MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwcfsdom Structured version   Visualization version   GIF version

Theorem pwcfsdom 10580
Description: A corollary of Konig's Theorem konigth 10566. Theorem 11.28 of [TakeutiZaring] p. 108. (Contributed by Mario Carneiro, 20-Mar-2013.)
Hypothesis
Ref Expression
pwcfsdom.1 𝐻 = (𝑦 ∈ (cfβ€˜(β„΅β€˜π΄)) ↦ (harβ€˜(π‘“β€˜π‘¦)))
Assertion
Ref Expression
pwcfsdom (β„΅β€˜π΄) β‰Ί ((β„΅β€˜π΄) ↑m (cfβ€˜(β„΅β€˜π΄)))
Distinct variable group:   𝐴,𝑓,𝑦
Allowed substitution hints:   𝐻(𝑦,𝑓)

Proof of Theorem pwcfsdom
Dummy variables 𝑀 𝑧 π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onzsl 7837 . . . 4 (𝐴 ∈ On ↔ (𝐴 = βˆ… ∨ βˆƒπ‘₯ ∈ On 𝐴 = suc π‘₯ ∨ (𝐴 ∈ V ∧ Lim 𝐴)))
21biimpi 215 . . 3 (𝐴 ∈ On β†’ (𝐴 = βˆ… ∨ βˆƒπ‘₯ ∈ On 𝐴 = suc π‘₯ ∨ (𝐴 ∈ V ∧ Lim 𝐴)))
3 cfom 10261 . . . . . . 7 (cfβ€˜Ο‰) = Ο‰
4 aleph0 10063 . . . . . . . 8 (β„΅β€˜βˆ…) = Ο‰
54fveq2i 6893 . . . . . . 7 (cfβ€˜(β„΅β€˜βˆ…)) = (cfβ€˜Ο‰)
63, 5, 43eqtr4i 2768 . . . . . 6 (cfβ€˜(β„΅β€˜βˆ…)) = (β„΅β€˜βˆ…)
7 2fveq3 6895 . . . . . 6 (𝐴 = βˆ… β†’ (cfβ€˜(β„΅β€˜π΄)) = (cfβ€˜(β„΅β€˜βˆ…)))
8 fveq2 6890 . . . . . 6 (𝐴 = βˆ… β†’ (β„΅β€˜π΄) = (β„΅β€˜βˆ…))
96, 7, 83eqtr4a 2796 . . . . 5 (𝐴 = βˆ… β†’ (cfβ€˜(β„΅β€˜π΄)) = (β„΅β€˜π΄))
10 fvex 6903 . . . . . . . . 9 (β„΅β€˜π΄) ∈ V
1110canth2 9132 . . . . . . . 8 (β„΅β€˜π΄) β‰Ί 𝒫 (β„΅β€˜π΄)
1210pw2en 9081 . . . . . . . 8 𝒫 (β„΅β€˜π΄) β‰ˆ (2o ↑m (β„΅β€˜π΄))
13 sdomentr 9113 . . . . . . . 8 (((β„΅β€˜π΄) β‰Ί 𝒫 (β„΅β€˜π΄) ∧ 𝒫 (β„΅β€˜π΄) β‰ˆ (2o ↑m (β„΅β€˜π΄))) β†’ (β„΅β€˜π΄) β‰Ί (2o ↑m (β„΅β€˜π΄)))
1411, 12, 13mp2an 688 . . . . . . 7 (β„΅β€˜π΄) β‰Ί (2o ↑m (β„΅β€˜π΄))
15 alephon 10066 . . . . . . . . 9 (β„΅β€˜π΄) ∈ On
16 alephgeom 10079 . . . . . . . . . 10 (𝐴 ∈ On ↔ Ο‰ βŠ† (β„΅β€˜π΄))
17 omelon 9643 . . . . . . . . . . . 12 Ο‰ ∈ On
18 2onn 8643 . . . . . . . . . . . 12 2o ∈ Ο‰
19 onelss 6405 . . . . . . . . . . . 12 (Ο‰ ∈ On β†’ (2o ∈ Ο‰ β†’ 2o βŠ† Ο‰))
2017, 18, 19mp2 9 . . . . . . . . . . 11 2o βŠ† Ο‰
21 sstr 3989 . . . . . . . . . . 11 ((2o βŠ† Ο‰ ∧ Ο‰ βŠ† (β„΅β€˜π΄)) β†’ 2o βŠ† (β„΅β€˜π΄))
2220, 21mpan 686 . . . . . . . . . 10 (Ο‰ βŠ† (β„΅β€˜π΄) β†’ 2o βŠ† (β„΅β€˜π΄))
2316, 22sylbi 216 . . . . . . . . 9 (𝐴 ∈ On β†’ 2o βŠ† (β„΅β€˜π΄))
24 ssdomg 8998 . . . . . . . . 9 ((β„΅β€˜π΄) ∈ On β†’ (2o βŠ† (β„΅β€˜π΄) β†’ 2o β‰Ό (β„΅β€˜π΄)))
2515, 23, 24mpsyl 68 . . . . . . . 8 (𝐴 ∈ On β†’ 2o β‰Ό (β„΅β€˜π΄))
26 mapdom1 9144 . . . . . . . 8 (2o β‰Ό (β„΅β€˜π΄) β†’ (2o ↑m (β„΅β€˜π΄)) β‰Ό ((β„΅β€˜π΄) ↑m (β„΅β€˜π΄)))
2725, 26syl 17 . . . . . . 7 (𝐴 ∈ On β†’ (2o ↑m (β„΅β€˜π΄)) β‰Ό ((β„΅β€˜π΄) ↑m (β„΅β€˜π΄)))
28 sdomdomtr 9112 . . . . . . 7 (((β„΅β€˜π΄) β‰Ί (2o ↑m (β„΅β€˜π΄)) ∧ (2o ↑m (β„΅β€˜π΄)) β‰Ό ((β„΅β€˜π΄) ↑m (β„΅β€˜π΄))) β†’ (β„΅β€˜π΄) β‰Ί ((β„΅β€˜π΄) ↑m (β„΅β€˜π΄)))
2914, 27, 28sylancr 585 . . . . . 6 (𝐴 ∈ On β†’ (β„΅β€˜π΄) β‰Ί ((β„΅β€˜π΄) ↑m (β„΅β€˜π΄)))
30 oveq2 7419 . . . . . . 7 ((cfβ€˜(β„΅β€˜π΄)) = (β„΅β€˜π΄) β†’ ((β„΅β€˜π΄) ↑m (cfβ€˜(β„΅β€˜π΄))) = ((β„΅β€˜π΄) ↑m (β„΅β€˜π΄)))
3130breq2d 5159 . . . . . 6 ((cfβ€˜(β„΅β€˜π΄)) = (β„΅β€˜π΄) β†’ ((β„΅β€˜π΄) β‰Ί ((β„΅β€˜π΄) ↑m (cfβ€˜(β„΅β€˜π΄))) ↔ (β„΅β€˜π΄) β‰Ί ((β„΅β€˜π΄) ↑m (β„΅β€˜π΄))))
3229, 31syl5ibrcom 246 . . . . 5 (𝐴 ∈ On β†’ ((cfβ€˜(β„΅β€˜π΄)) = (β„΅β€˜π΄) β†’ (β„΅β€˜π΄) β‰Ί ((β„΅β€˜π΄) ↑m (cfβ€˜(β„΅β€˜π΄)))))
339, 32syl5 34 . . . 4 (𝐴 ∈ On β†’ (𝐴 = βˆ… β†’ (β„΅β€˜π΄) β‰Ί ((β„΅β€˜π΄) ↑m (cfβ€˜(β„΅β€˜π΄)))))
34 alephreg 10579 . . . . . . 7 (cfβ€˜(β„΅β€˜suc π‘₯)) = (β„΅β€˜suc π‘₯)
35 2fveq3 6895 . . . . . . 7 (𝐴 = suc π‘₯ β†’ (cfβ€˜(β„΅β€˜π΄)) = (cfβ€˜(β„΅β€˜suc π‘₯)))
36 fveq2 6890 . . . . . . 7 (𝐴 = suc π‘₯ β†’ (β„΅β€˜π΄) = (β„΅β€˜suc π‘₯))
3734, 35, 363eqtr4a 2796 . . . . . 6 (𝐴 = suc π‘₯ β†’ (cfβ€˜(β„΅β€˜π΄)) = (β„΅β€˜π΄))
3837rexlimivw 3149 . . . . 5 (βˆƒπ‘₯ ∈ On 𝐴 = suc π‘₯ β†’ (cfβ€˜(β„΅β€˜π΄)) = (β„΅β€˜π΄))
3938, 32syl5 34 . . . 4 (𝐴 ∈ On β†’ (βˆƒπ‘₯ ∈ On 𝐴 = suc π‘₯ β†’ (β„΅β€˜π΄) β‰Ί ((β„΅β€˜π΄) ↑m (cfβ€˜(β„΅β€˜π΄)))))
40 cfsmo 10268 . . . . . 6 ((β„΅β€˜π΄) ∈ On β†’ βˆƒπ‘“(𝑓:(cfβ€˜(β„΅β€˜π΄))⟢(β„΅β€˜π΄) ∧ Smo 𝑓 ∧ βˆ€π‘§ ∈ (β„΅β€˜π΄)βˆƒπ‘€ ∈ (cfβ€˜(β„΅β€˜π΄))𝑧 βŠ† (π‘“β€˜π‘€)))
41 limelon 6427 . . . . . . . . . . 11 ((𝐴 ∈ V ∧ Lim 𝐴) β†’ 𝐴 ∈ On)
42 ffn 6716 . . . . . . . . . . . . . . . 16 (𝑓:(cfβ€˜(β„΅β€˜π΄))⟢(β„΅β€˜π΄) β†’ 𝑓 Fn (cfβ€˜(β„΅β€˜π΄)))
43 fnrnfv 6950 . . . . . . . . . . . . . . . . 17 (𝑓 Fn (cfβ€˜(β„΅β€˜π΄)) β†’ ran 𝑓 = {𝑦 ∣ βˆƒπ‘₯ ∈ (cfβ€˜(β„΅β€˜π΄))𝑦 = (π‘“β€˜π‘₯)})
4443unieqd 4921 . . . . . . . . . . . . . . . 16 (𝑓 Fn (cfβ€˜(β„΅β€˜π΄)) β†’ βˆͺ ran 𝑓 = βˆͺ {𝑦 ∣ βˆƒπ‘₯ ∈ (cfβ€˜(β„΅β€˜π΄))𝑦 = (π‘“β€˜π‘₯)})
4542, 44syl 17 . . . . . . . . . . . . . . 15 (𝑓:(cfβ€˜(β„΅β€˜π΄))⟢(β„΅β€˜π΄) β†’ βˆͺ ran 𝑓 = βˆͺ {𝑦 ∣ βˆƒπ‘₯ ∈ (cfβ€˜(β„΅β€˜π΄))𝑦 = (π‘“β€˜π‘₯)})
46 fvex 6903 . . . . . . . . . . . . . . . 16 (π‘“β€˜π‘₯) ∈ V
4746dfiun2 5035 . . . . . . . . . . . . . . 15 βˆͺ π‘₯ ∈ (cfβ€˜(β„΅β€˜π΄))(π‘“β€˜π‘₯) = βˆͺ {𝑦 ∣ βˆƒπ‘₯ ∈ (cfβ€˜(β„΅β€˜π΄))𝑦 = (π‘“β€˜π‘₯)}
4845, 47eqtr4di 2788 . . . . . . . . . . . . . 14 (𝑓:(cfβ€˜(β„΅β€˜π΄))⟢(β„΅β€˜π΄) β†’ βˆͺ ran 𝑓 = βˆͺ π‘₯ ∈ (cfβ€˜(β„΅β€˜π΄))(π‘“β€˜π‘₯))
4948ad2antrl 724 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ (𝑓:(cfβ€˜(β„΅β€˜π΄))⟢(β„΅β€˜π΄) ∧ βˆ€π‘§ ∈ (β„΅β€˜π΄)βˆƒπ‘€ ∈ (cfβ€˜(β„΅β€˜π΄))𝑧 βŠ† (π‘“β€˜π‘€))) β†’ βˆͺ ran 𝑓 = βˆͺ π‘₯ ∈ (cfβ€˜(β„΅β€˜π΄))(π‘“β€˜π‘₯))
50 fnfvelrn 7081 . . . . . . . . . . . . . . . . . . . 20 ((𝑓 Fn (cfβ€˜(β„΅β€˜π΄)) ∧ 𝑀 ∈ (cfβ€˜(β„΅β€˜π΄))) β†’ (π‘“β€˜π‘€) ∈ ran 𝑓)
5142, 50sylan 578 . . . . . . . . . . . . . . . . . . 19 ((𝑓:(cfβ€˜(β„΅β€˜π΄))⟢(β„΅β€˜π΄) ∧ 𝑀 ∈ (cfβ€˜(β„΅β€˜π΄))) β†’ (π‘“β€˜π‘€) ∈ ran 𝑓)
52 sseq2 4007 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (π‘“β€˜π‘€) β†’ (𝑧 βŠ† 𝑦 ↔ 𝑧 βŠ† (π‘“β€˜π‘€)))
5352rspcev 3611 . . . . . . . . . . . . . . . . . . 19 (((π‘“β€˜π‘€) ∈ ran 𝑓 ∧ 𝑧 βŠ† (π‘“β€˜π‘€)) β†’ βˆƒπ‘¦ ∈ ran 𝑓 𝑧 βŠ† 𝑦)
5451, 53sylan 578 . . . . . . . . . . . . . . . . . 18 (((𝑓:(cfβ€˜(β„΅β€˜π΄))⟢(β„΅β€˜π΄) ∧ 𝑀 ∈ (cfβ€˜(β„΅β€˜π΄))) ∧ 𝑧 βŠ† (π‘“β€˜π‘€)) β†’ βˆƒπ‘¦ ∈ ran 𝑓 𝑧 βŠ† 𝑦)
5554rexlimdva2 3155 . . . . . . . . . . . . . . . . 17 (𝑓:(cfβ€˜(β„΅β€˜π΄))⟢(β„΅β€˜π΄) β†’ (βˆƒπ‘€ ∈ (cfβ€˜(β„΅β€˜π΄))𝑧 βŠ† (π‘“β€˜π‘€) β†’ βˆƒπ‘¦ ∈ ran 𝑓 𝑧 βŠ† 𝑦))
5655ralimdv 3167 . . . . . . . . . . . . . . . 16 (𝑓:(cfβ€˜(β„΅β€˜π΄))⟢(β„΅β€˜π΄) β†’ (βˆ€π‘§ ∈ (β„΅β€˜π΄)βˆƒπ‘€ ∈ (cfβ€˜(β„΅β€˜π΄))𝑧 βŠ† (π‘“β€˜π‘€) β†’ βˆ€π‘§ ∈ (β„΅β€˜π΄)βˆƒπ‘¦ ∈ ran 𝑓 𝑧 βŠ† 𝑦))
5756imp 405 . . . . . . . . . . . . . . 15 ((𝑓:(cfβ€˜(β„΅β€˜π΄))⟢(β„΅β€˜π΄) ∧ βˆ€π‘§ ∈ (β„΅β€˜π΄)βˆƒπ‘€ ∈ (cfβ€˜(β„΅β€˜π΄))𝑧 βŠ† (π‘“β€˜π‘€)) β†’ βˆ€π‘§ ∈ (β„΅β€˜π΄)βˆƒπ‘¦ ∈ ran 𝑓 𝑧 βŠ† 𝑦)
5857adantl 480 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ (𝑓:(cfβ€˜(β„΅β€˜π΄))⟢(β„΅β€˜π΄) ∧ βˆ€π‘§ ∈ (β„΅β€˜π΄)βˆƒπ‘€ ∈ (cfβ€˜(β„΅β€˜π΄))𝑧 βŠ† (π‘“β€˜π‘€))) β†’ βˆ€π‘§ ∈ (β„΅β€˜π΄)βˆƒπ‘¦ ∈ ran 𝑓 𝑧 βŠ† 𝑦)
59 alephislim 10080 . . . . . . . . . . . . . . . 16 (𝐴 ∈ On ↔ Lim (β„΅β€˜π΄))
6059biimpi 215 . . . . . . . . . . . . . . 15 (𝐴 ∈ On β†’ Lim (β„΅β€˜π΄))
61 frn 6723 . . . . . . . . . . . . . . . 16 (𝑓:(cfβ€˜(β„΅β€˜π΄))⟢(β„΅β€˜π΄) β†’ ran 𝑓 βŠ† (β„΅β€˜π΄))
6261adantr 479 . . . . . . . . . . . . . . 15 ((𝑓:(cfβ€˜(β„΅β€˜π΄))⟢(β„΅β€˜π΄) ∧ βˆ€π‘§ ∈ (β„΅β€˜π΄)βˆƒπ‘€ ∈ (cfβ€˜(β„΅β€˜π΄))𝑧 βŠ† (π‘“β€˜π‘€)) β†’ ran 𝑓 βŠ† (β„΅β€˜π΄))
63 coflim 10258 . . . . . . . . . . . . . . 15 ((Lim (β„΅β€˜π΄) ∧ ran 𝑓 βŠ† (β„΅β€˜π΄)) β†’ (βˆͺ ran 𝑓 = (β„΅β€˜π΄) ↔ βˆ€π‘§ ∈ (β„΅β€˜π΄)βˆƒπ‘¦ ∈ ran 𝑓 𝑧 βŠ† 𝑦))
6460, 62, 63syl2an 594 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ (𝑓:(cfβ€˜(β„΅β€˜π΄))⟢(β„΅β€˜π΄) ∧ βˆ€π‘§ ∈ (β„΅β€˜π΄)βˆƒπ‘€ ∈ (cfβ€˜(β„΅β€˜π΄))𝑧 βŠ† (π‘“β€˜π‘€))) β†’ (βˆͺ ran 𝑓 = (β„΅β€˜π΄) ↔ βˆ€π‘§ ∈ (β„΅β€˜π΄)βˆƒπ‘¦ ∈ ran 𝑓 𝑧 βŠ† 𝑦))
6558, 64mpbird 256 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ (𝑓:(cfβ€˜(β„΅β€˜π΄))⟢(β„΅β€˜π΄) ∧ βˆ€π‘§ ∈ (β„΅β€˜π΄)βˆƒπ‘€ ∈ (cfβ€˜(β„΅β€˜π΄))𝑧 βŠ† (π‘“β€˜π‘€))) β†’ βˆͺ ran 𝑓 = (β„΅β€˜π΄))
6649, 65eqtr3d 2772 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ (𝑓:(cfβ€˜(β„΅β€˜π΄))⟢(β„΅β€˜π΄) ∧ βˆ€π‘§ ∈ (β„΅β€˜π΄)βˆƒπ‘€ ∈ (cfβ€˜(β„΅β€˜π΄))𝑧 βŠ† (π‘“β€˜π‘€))) β†’ βˆͺ π‘₯ ∈ (cfβ€˜(β„΅β€˜π΄))(π‘“β€˜π‘₯) = (β„΅β€˜π΄))
67 ffvelcdm 7082 . . . . . . . . . . . . . . . . 17 ((𝑓:(cfβ€˜(β„΅β€˜π΄))⟢(β„΅β€˜π΄) ∧ π‘₯ ∈ (cfβ€˜(β„΅β€˜π΄))) β†’ (π‘“β€˜π‘₯) ∈ (β„΅β€˜π΄))
6815oneli 6477 . . . . . . . . . . . . . . . . 17 ((π‘“β€˜π‘₯) ∈ (β„΅β€˜π΄) β†’ (π‘“β€˜π‘₯) ∈ On)
69 harcard 9975 . . . . . . . . . . . . . . . . . . 19 (cardβ€˜(harβ€˜(π‘“β€˜π‘₯))) = (harβ€˜(π‘“β€˜π‘₯))
70 iscard 9972 . . . . . . . . . . . . . . . . . . . 20 ((cardβ€˜(harβ€˜(π‘“β€˜π‘₯))) = (harβ€˜(π‘“β€˜π‘₯)) ↔ ((harβ€˜(π‘“β€˜π‘₯)) ∈ On ∧ βˆ€π‘¦ ∈ (harβ€˜(π‘“β€˜π‘₯))𝑦 β‰Ί (harβ€˜(π‘“β€˜π‘₯))))
7170simprbi 495 . . . . . . . . . . . . . . . . . . 19 ((cardβ€˜(harβ€˜(π‘“β€˜π‘₯))) = (harβ€˜(π‘“β€˜π‘₯)) β†’ βˆ€π‘¦ ∈ (harβ€˜(π‘“β€˜π‘₯))𝑦 β‰Ί (harβ€˜(π‘“β€˜π‘₯)))
7269, 71ax-mp 5 . . . . . . . . . . . . . . . . . 18 βˆ€π‘¦ ∈ (harβ€˜(π‘“β€˜π‘₯))𝑦 β‰Ί (harβ€˜(π‘“β€˜π‘₯))
73 domrefg 8985 . . . . . . . . . . . . . . . . . . . 20 ((π‘“β€˜π‘₯) ∈ V β†’ (π‘“β€˜π‘₯) β‰Ό (π‘“β€˜π‘₯))
7446, 73ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (π‘“β€˜π‘₯) β‰Ό (π‘“β€˜π‘₯)
75 elharval 9558 . . . . . . . . . . . . . . . . . . . 20 ((π‘“β€˜π‘₯) ∈ (harβ€˜(π‘“β€˜π‘₯)) ↔ ((π‘“β€˜π‘₯) ∈ On ∧ (π‘“β€˜π‘₯) β‰Ό (π‘“β€˜π‘₯)))
7675biimpri 227 . . . . . . . . . . . . . . . . . . 19 (((π‘“β€˜π‘₯) ∈ On ∧ (π‘“β€˜π‘₯) β‰Ό (π‘“β€˜π‘₯)) β†’ (π‘“β€˜π‘₯) ∈ (harβ€˜(π‘“β€˜π‘₯)))
7774, 76mpan2 687 . . . . . . . . . . . . . . . . . 18 ((π‘“β€˜π‘₯) ∈ On β†’ (π‘“β€˜π‘₯) ∈ (harβ€˜(π‘“β€˜π‘₯)))
78 breq1 5150 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (π‘“β€˜π‘₯) β†’ (𝑦 β‰Ί (harβ€˜(π‘“β€˜π‘₯)) ↔ (π‘“β€˜π‘₯) β‰Ί (harβ€˜(π‘“β€˜π‘₯))))
7978rspccv 3608 . . . . . . . . . . . . . . . . . 18 (βˆ€π‘¦ ∈ (harβ€˜(π‘“β€˜π‘₯))𝑦 β‰Ί (harβ€˜(π‘“β€˜π‘₯)) β†’ ((π‘“β€˜π‘₯) ∈ (harβ€˜(π‘“β€˜π‘₯)) β†’ (π‘“β€˜π‘₯) β‰Ί (harβ€˜(π‘“β€˜π‘₯))))
8072, 77, 79mpsyl 68 . . . . . . . . . . . . . . . . 17 ((π‘“β€˜π‘₯) ∈ On β†’ (π‘“β€˜π‘₯) β‰Ί (harβ€˜(π‘“β€˜π‘₯)))
8167, 68, 803syl 18 . . . . . . . . . . . . . . . 16 ((𝑓:(cfβ€˜(β„΅β€˜π΄))⟢(β„΅β€˜π΄) ∧ π‘₯ ∈ (cfβ€˜(β„΅β€˜π΄))) β†’ (π‘“β€˜π‘₯) β‰Ί (harβ€˜(π‘“β€˜π‘₯)))
82 harcl 9556 . . . . . . . . . . . . . . . . . . 19 (harβ€˜(π‘“β€˜π‘₯)) ∈ On
83 2fveq3 6895 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = π‘₯ β†’ (harβ€˜(π‘“β€˜π‘¦)) = (harβ€˜(π‘“β€˜π‘₯)))
84 pwcfsdom.1 . . . . . . . . . . . . . . . . . . . 20 𝐻 = (𝑦 ∈ (cfβ€˜(β„΅β€˜π΄)) ↦ (harβ€˜(π‘“β€˜π‘¦)))
8583, 84fvmptg 6995 . . . . . . . . . . . . . . . . . . 19 ((π‘₯ ∈ (cfβ€˜(β„΅β€˜π΄)) ∧ (harβ€˜(π‘“β€˜π‘₯)) ∈ On) β†’ (π»β€˜π‘₯) = (harβ€˜(π‘“β€˜π‘₯)))
8682, 85mpan2 687 . . . . . . . . . . . . . . . . . 18 (π‘₯ ∈ (cfβ€˜(β„΅β€˜π΄)) β†’ (π»β€˜π‘₯) = (harβ€˜(π‘“β€˜π‘₯)))
8786breq2d 5159 . . . . . . . . . . . . . . . . 17 (π‘₯ ∈ (cfβ€˜(β„΅β€˜π΄)) β†’ ((π‘“β€˜π‘₯) β‰Ί (π»β€˜π‘₯) ↔ (π‘“β€˜π‘₯) β‰Ί (harβ€˜(π‘“β€˜π‘₯))))
8887adantl 480 . . . . . . . . . . . . . . . 16 ((𝑓:(cfβ€˜(β„΅β€˜π΄))⟢(β„΅β€˜π΄) ∧ π‘₯ ∈ (cfβ€˜(β„΅β€˜π΄))) β†’ ((π‘“β€˜π‘₯) β‰Ί (π»β€˜π‘₯) ↔ (π‘“β€˜π‘₯) β‰Ί (harβ€˜(π‘“β€˜π‘₯))))
8981, 88mpbird 256 . . . . . . . . . . . . . . 15 ((𝑓:(cfβ€˜(β„΅β€˜π΄))⟢(β„΅β€˜π΄) ∧ π‘₯ ∈ (cfβ€˜(β„΅β€˜π΄))) β†’ (π‘“β€˜π‘₯) β‰Ί (π»β€˜π‘₯))
9089ralrimiva 3144 . . . . . . . . . . . . . 14 (𝑓:(cfβ€˜(β„΅β€˜π΄))⟢(β„΅β€˜π΄) β†’ βˆ€π‘₯ ∈ (cfβ€˜(β„΅β€˜π΄))(π‘“β€˜π‘₯) β‰Ί (π»β€˜π‘₯))
91 fvex 6903 . . . . . . . . . . . . . . 15 (cfβ€˜(β„΅β€˜π΄)) ∈ V
92 eqid 2730 . . . . . . . . . . . . . . 15 βˆͺ π‘₯ ∈ (cfβ€˜(β„΅β€˜π΄))(π‘“β€˜π‘₯) = βˆͺ π‘₯ ∈ (cfβ€˜(β„΅β€˜π΄))(π‘“β€˜π‘₯)
93 eqid 2730 . . . . . . . . . . . . . . 15 Xπ‘₯ ∈ (cfβ€˜(β„΅β€˜π΄))(π»β€˜π‘₯) = Xπ‘₯ ∈ (cfβ€˜(β„΅β€˜π΄))(π»β€˜π‘₯)
9491, 92, 93konigth 10566 . . . . . . . . . . . . . 14 (βˆ€π‘₯ ∈ (cfβ€˜(β„΅β€˜π΄))(π‘“β€˜π‘₯) β‰Ί (π»β€˜π‘₯) β†’ βˆͺ π‘₯ ∈ (cfβ€˜(β„΅β€˜π΄))(π‘“β€˜π‘₯) β‰Ί Xπ‘₯ ∈ (cfβ€˜(β„΅β€˜π΄))(π»β€˜π‘₯))
9590, 94syl 17 . . . . . . . . . . . . 13 (𝑓:(cfβ€˜(β„΅β€˜π΄))⟢(β„΅β€˜π΄) β†’ βˆͺ π‘₯ ∈ (cfβ€˜(β„΅β€˜π΄))(π‘“β€˜π‘₯) β‰Ί Xπ‘₯ ∈ (cfβ€˜(β„΅β€˜π΄))(π»β€˜π‘₯))
9695ad2antrl 724 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ (𝑓:(cfβ€˜(β„΅β€˜π΄))⟢(β„΅β€˜π΄) ∧ βˆ€π‘§ ∈ (β„΅β€˜π΄)βˆƒπ‘€ ∈ (cfβ€˜(β„΅β€˜π΄))𝑧 βŠ† (π‘“β€˜π‘€))) β†’ βˆͺ π‘₯ ∈ (cfβ€˜(β„΅β€˜π΄))(π‘“β€˜π‘₯) β‰Ί Xπ‘₯ ∈ (cfβ€˜(β„΅β€˜π΄))(π»β€˜π‘₯))
9766, 96eqbrtrrd 5171 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ (𝑓:(cfβ€˜(β„΅β€˜π΄))⟢(β„΅β€˜π΄) ∧ βˆ€π‘§ ∈ (β„΅β€˜π΄)βˆƒπ‘€ ∈ (cfβ€˜(β„΅β€˜π΄))𝑧 βŠ† (π‘“β€˜π‘€))) β†’ (β„΅β€˜π΄) β‰Ί Xπ‘₯ ∈ (cfβ€˜(β„΅β€˜π΄))(π»β€˜π‘₯))
9841, 97sylan 578 . . . . . . . . . 10 (((𝐴 ∈ V ∧ Lim 𝐴) ∧ (𝑓:(cfβ€˜(β„΅β€˜π΄))⟢(β„΅β€˜π΄) ∧ βˆ€π‘§ ∈ (β„΅β€˜π΄)βˆƒπ‘€ ∈ (cfβ€˜(β„΅β€˜π΄))𝑧 βŠ† (π‘“β€˜π‘€))) β†’ (β„΅β€˜π΄) β‰Ί Xπ‘₯ ∈ (cfβ€˜(β„΅β€˜π΄))(π»β€˜π‘₯))
99 ovex 7444 . . . . . . . . . . . 12 ((β„΅β€˜π΄) ↑m (cfβ€˜(β„΅β€˜π΄))) ∈ V
10067ex 411 . . . . . . . . . . . . . . . 16 (𝑓:(cfβ€˜(β„΅β€˜π΄))⟢(β„΅β€˜π΄) β†’ (π‘₯ ∈ (cfβ€˜(β„΅β€˜π΄)) β†’ (π‘“β€˜π‘₯) ∈ (β„΅β€˜π΄)))
101 alephlim 10064 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ V ∧ Lim 𝐴) β†’ (β„΅β€˜π΄) = βˆͺ 𝑦 ∈ 𝐴 (β„΅β€˜π‘¦))
102101eleq2d 2817 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ V ∧ Lim 𝐴) β†’ ((π‘“β€˜π‘₯) ∈ (β„΅β€˜π΄) ↔ (π‘“β€˜π‘₯) ∈ βˆͺ 𝑦 ∈ 𝐴 (β„΅β€˜π‘¦)))
103 eliun 5000 . . . . . . . . . . . . . . . . . . 19 ((π‘“β€˜π‘₯) ∈ βˆͺ 𝑦 ∈ 𝐴 (β„΅β€˜π‘¦) ↔ βˆƒπ‘¦ ∈ 𝐴 (π‘“β€˜π‘₯) ∈ (β„΅β€˜π‘¦))
104 alephcard 10067 . . . . . . . . . . . . . . . . . . . . . . . 24 (cardβ€˜(β„΅β€˜π‘¦)) = (β„΅β€˜π‘¦)
105104eleq2i 2823 . . . . . . . . . . . . . . . . . . . . . . 23 ((π‘“β€˜π‘₯) ∈ (cardβ€˜(β„΅β€˜π‘¦)) ↔ (π‘“β€˜π‘₯) ∈ (β„΅β€˜π‘¦))
106 cardsdomelir 9970 . . . . . . . . . . . . . . . . . . . . . . 23 ((π‘“β€˜π‘₯) ∈ (cardβ€˜(β„΅β€˜π‘¦)) β†’ (π‘“β€˜π‘₯) β‰Ί (β„΅β€˜π‘¦))
107105, 106sylbir 234 . . . . . . . . . . . . . . . . . . . . . 22 ((π‘“β€˜π‘₯) ∈ (β„΅β€˜π‘¦) β†’ (π‘“β€˜π‘₯) β‰Ί (β„΅β€˜π‘¦))
108 elharval 9558 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((β„΅β€˜π‘¦) ∈ (harβ€˜(π‘“β€˜π‘₯)) ↔ ((β„΅β€˜π‘¦) ∈ On ∧ (β„΅β€˜π‘¦) β‰Ό (π‘“β€˜π‘₯)))
109108simprbi 495 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((β„΅β€˜π‘¦) ∈ (harβ€˜(π‘“β€˜π‘₯)) β†’ (β„΅β€˜π‘¦) β‰Ό (π‘“β€˜π‘₯))
110 domnsym 9101 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((β„΅β€˜π‘¦) β‰Ό (π‘“β€˜π‘₯) β†’ Β¬ (π‘“β€˜π‘₯) β‰Ί (β„΅β€˜π‘¦))
111109, 110syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((β„΅β€˜π‘¦) ∈ (harβ€˜(π‘“β€˜π‘₯)) β†’ Β¬ (π‘“β€˜π‘₯) β‰Ί (β„΅β€˜π‘¦))
112111con2i 139 . . . . . . . . . . . . . . . . . . . . . . 23 ((π‘“β€˜π‘₯) β‰Ί (β„΅β€˜π‘¦) β†’ Β¬ (β„΅β€˜π‘¦) ∈ (harβ€˜(π‘“β€˜π‘₯)))
113 alephon 10066 . . . . . . . . . . . . . . . . . . . . . . . 24 (β„΅β€˜π‘¦) ∈ On
114 ontri1 6397 . . . . . . . . . . . . . . . . . . . . . . . 24 (((harβ€˜(π‘“β€˜π‘₯)) ∈ On ∧ (β„΅β€˜π‘¦) ∈ On) β†’ ((harβ€˜(π‘“β€˜π‘₯)) βŠ† (β„΅β€˜π‘¦) ↔ Β¬ (β„΅β€˜π‘¦) ∈ (harβ€˜(π‘“β€˜π‘₯))))
11582, 113, 114mp2an 688 . . . . . . . . . . . . . . . . . . . . . . 23 ((harβ€˜(π‘“β€˜π‘₯)) βŠ† (β„΅β€˜π‘¦) ↔ Β¬ (β„΅β€˜π‘¦) ∈ (harβ€˜(π‘“β€˜π‘₯)))
116112, 115sylibr 233 . . . . . . . . . . . . . . . . . . . . . 22 ((π‘“β€˜π‘₯) β‰Ί (β„΅β€˜π‘¦) β†’ (harβ€˜(π‘“β€˜π‘₯)) βŠ† (β„΅β€˜π‘¦))
117107, 116syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((π‘“β€˜π‘₯) ∈ (β„΅β€˜π‘¦) β†’ (harβ€˜(π‘“β€˜π‘₯)) βŠ† (β„΅β€˜π‘¦))
118 alephord2i 10074 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∈ On β†’ (𝑦 ∈ 𝐴 β†’ (β„΅β€˜π‘¦) ∈ (β„΅β€˜π΄)))
119118imp 405 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ On ∧ 𝑦 ∈ 𝐴) β†’ (β„΅β€˜π‘¦) ∈ (β„΅β€˜π΄))
120 ontr2 6410 . . . . . . . . . . . . . . . . . . . . . 22 (((harβ€˜(π‘“β€˜π‘₯)) ∈ On ∧ (β„΅β€˜π΄) ∈ On) β†’ (((harβ€˜(π‘“β€˜π‘₯)) βŠ† (β„΅β€˜π‘¦) ∧ (β„΅β€˜π‘¦) ∈ (β„΅β€˜π΄)) β†’ (harβ€˜(π‘“β€˜π‘₯)) ∈ (β„΅β€˜π΄)))
12182, 15, 120mp2an 688 . . . . . . . . . . . . . . . . . . . . 21 (((harβ€˜(π‘“β€˜π‘₯)) βŠ† (β„΅β€˜π‘¦) ∧ (β„΅β€˜π‘¦) ∈ (β„΅β€˜π΄)) β†’ (harβ€˜(π‘“β€˜π‘₯)) ∈ (β„΅β€˜π΄))
122117, 119, 121syl2anr 595 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ On ∧ 𝑦 ∈ 𝐴) ∧ (π‘“β€˜π‘₯) ∈ (β„΅β€˜π‘¦)) β†’ (harβ€˜(π‘“β€˜π‘₯)) ∈ (β„΅β€˜π΄))
123122rexlimdva2 3155 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ On β†’ (βˆƒπ‘¦ ∈ 𝐴 (π‘“β€˜π‘₯) ∈ (β„΅β€˜π‘¦) β†’ (harβ€˜(π‘“β€˜π‘₯)) ∈ (β„΅β€˜π΄)))
124103, 123biimtrid 241 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ On β†’ ((π‘“β€˜π‘₯) ∈ βˆͺ 𝑦 ∈ 𝐴 (β„΅β€˜π‘¦) β†’ (harβ€˜(π‘“β€˜π‘₯)) ∈ (β„΅β€˜π΄)))
12541, 124syl 17 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ V ∧ Lim 𝐴) β†’ ((π‘“β€˜π‘₯) ∈ βˆͺ 𝑦 ∈ 𝐴 (β„΅β€˜π‘¦) β†’ (harβ€˜(π‘“β€˜π‘₯)) ∈ (β„΅β€˜π΄)))
126102, 125sylbid 239 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ V ∧ Lim 𝐴) β†’ ((π‘“β€˜π‘₯) ∈ (β„΅β€˜π΄) β†’ (harβ€˜(π‘“β€˜π‘₯)) ∈ (β„΅β€˜π΄)))
127100, 126sylan9r 507 . . . . . . . . . . . . . . 15 (((𝐴 ∈ V ∧ Lim 𝐴) ∧ 𝑓:(cfβ€˜(β„΅β€˜π΄))⟢(β„΅β€˜π΄)) β†’ (π‘₯ ∈ (cfβ€˜(β„΅β€˜π΄)) β†’ (harβ€˜(π‘“β€˜π‘₯)) ∈ (β„΅β€˜π΄)))
128127imp 405 . . . . . . . . . . . . . 14 ((((𝐴 ∈ V ∧ Lim 𝐴) ∧ 𝑓:(cfβ€˜(β„΅β€˜π΄))⟢(β„΅β€˜π΄)) ∧ π‘₯ ∈ (cfβ€˜(β„΅β€˜π΄))) β†’ (harβ€˜(π‘“β€˜π‘₯)) ∈ (β„΅β€˜π΄))
12983cbvmptv 5260 . . . . . . . . . . . . . . 15 (𝑦 ∈ (cfβ€˜(β„΅β€˜π΄)) ↦ (harβ€˜(π‘“β€˜π‘¦))) = (π‘₯ ∈ (cfβ€˜(β„΅β€˜π΄)) ↦ (harβ€˜(π‘“β€˜π‘₯)))
13084, 129eqtri 2758 . . . . . . . . . . . . . 14 𝐻 = (π‘₯ ∈ (cfβ€˜(β„΅β€˜π΄)) ↦ (harβ€˜(π‘“β€˜π‘₯)))
131128, 130fmptd 7114 . . . . . . . . . . . . 13 (((𝐴 ∈ V ∧ Lim 𝐴) ∧ 𝑓:(cfβ€˜(β„΅β€˜π΄))⟢(β„΅β€˜π΄)) β†’ 𝐻:(cfβ€˜(β„΅β€˜π΄))⟢(β„΅β€˜π΄))
132 ffvelcdm 7082 . . . . . . . . . . . . . . 15 ((𝐻:(cfβ€˜(β„΅β€˜π΄))⟢(β„΅β€˜π΄) ∧ π‘₯ ∈ (cfβ€˜(β„΅β€˜π΄))) β†’ (π»β€˜π‘₯) ∈ (β„΅β€˜π΄))
133 onelss 6405 . . . . . . . . . . . . . . 15 ((β„΅β€˜π΄) ∈ On β†’ ((π»β€˜π‘₯) ∈ (β„΅β€˜π΄) β†’ (π»β€˜π‘₯) βŠ† (β„΅β€˜π΄)))
13415, 132, 133mpsyl 68 . . . . . . . . . . . . . 14 ((𝐻:(cfβ€˜(β„΅β€˜π΄))⟢(β„΅β€˜π΄) ∧ π‘₯ ∈ (cfβ€˜(β„΅β€˜π΄))) β†’ (π»β€˜π‘₯) βŠ† (β„΅β€˜π΄))
135134ralrimiva 3144 . . . . . . . . . . . . 13 (𝐻:(cfβ€˜(β„΅β€˜π΄))⟢(β„΅β€˜π΄) β†’ βˆ€π‘₯ ∈ (cfβ€˜(β„΅β€˜π΄))(π»β€˜π‘₯) βŠ† (β„΅β€˜π΄))
136 ss2ixp 8906 . . . . . . . . . . . . . 14 (βˆ€π‘₯ ∈ (cfβ€˜(β„΅β€˜π΄))(π»β€˜π‘₯) βŠ† (β„΅β€˜π΄) β†’ Xπ‘₯ ∈ (cfβ€˜(β„΅β€˜π΄))(π»β€˜π‘₯) βŠ† Xπ‘₯ ∈ (cfβ€˜(β„΅β€˜π΄))(β„΅β€˜π΄))
13791, 10ixpconst 8903 . . . . . . . . . . . . . 14 Xπ‘₯ ∈ (cfβ€˜(β„΅β€˜π΄))(β„΅β€˜π΄) = ((β„΅β€˜π΄) ↑m (cfβ€˜(β„΅β€˜π΄)))
138136, 137sseqtrdi 4031 . . . . . . . . . . . . 13 (βˆ€π‘₯ ∈ (cfβ€˜(β„΅β€˜π΄))(π»β€˜π‘₯) βŠ† (β„΅β€˜π΄) β†’ Xπ‘₯ ∈ (cfβ€˜(β„΅β€˜π΄))(π»β€˜π‘₯) βŠ† ((β„΅β€˜π΄) ↑m (cfβ€˜(β„΅β€˜π΄))))
139131, 135, 1383syl 18 . . . . . . . . . . . 12 (((𝐴 ∈ V ∧ Lim 𝐴) ∧ 𝑓:(cfβ€˜(β„΅β€˜π΄))⟢(β„΅β€˜π΄)) β†’ Xπ‘₯ ∈ (cfβ€˜(β„΅β€˜π΄))(π»β€˜π‘₯) βŠ† ((β„΅β€˜π΄) ↑m (cfβ€˜(β„΅β€˜π΄))))
140 ssdomg 8998 . . . . . . . . . . . 12 (((β„΅β€˜π΄) ↑m (cfβ€˜(β„΅β€˜π΄))) ∈ V β†’ (Xπ‘₯ ∈ (cfβ€˜(β„΅β€˜π΄))(π»β€˜π‘₯) βŠ† ((β„΅β€˜π΄) ↑m (cfβ€˜(β„΅β€˜π΄))) β†’ Xπ‘₯ ∈ (cfβ€˜(β„΅β€˜π΄))(π»β€˜π‘₯) β‰Ό ((β„΅β€˜π΄) ↑m (cfβ€˜(β„΅β€˜π΄)))))
14199, 139, 140mpsyl 68 . . . . . . . . . . 11 (((𝐴 ∈ V ∧ Lim 𝐴) ∧ 𝑓:(cfβ€˜(β„΅β€˜π΄))⟢(β„΅β€˜π΄)) β†’ Xπ‘₯ ∈ (cfβ€˜(β„΅β€˜π΄))(π»β€˜π‘₯) β‰Ό ((β„΅β€˜π΄) ↑m (cfβ€˜(β„΅β€˜π΄))))
142141adantrr 713 . . . . . . . . . 10 (((𝐴 ∈ V ∧ Lim 𝐴) ∧ (𝑓:(cfβ€˜(β„΅β€˜π΄))⟢(β„΅β€˜π΄) ∧ βˆ€π‘§ ∈ (β„΅β€˜π΄)βˆƒπ‘€ ∈ (cfβ€˜(β„΅β€˜π΄))𝑧 βŠ† (π‘“β€˜π‘€))) β†’ Xπ‘₯ ∈ (cfβ€˜(β„΅β€˜π΄))(π»β€˜π‘₯) β‰Ό ((β„΅β€˜π΄) ↑m (cfβ€˜(β„΅β€˜π΄))))
143 sdomdomtr 9112 . . . . . . . . . 10 (((β„΅β€˜π΄) β‰Ί Xπ‘₯ ∈ (cfβ€˜(β„΅β€˜π΄))(π»β€˜π‘₯) ∧ Xπ‘₯ ∈ (cfβ€˜(β„΅β€˜π΄))(π»β€˜π‘₯) β‰Ό ((β„΅β€˜π΄) ↑m (cfβ€˜(β„΅β€˜π΄)))) β†’ (β„΅β€˜π΄) β‰Ί ((β„΅β€˜π΄) ↑m (cfβ€˜(β„΅β€˜π΄))))
14498, 142, 143syl2anc 582 . . . . . . . . 9 (((𝐴 ∈ V ∧ Lim 𝐴) ∧ (𝑓:(cfβ€˜(β„΅β€˜π΄))⟢(β„΅β€˜π΄) ∧ βˆ€π‘§ ∈ (β„΅β€˜π΄)βˆƒπ‘€ ∈ (cfβ€˜(β„΅β€˜π΄))𝑧 βŠ† (π‘“β€˜π‘€))) β†’ (β„΅β€˜π΄) β‰Ί ((β„΅β€˜π΄) ↑m (cfβ€˜(β„΅β€˜π΄))))
145144expcom 412 . . . . . . . 8 ((𝑓:(cfβ€˜(β„΅β€˜π΄))⟢(β„΅β€˜π΄) ∧ βˆ€π‘§ ∈ (β„΅β€˜π΄)βˆƒπ‘€ ∈ (cfβ€˜(β„΅β€˜π΄))𝑧 βŠ† (π‘“β€˜π‘€)) β†’ ((𝐴 ∈ V ∧ Lim 𝐴) β†’ (β„΅β€˜π΄) β‰Ί ((β„΅β€˜π΄) ↑m (cfβ€˜(β„΅β€˜π΄)))))
1461453adant2 1129 . . . . . . 7 ((𝑓:(cfβ€˜(β„΅β€˜π΄))⟢(β„΅β€˜π΄) ∧ Smo 𝑓 ∧ βˆ€π‘§ ∈ (β„΅β€˜π΄)βˆƒπ‘€ ∈ (cfβ€˜(β„΅β€˜π΄))𝑧 βŠ† (π‘“β€˜π‘€)) β†’ ((𝐴 ∈ V ∧ Lim 𝐴) β†’ (β„΅β€˜π΄) β‰Ί ((β„΅β€˜π΄) ↑m (cfβ€˜(β„΅β€˜π΄)))))
147146exlimiv 1931 . . . . . 6 (βˆƒπ‘“(𝑓:(cfβ€˜(β„΅β€˜π΄))⟢(β„΅β€˜π΄) ∧ Smo 𝑓 ∧ βˆ€π‘§ ∈ (β„΅β€˜π΄)βˆƒπ‘€ ∈ (cfβ€˜(β„΅β€˜π΄))𝑧 βŠ† (π‘“β€˜π‘€)) β†’ ((𝐴 ∈ V ∧ Lim 𝐴) β†’ (β„΅β€˜π΄) β‰Ί ((β„΅β€˜π΄) ↑m (cfβ€˜(β„΅β€˜π΄)))))
14815, 40, 147mp2b 10 . . . . 5 ((𝐴 ∈ V ∧ Lim 𝐴) β†’ (β„΅β€˜π΄) β‰Ί ((β„΅β€˜π΄) ↑m (cfβ€˜(β„΅β€˜π΄))))
149148a1i 11 . . . 4 (𝐴 ∈ On β†’ ((𝐴 ∈ V ∧ Lim 𝐴) β†’ (β„΅β€˜π΄) β‰Ί ((β„΅β€˜π΄) ↑m (cfβ€˜(β„΅β€˜π΄)))))
15033, 39, 1493jaod 1426 . . 3 (𝐴 ∈ On β†’ ((𝐴 = βˆ… ∨ βˆƒπ‘₯ ∈ On 𝐴 = suc π‘₯ ∨ (𝐴 ∈ V ∧ Lim 𝐴)) β†’ (β„΅β€˜π΄) β‰Ί ((β„΅β€˜π΄) ↑m (cfβ€˜(β„΅β€˜π΄)))))
1512, 150mpd 15 . 2 (𝐴 ∈ On β†’ (β„΅β€˜π΄) β‰Ί ((β„΅β€˜π΄) ↑m (cfβ€˜(β„΅β€˜π΄))))
152 alephfnon 10062 . . . . 5 β„΅ Fn On
153152fndmi 6652 . . . 4 dom β„΅ = On
154153eleq2i 2823 . . 3 (𝐴 ∈ dom β„΅ ↔ 𝐴 ∈ On)
155 ndmfv 6925 . . . 4 (Β¬ 𝐴 ∈ dom β„΅ β†’ (β„΅β€˜π΄) = βˆ…)
156 1n0 8490 . . . . . 6 1o β‰  βˆ…
157 1oex 8478 . . . . . . 7 1o ∈ V
1581570sdom 9109 . . . . . 6 (βˆ… β‰Ί 1o ↔ 1o β‰  βˆ…)
159156, 158mpbir 230 . . . . 5 βˆ… β‰Ί 1o
160 id 22 . . . . . 6 ((β„΅β€˜π΄) = βˆ… β†’ (β„΅β€˜π΄) = βˆ…)
161 fveq2 6890 . . . . . . . . 9 ((β„΅β€˜π΄) = βˆ… β†’ (cfβ€˜(β„΅β€˜π΄)) = (cfβ€˜βˆ…))
162 cf0 10248 . . . . . . . . 9 (cfβ€˜βˆ…) = βˆ…
163161, 162eqtrdi 2786 . . . . . . . 8 ((β„΅β€˜π΄) = βˆ… β†’ (cfβ€˜(β„΅β€˜π΄)) = βˆ…)
164160, 163oveq12d 7429 . . . . . . 7 ((β„΅β€˜π΄) = βˆ… β†’ ((β„΅β€˜π΄) ↑m (cfβ€˜(β„΅β€˜π΄))) = (βˆ… ↑m βˆ…))
165 0ex 5306 . . . . . . . 8 βˆ… ∈ V
166 map0e 8878 . . . . . . . 8 (βˆ… ∈ V β†’ (βˆ… ↑m βˆ…) = 1o)
167165, 166ax-mp 5 . . . . . . 7 (βˆ… ↑m βˆ…) = 1o
168164, 167eqtrdi 2786 . . . . . 6 ((β„΅β€˜π΄) = βˆ… β†’ ((β„΅β€˜π΄) ↑m (cfβ€˜(β„΅β€˜π΄))) = 1o)
169160, 168breq12d 5160 . . . . 5 ((β„΅β€˜π΄) = βˆ… β†’ ((β„΅β€˜π΄) β‰Ί ((β„΅β€˜π΄) ↑m (cfβ€˜(β„΅β€˜π΄))) ↔ βˆ… β‰Ί 1o))
170159, 169mpbiri 257 . . . 4 ((β„΅β€˜π΄) = βˆ… β†’ (β„΅β€˜π΄) β‰Ί ((β„΅β€˜π΄) ↑m (cfβ€˜(β„΅β€˜π΄))))
171155, 170syl 17 . . 3 (Β¬ 𝐴 ∈ dom β„΅ β†’ (β„΅β€˜π΄) β‰Ί ((β„΅β€˜π΄) ↑m (cfβ€˜(β„΅β€˜π΄))))
172154, 171sylnbir 330 . 2 (Β¬ 𝐴 ∈ On β†’ (β„΅β€˜π΄) β‰Ί ((β„΅β€˜π΄) ↑m (cfβ€˜(β„΅β€˜π΄))))
173151, 172pm2.61i 182 1 (β„΅β€˜π΄) β‰Ί ((β„΅β€˜π΄) ↑m (cfβ€˜(β„΅β€˜π΄)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∨ w3o 1084   ∧ w3a 1085   = wceq 1539  βˆƒwex 1779   ∈ wcel 2104  {cab 2707   β‰  wne 2938  βˆ€wral 3059  βˆƒwrex 3068  Vcvv 3472   βŠ† wss 3947  βˆ…c0 4321  π’« cpw 4601  βˆͺ cuni 4907  βˆͺ ciun 4996   class class class wbr 5147   ↦ cmpt 5230  dom cdm 5675  ran crn 5676  Oncon0 6363  Lim wlim 6364  suc csuc 6365   Fn wfn 6537  βŸΆwf 6538  β€˜cfv 6542  (class class class)co 7411  Ο‰com 7857  Smo wsmo 8347  1oc1o 8461  2oc2o 8462   ↑m cmap 8822  Xcixp 8893   β‰ˆ cen 8938   β‰Ό cdom 8939   β‰Ί csdm 8940  harchar 9553  cardccrd 9932  β„΅cale 9933  cfccf 9934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-inf2 9638  ax-ac2 10460
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-smo 8348  df-recs 8373  df-rdg 8412  df-1o 8468  df-2o 8469  df-er 8705  df-map 8824  df-ixp 8894  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-oi 9507  df-har 9554  df-card 9936  df-aleph 9937  df-cf 9938  df-acn 9939  df-ac 10113
This theorem is referenced by:  cfpwsdom  10581  tskcard  10778  bj-pwcfsdom  36246
  Copyright terms: Public domain W3C validator