MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fniunfv Structured version   Visualization version   GIF version

Theorem fniunfv 7239
Description: The indexed union of a function's values is the union of its range. Compare Definition 5.4 of [Monk1] p. 50. (Contributed by NM, 27-Sep-2004.)
Assertion
Ref Expression
fniunfv (𝐹 Fn 𝐴 𝑥𝐴 (𝐹𝑥) = ran 𝐹)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem fniunfv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fvex 6889 . . 3 (𝐹𝑥) ∈ V
21dfiun2 5009 . 2 𝑥𝐴 (𝐹𝑥) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)}
3 fnrnfv 6938 . . 3 (𝐹 Fn 𝐴 → ran 𝐹 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)})
43unieqd 4896 . 2 (𝐹 Fn 𝐴 ran 𝐹 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)})
52, 4eqtr4id 2789 1 (𝐹 Fn 𝐴 𝑥𝐴 (𝐹𝑥) = ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  {cab 2713  wrex 3060   cuni 4883   ciun 4967  ran crn 5655   Fn wfn 6526  cfv 6531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-iota 6484  df-fun 6533  df-fn 6534  df-fv 6539
This theorem is referenced by:  funiunfv  7240  dffi3  9443  jech9.3  9828  hsmexlem5  10444  wuncval2  10761  dprdspan  20010  tgcmp  23339  txcmplem1  23579  txcmplem2  23580  xkococnlem  23597  alexsubALT  23989  bcth3  25283  ovolfioo  25420  ovolficc  25421  voliunlem2  25504  voliunlem3  25505  volsup  25509  uniiccdif  25531  uniioovol  25532  uniiccvol  25533  uniioombllem2  25536  uniioombllem4  25539  volsup2  25558  itg1climres  25667  itg2monolem1  25703  itg2gt0  25713  sigapildsys  34193  omssubadd  34332  carsgclctunlem3  34352  pibt2  37435  volsupnfl  37689  hbt  43154  ovolval4lem1  46678  ovolval5lem3  46683  ovnovollem1  46685  ovnovollem2  46686
  Copyright terms: Public domain W3C validator