘(ℵ‘𝐴)))
42 fnrnfv 6887 . . . . . . . . . . . . . . . 16 (𝑓 Fn (cf‘(ℵ‘𝐴)) → ran 𝑓 = {𝑦 ∣ ∃𝑥 ∈ (cf‘(ℵ‘𝐴))𝑦 = (𝑓𝑥)})
4342unieqd 4871 . . . . . . . . . . . . . . 15 (𝑓 Fn (cf‘(ℵ‘𝐴)) → ran 𝑓 = {𝑦 ∣ ∃𝑥 ∈ (cf‘(ℵ‘𝐴))𝑦 = (𝑓𝑥)})
4441, 43syl 17 . . . . . . . . . . . . . 14 (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → ran 𝑓 = {𝑦 ∣ ∃𝑥 ∈ (cf‘(ℵ‘𝐴))𝑦 = (𝑓𝑥)})
45 fvex 6841 . . . . . . . . . . . . . . 15 (𝑓𝑥) ∈ V
4645dfiun2 4982 . . . . . . . . . . . . . 14 𝑥 ∈ (cf‘(ℵ‘𝐴))(𝑓𝑥) = {𝑦 ∣ ∃𝑥 ∈ (cf‘(ℵ‘𝐴))𝑦 = (𝑓𝑥)}
4744, 46eqtr4di 2784 . . . . . . . . . . . . 13 (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → ran 𝑓 = 𝑥 ∈ (cf‘(ℵ‘𝐴))(𝑓𝑥))
4847ad2antrl 728 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤))) → ran 𝑓 = 𝑥 ∈ (cf‘(ℵ‘𝐴))(𝑓𝑥))
49 fnfvelrn 7019 . . . . . . . . . . . . . . . . . . 19 ((𝑓 Fn (cf‘(ℵ‘𝐴)) ∧ 𝑤 ∈ (cf‘(ℵ‘𝐴))) → (𝑓𝑤) ∈ ran 𝑓)
5041, 49sylan 580 . . . . . . . . . . . . . . . . . 18 ((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ 𝑤 ∈ (cf‘(ℵ‘𝐴))) → (𝑓𝑤) ∈ ran 𝑓)
51 sseq2 3956 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝑓𝑤) → (𝑧𝑦𝑧 ⊆ (𝑓𝑤)))
5251rspcev 3572 . . . . . . . . . . . . . . . . . 18 (((𝑓𝑤) ∈ ran 𝑓𝑧 ⊆ (𝑓𝑤)) → ∃𝑦 ∈ ran 𝑓 𝑧𝑦)
5350, 52sylan 580 . . . . . . . . . . . . . . . . 17 (((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ 𝑤 ∈ (cf‘(ℵ‘𝐴))) ∧ 𝑧 ⊆ (𝑓𝑤)) → ∃𝑦 ∈ ran 𝑓 𝑧𝑦)
5453rexlimdva2 3135 . . . . . . . . . . . . . . . 16 (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → (∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤) → ∃𝑦 ∈ ran 𝑓 𝑧𝑦))
5554ralimdv 3146 . . . . . . . . . . . . . . 15 (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → (∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤) → ∀𝑧 ∈ (ℵ‘𝐴)∃𝑦 ∈ ran 𝑓 𝑧𝑦))
5655imp 406 . . . . . . . . . . . . . 14 ((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤)) → ∀𝑧 ∈ (ℵ‘𝐴)∃𝑦 ∈ ran 𝑓 𝑧𝑦)
5756adantl 481 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤))) → ∀𝑧 ∈ (ℵ‘𝐴)∃𝑦 ∈ ran 𝑓 𝑧𝑦)
58 alephislim 9980 . . . . . . . . . . . . . . 15 (𝐴 ∈ On ↔ Lim (ℵ‘𝐴))
5958biimpi 216 . . . . . . . . . . . . . 14 (𝐴 ∈ On → Lim (ℵ‘𝐴))
60 frn 6664 . . . . . . . . . . . . . . 15 (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → ran 𝑓 ⊆ (ℵ‘𝐴))
6160adantr 480 . . . . . . . . . . . . . 14 ((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤)) → ran 𝑓 ⊆ (ℵ‘𝐴))
62 coflim 10158 . . . . . . . . . . . . . 14 ((Lim (ℵ‘𝐴) ∧ ran 𝑓 ⊆ (ℵ‘𝐴)) → ( ran 𝑓 = (ℵ‘𝐴) ↔ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑦 ∈ ran 𝑓 𝑧𝑦))
6359, 61, 62syl2an 596 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤))) → ( ran 𝑓 = (ℵ‘𝐴) ↔ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑦 ∈ ran 𝑓 𝑧𝑦))
6457, 63mpbird 257 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤))) → ran 𝑓 = (ℵ‘𝐴))
6548, 64eqtr3d 2768 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤))) → 𝑥 ∈ (cf‘(ℵ‘𝐴))(𝑓𝑥) = (ℵ‘𝐴))
66 ffvelcdm 7020 . . . . . . . . . . . . . . . 16 ((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ 𝑥 ∈ (cf‘(ℵ‘𝐴))) → (𝑓𝑥) ∈ (ℵ‘𝐴))
6715oneli 6427 . . . . . . . . . . . . . . . 16 ((𝑓𝑥) ∈ (ℵ‘𝐴) → (𝑓𝑥) ∈ On)
68 harcard 9877 . . . . . . . . . . . . . . . . . 18 (card‘(har‘(𝑓𝑥))) = (har‘(𝑓𝑥))
69 iscard 9874 . . . . . . . . . . . . . . . . . . 19 ((card‘(har‘(𝑓𝑥))) = (har‘(𝑓𝑥)) ↔ ((har‘(𝑓𝑥)) ∈ On ∧ ∀𝑦 ∈ (har‘(𝑓𝑥))𝑦 ≺ (har‘(𝑓𝑥))))
7069simprbi 496 . . . . . . . . . . . . . . . . . 18 ((card‘(har‘(𝑓𝑥))) = (har‘(𝑓𝑥)) → ∀𝑦 ∈ (har‘(𝑓𝑥))𝑦 ≺ (har‘(𝑓𝑥)))
7168, 70ax-mp 5 . . . . . . . . . . . . . . . . 17 𝑦 ∈ (har‘(𝑓𝑥))𝑦 ≺ (har‘(𝑓𝑥))
72 domrefg 8915 . . . . . . . . . . . . . . . . . . 19 ((𝑓𝑥) ∈ V → (𝑓𝑥) ≼ (𝑓𝑥))
7345, 72ax-mp 5 . . . . . . . . . . . . . . . . . 18 (𝑓𝑥) ≼ (𝑓𝑥)
74 elharval 9453 . . . . . . . . . . . . . . . . . . 19 ((𝑓𝑥) ∈ (har‘(𝑓𝑥)) ↔ ((𝑓𝑥) ∈ On ∧ (𝑓𝑥) ≼ (𝑓𝑥)))
7574biimpri 228 . . . . . . . . . . . . . . . . . 18 (((𝑓𝑥) ∈ On ∧ (𝑓𝑥) ≼ (𝑓𝑥)) → (𝑓𝑥) ∈ (har‘(𝑓𝑥)))
7673, 75mpan2 691 . . . . . . . . . . . . . . . . 17 ((𝑓𝑥) ∈ On → (𝑓𝑥) ∈ (har‘(𝑓𝑥)))
77 breq1 5096 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝑓𝑥) → (𝑦 ≺ (har‘(𝑓𝑥)) ↔ (𝑓𝑥) ≺ (har‘(𝑓𝑥))))
7877rspccv 3569 . . . . . . . . . . . . . . . . 17 (∀𝑦 ∈ (har‘(𝑓𝑥))𝑦 ≺ (har‘(𝑓𝑥)) → ((𝑓𝑥) ∈ (har‘(𝑓𝑥)) → (𝑓𝑥) ≺ (har‘(𝑓𝑥))))
7971, 76, 78mpsyl 68 . . . . . . . . . . . . . . . 16 ((𝑓𝑥) ∈ On → (𝑓𝑥) ≺ (har‘(𝑓𝑥)))
8066, 67, 793syl 18 . . . . . . . . . . . . . . 15 ((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ 𝑥 ∈ (cf‘(ℵ‘𝐴))) → (𝑓𝑥) ≺ (har‘(𝑓𝑥)))
81 harcl 9451 . . . . . . . . . . . . . . . . . 18 (har‘(𝑓𝑥)) ∈ On
82 2fveq3 6833 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑥 → (har‘(𝑓𝑦)) = (har‘(𝑓𝑥)))
83 pwcfsdom.1 . . . . . . . . . . . . . . . . . . 19 𝐻 = (𝑦 ∈ (cf‘(ℵ‘𝐴)) ↦ (har‘(𝑓𝑦)))
8482, 83fvmptg 6933 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (cf‘(ℵ‘𝐴)) ∧ (har‘(𝑓𝑥)) ∈ On) → (𝐻𝑥) = (har‘(𝑓𝑥)))
8581, 84mpan2 691 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (cf‘(ℵ‘𝐴)) → (𝐻𝑥) = (har‘(𝑓𝑥)))
8685breq2d 5105 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (cf‘(ℵ‘𝐴)) → ((𝑓𝑥) ≺ (𝐻𝑥) ↔ (𝑓𝑥) ≺ (har‘(𝑓𝑥))))
8786adantl 481 . . . . . . . . . . . . . . 15 ((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ 𝑥 ∈ (cf‘(ℵ‘𝐴))) → ((𝑓𝑥) ≺ (𝐻𝑥) ↔ (𝑓𝑥) ≺ (har‘(𝑓𝑥))))
8880, 87mpbird 257 . . . . . . . . . . . . . 14 ((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ 𝑥 ∈ (cf‘(ℵ‘𝐴))) → (𝑓𝑥) ≺ (𝐻𝑥))
8988ralrimiva 3124 . . . . . . . . . . . . 13 (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → ∀𝑥 ∈ (cf‘(ℵ‘𝐴))(𝑓𝑥) ≺ (𝐻𝑥))
90 fvex 6841 . . . . . . . . . . . . . 14 (cf‘(ℵ‘𝐴)) ∈ V
91 eqid 2731 . . . . . . . . . . . . . 14 𝑥 ∈ (cf‘(ℵ‘𝐴))(𝑓𝑥) = 𝑥 ∈ (cf‘(ℵ‘𝐴))(𝑓𝑥)
92 eqid 2731 . . . . . . . . . . . . . 14 X𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥) = X𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥)
9390, 91, 92konigth 10466 . . . . . . . . . . . . 13 (∀𝑥 ∈ (cf‘(ℵ‘𝐴))(𝑓𝑥) ≺ (𝐻𝑥) → 𝑥 ∈ (cf‘(ℵ‘𝐴))(𝑓𝑥) ≺ X𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥))
9489, 93syl 17 . . . . . . . . . . . 12 (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → 𝑥 ∈ (cf‘(ℵ‘𝐴))(𝑓𝑥) ≺ X𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥))
9594ad2antrl 728 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤))) → 𝑥 ∈ (cf‘(ℵ‘𝐴))(𝑓𝑥) ≺ X𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥))
9665, 95eqbrtrrd 5117 . . . . . . . . . 10 ((𝐴 ∈ On ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤))) → (ℵ‘𝐴) ≺ X𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥))
9740, 96sylan 580 . . . . . . . . 9 (((𝐴 ∈ V ∧ Lim 𝐴) ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤))) → (ℵ‘𝐴) ≺ X𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥))
98 ovex 7385 . . . . . . . . . . 11 ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴))) ∈ V
9966ex 412 . . . . . . . . . . . . . . 15 (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → (𝑥 ∈ (cf‘(ℵ‘𝐴)) → (𝑓𝑥) ∈ (ℵ‘𝐴)))
100 alephlim 9964 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ V ∧ Lim 𝐴) → (ℵ‘𝐴) = 𝑦𝐴 (ℵ‘𝑦))
101100eleq2d 2817 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ V ∧ Lim 𝐴) → ((𝑓𝑥) ∈ (ℵ‘𝐴) ↔ (𝑓𝑥) ∈ 𝑦𝐴 (ℵ‘𝑦)))
102 eliun 4945 . . . . . . . . . . . . . . . . . 18 ((𝑓𝑥) ∈ 𝑦𝐴 (ℵ‘𝑦) ↔ ∃𝑦𝐴 (𝑓𝑥) ∈ (ℵ‘𝑦))
103 alephcard 9967 . . . . . . . . . . . . . . . . . . . . . . 23 (card‘(ℵ‘𝑦)) = (ℵ‘𝑦)
104103eleq2i 2823 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓𝑥) ∈ (card‘(ℵ‘𝑦)) ↔ (𝑓𝑥) ∈ (ℵ‘𝑦))
105 cardsdomelir 9872 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓𝑥) ∈ (card‘(ℵ‘𝑦)) → (𝑓𝑥) ≺ (ℵ‘𝑦))
106104, 105sylbir 235 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓𝑥) ∈ (ℵ‘𝑦) → (𝑓𝑥) ≺ (ℵ‘𝑦))
107 elharval 9453 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((ℵ‘𝑦) ∈ (har‘(𝑓𝑥)) ↔ ((ℵ‘𝑦) ∈ On ∧ (ℵ‘𝑦) ≼ (𝑓𝑥)))
108107simprbi 496 . . . . . . . . . . . . . . . . . . . . . . . 24 ((ℵ‘𝑦) ∈ (har‘(𝑓𝑥)) → (ℵ‘𝑦) ≼ (𝑓𝑥))
109 domnsym 9022 . . . . . . . . . . . . . . . . . . . . . . . 24 ((ℵ‘𝑦) ≼ (𝑓𝑥) → ¬ (𝑓𝑥) ≺ (ℵ‘𝑦))
110108, 109syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((ℵ‘𝑦) ∈ (har‘(𝑓𝑥)) → ¬ (𝑓𝑥) ≺ (ℵ‘𝑦))
111110con2i 139 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓𝑥) ≺ (ℵ‘𝑦) → ¬ (ℵ‘𝑦) ∈ (har‘(𝑓𝑥)))
112 alephon 9966 . . . . . . . . . . . . . . . . . . . . . . 23 (ℵ‘𝑦) ∈ On
113 ontri1 6346 . . . . . . . . . . . . . . . . . . . . . . 23 (((har‘(𝑓𝑥)) ∈ On ∧ (ℵ‘𝑦) ∈ On) → ((har‘(𝑓𝑥)) ⊆ (ℵ‘𝑦) ↔ ¬ (ℵ‘𝑦) ∈ (har‘(𝑓𝑥))))
11481, 112, 113mp2an 692 . . . . . . . . . . . . . . . . . . . . . 22 ((har‘(𝑓𝑥)) ⊆ (ℵ‘𝑦) ↔ ¬ (ℵ‘𝑦) ∈ (har‘(𝑓𝑥)))
115111, 114sylibr 234 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓𝑥) ≺ (ℵ‘𝑦) → (har‘(𝑓𝑥)) ⊆ (ℵ‘𝑦))
116106, 115syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑓𝑥) ∈ (ℵ‘𝑦) → (har‘(𝑓𝑥)) ⊆ (ℵ‘𝑦))
117 alephord2i 9974 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ∈ On → (𝑦𝐴 → (ℵ‘𝑦) ∈ (ℵ‘𝐴)))
118117imp 406 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ On ∧ 𝑦𝐴) → (ℵ‘𝑦) ∈ (ℵ‘𝐴))
119 ontr2 6360 . . . . . . . . . . . . . . . . . . . . 21 (((har‘(𝑓𝑥)) ∈ On ∧ (ℵ‘𝐴) ∈ On) → (((har‘(𝑓𝑥)) ⊆ (ℵ‘𝑦) ∧ (ℵ‘𝑦) ∈ (ℵ‘𝐴)) → (har‘(𝑓𝑥)) ∈ (ℵ‘𝐴)))
12081, 15, 119mp2an 692 . . . . . . . . . . . . . . . . . . . 20 (((har‘(𝑓𝑥)) ⊆ (ℵ‘𝑦) ∧ (ℵ‘𝑦) ∈ (ℵ‘𝐴)) → (har‘(𝑓𝑥)) ∈ (ℵ‘𝐴))
121116, 118, 120syl2anr 597 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ On ∧ 𝑦𝐴) ∧ (𝑓𝑥) ∈ (ℵ‘𝑦)) → (har‘(𝑓𝑥)) ∈ (ℵ‘𝐴))
122121rexlimdva2 3135 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ On → (∃𝑦𝐴 (𝑓𝑥) ∈ (ℵ‘𝑦) → (har‘(𝑓𝑥)) ∈ (ℵ‘𝐴)))
123102, 122biimtrid 242 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ On → ((𝑓𝑥) ∈ 𝑦𝐴 (ℵ‘𝑦) → (har‘(𝑓𝑥)) ∈ (ℵ‘𝐴)))
12440, 123syl 17 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ V ∧ Lim 𝐴) → ((𝑓𝑥) ∈ 𝑦𝐴 (ℵ‘𝑦) → (har‘(𝑓𝑥)) ∈ (ℵ‘𝐴)))
125101, 124sylbid 240 . . . . . . . . . . . . . . 15 ((𝐴 ∈ V ∧ Lim 𝐴) → ((𝑓𝑥) ∈ (ℵ‘𝐴) → (har‘(𝑓𝑥)) ∈ (ℵ‘𝐴)))
12699, 125sylan9r 508 . . . . . . . . . . . . . 14 (((𝐴 ∈ V ∧ Lim 𝐴) ∧ 𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴)) → (𝑥 ∈ (cf‘(ℵ‘𝐴)) → (har‘(𝑓𝑥)) ∈ (ℵ‘𝐴)))
127126imp 406 . . . . . . . . . . . . 13 ((((𝐴 ∈ V ∧ Lim 𝐴) ∧ 𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴)) ∧ 𝑥 ∈ (cf‘(ℵ‘𝐴))) → (har‘(𝑓𝑥)) ∈ (ℵ‘𝐴))
12882cbvmptv 5197 . . . . . . . . . . . . . 14 (𝑦 ∈ (cf‘(ℵ‘𝐴)) ↦ (har‘(𝑓𝑦))) = (𝑥 ∈ (cf‘(ℵ‘𝐴)) ↦ (har‘(𝑓𝑥)))
12983, 128eqtri 2754 . . . . . . . . . . . . 13 𝐻 = (𝑥 ∈ (cf‘(ℵ‘𝐴)) ↦ (har‘(𝑓𝑥)))
130127, 129fmptd 7053 . . . . . . . . . . . 12 (((𝐴 ∈ V ∧ Lim 𝐴) ∧ 𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴)) → 𝐻:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴))
131 ffvelcdm 7020 . . . . . . . . . . . . . 14 ((𝐻:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ 𝑥 ∈ (cf‘(ℵ‘𝐴))) → (𝐻𝑥) ∈ (ℵ‘𝐴))
132 onelss 6354 . . . . . . . . . . . . . 14 ((ℵ‘𝐴) ∈ On → ((𝐻𝑥) ∈ (ℵ‘𝐴) → (𝐻𝑥) ⊆ (ℵ‘𝐴)))
13315, 131, 132mpsyl 68 . . . . . . . . . . . . 13 ((𝐻:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ 𝑥 ∈ (cf‘(ℵ‘𝐴))) → (𝐻𝑥) ⊆ (ℵ‘𝐴))
134133ralrimiva 3124 . . . . . . . . . . . 12 (𝐻:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) → ∀𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥) ⊆ (ℵ‘𝐴))
135 ss2ixp 8840 . . . . . . . . . . . . 13 (∀𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥) ⊆ (ℵ‘𝐴) → X𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥) ⊆ X𝑥 ∈ (cf‘(ℵ‘𝐴))(ℵ‘𝐴))
13690, 10ixpconst 8837 . . . . . . . . . . . . 13 X𝑥 ∈ (cf‘(ℵ‘𝐴))(ℵ‘𝐴) = ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴)))
137135, 136sseqtrdi 3970 . . . . . . . . . . . 12 (∀𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥) ⊆ (ℵ‘𝐴) → X𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥) ⊆ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴))))
138130, 134, 1373syl 18 . . . . . . . . . . 11 (((𝐴 ∈ V ∧ Lim 𝐴) ∧ 𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴)) → X𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥) ⊆ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴))))
139 ssdomg 8928 . . . . . . . . . . 11 (((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴))) ∈ V → (X𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥) ⊆ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴))) → X𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥) ≼ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴)))))
14098, 138, 139mpsyl 68 . . . . . . . . . 10 (((𝐴 ∈ V ∧ Lim 𝐴) ∧ 𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴)) → X𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥) ≼ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴))))
141140adantrr 717 . . . . . . . . 9 (((𝐴 ∈ V ∧ Lim 𝐴) ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤))) → X𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥) ≼ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴))))
142 sdomdomtr 9029 . . . . . . . . 9 (((ℵ‘𝐴) ≺ X𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥) ∧ X𝑥 ∈ (cf‘(ℵ‘𝐴))(𝐻𝑥) ≼ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴)))) → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴))))
14397, 141, 142syl2anc 584 . . . . . . . 8 (((𝐴 ∈ V ∧ Lim 𝐴) ∧ (𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤))) → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴))))
144143expcom 413 . . . . . . 7 ((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤)) → ((𝐴 ∈ V ∧ Lim 𝐴) → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴)))))
1451443adant2 1131 . . . . . 6 ((𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ Smo 𝑓 ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤)) → ((𝐴 ∈ V ∧ Lim 𝐴) → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴)))))
146 cfsmo 10168 . . . . . . 7 ((ℵ‘𝐴) ∈ On → ∃𝑓(𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ Smo 𝑓 ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤)))
14715, 146ax-mp 5 . . . . . 6 𝑓(𝑓:(cf‘(ℵ‘𝐴))⟶(ℵ‘𝐴) ∧ Smo 𝑓 ∧ ∀𝑧 ∈ (ℵ‘𝐴)∃𝑤 ∈ (cf‘(ℵ‘𝐴))𝑧 ⊆ (𝑓𝑤))
148145, 147exlimiiv 1932 . . . . 5 ((𝐴 ∈ V ∧ Lim 𝐴) → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴))))
149148a1i 11 . . . 4 (𝐴 ∈ On → ((𝐴 ∈ V ∧ Lim 𝐴) → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴)))))
15033, 39, 1493jaod 1431 . . 3 (𝐴 ∈ On → ((𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ∨ (𝐴 ∈ V ∧ Lim 𝐴)) → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴)))))
1512, 150mpd 15 . 2 (𝐴 ∈ On → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴))))
152 alephfnon 9962 . . . . 5 ℵ Fn On
153152fndmi 6591 . . . 4 dom ℵ = On
154153eleq2i 2823 . . 3 (𝐴 ∈ dom ℵ ↔ 𝐴 ∈ On)
155 ndmfv 6860 . . . 4 𝐴 ∈ dom ℵ → (ℵ‘𝐴) = ∅)
156 1n0 8409 . . . . . 6 1o ≠ ∅
157 1oex 8401 . . . . . . 7 1o ∈ V
1581570sdom 9027 . . . . . 6 (∅ ≺ 1o ↔ 1o ≠ ∅)
159156, 158mpbir 231 . . . . 5 ∅ ≺ 1o
160 id 22 . . . . . 6 ((ℵ‘𝐴) = ∅ → (ℵ‘𝐴) = ∅)
161 fveq2 6828 . . . . . . . . 9 ((ℵ‘𝐴) = ∅ → (cf‘(ℵ‘𝐴)) = (cf‘∅))
162 cf0 10148 . . . . . . . . 9 (cf‘∅) = ∅
163161, 162eqtrdi 2782 . . . . . . . 8 ((ℵ‘𝐴) = ∅ → (cf‘(ℵ‘𝐴)) = ∅)
164160, 163oveq12d 7370 . . . . . . 7 ((ℵ‘𝐴) = ∅ → ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴))) = (∅ ↑m ∅))
165 0ex 5247 . . . . . . . 8 ∅ ∈ V
166 map0e 8812 . . . . . . . 8 (∅ ∈ V → (∅ ↑m ∅) = 1o)
167165, 166ax-mp 5 . . . . . . 7 (∅ ↑m ∅) = 1o
168164, 167eqtrdi 2782 . . . . . 6 ((ℵ‘𝐴) = ∅ → ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴))) = 1o)
169160, 168breq12d 5106 . . . . 5 ((ℵ‘𝐴) = ∅ → ((ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴))) ↔ ∅ ≺ 1o))
170159, 169mpbiri 258 . . . 4 ((ℵ‘𝐴) = ∅ → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴))))
171155, 170syl 17 . . 3 𝐴 ∈ dom ℵ → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴))))
172154, 171sylnbir 331 . 2 𝐴 ∈ On → (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴))))
173151, 172pm2.61i 182 1 (ℵ‘𝐴) ≺ ((ℵ‘𝐴) ↑m (cf‘(ℵ‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1085  w3a 1086   = wceq 1541  wex 1780  wcel 2111  {cab 2709  wne 2928  wral 3047  wrex 3056  Vcvv 3436  wss 3897  c0 4282  𝒫 cpw 4549   cuni 4858   ciun 4941   class class class wbr 5093  cmpt 5174  dom cdm 5619  ran crn 5620  Oncon0 6312  Lim wlim 6313  suc csuc 6314   Fn wfn 6482  wf 6483  cfv 6487  (class class class)co 7352  ωcom 7802  Smo wsmo 8271  1oc1o 8384  2oc2o 8385  m cmap 8756  Xcixp 8827  cen 8872  cdom 8873  csdm 8874  harchar 9448  cardccrd 9834  cale 9835  cfccf 9836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9537  ax-ac2 10360
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-isom 6496  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-smo 8272  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-oi 9402  df-har 9449  df-card 9838  df-aleph 9839  df-cf 9840  df-acn 9841  df-ac 10013
This theorem is referenced by:  cfpwsdom  10481  tskcard  10678  bj-pwcfsdom  37113
  Copyright terms: Public domain W3C validator