MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fniunfv Structured version   Visualization version   GIF version

Theorem fniunfv 7224
Description: The indexed union of a function's values is the union of its range. Compare Definition 5.4 of [Monk1] p. 50. (Contributed by NM, 27-Sep-2004.)
Assertion
Ref Expression
fniunfv (𝐹 Fn 𝐴 𝑥𝐴 (𝐹𝑥) = ran 𝐹)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem fniunfv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fvex 6874 . . 3 (𝐹𝑥) ∈ V
21dfiun2 5000 . 2 𝑥𝐴 (𝐹𝑥) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)}
3 fnrnfv 6923 . . 3 (𝐹 Fn 𝐴 → ran 𝐹 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)})
43unieqd 4887 . 2 (𝐹 Fn 𝐴 ran 𝐹 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)})
52, 4eqtr4id 2784 1 (𝐹 Fn 𝐴 𝑥𝐴 (𝐹𝑥) = ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  {cab 2708  wrex 3054   cuni 4874   ciun 4958  ran crn 5642   Fn wfn 6509  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fn 6517  df-fv 6522
This theorem is referenced by:  funiunfv  7225  dffi3  9389  jech9.3  9774  hsmexlem5  10390  wuncval2  10707  dprdspan  19966  tgcmp  23295  txcmplem1  23535  txcmplem2  23536  xkococnlem  23553  alexsubALT  23945  bcth3  25238  ovolfioo  25375  ovolficc  25376  voliunlem2  25459  voliunlem3  25460  volsup  25464  uniiccdif  25486  uniioovol  25487  uniiccvol  25488  uniioombllem2  25491  uniioombllem4  25494  volsup2  25513  itg1climres  25622  itg2monolem1  25658  itg2gt0  25668  sigapildsys  34159  omssubadd  34298  carsgclctunlem3  34318  pibt2  37412  volsupnfl  37666  hbt  43126  ovolval4lem1  46654  ovolval5lem3  46659  ovnovollem1  46661  ovnovollem2  46662
  Copyright terms: Public domain W3C validator