MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fniunfv Structured version   Visualization version   GIF version

Theorem fniunfv 7266
Description: The indexed union of a function's values is the union of its range. Compare Definition 5.4 of [Monk1] p. 50. (Contributed by NM, 27-Sep-2004.)
Assertion
Ref Expression
fniunfv (𝐹 Fn 𝐴 𝑥𝐴 (𝐹𝑥) = ran 𝐹)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem fniunfv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fvex 6919 . . 3 (𝐹𝑥) ∈ V
21dfiun2 5037 . 2 𝑥𝐴 (𝐹𝑥) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)}
3 fnrnfv 6967 . . 3 (𝐹 Fn 𝐴 → ran 𝐹 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)})
43unieqd 4924 . 2 (𝐹 Fn 𝐴 ran 𝐹 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)})
52, 4eqtr4id 2793 1 (𝐹 Fn 𝐴 𝑥𝐴 (𝐹𝑥) = ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1536  {cab 2711  wrex 3067   cuni 4911   ciun 4995  ran crn 5689   Fn wfn 6557  cfv 6562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-iota 6515  df-fun 6564  df-fn 6565  df-fv 6570
This theorem is referenced by:  funiunfv  7267  dffi3  9468  jech9.3  9851  hsmexlem5  10467  wuncval2  10784  dprdspan  20061  tgcmp  23424  txcmplem1  23664  txcmplem2  23665  xkococnlem  23682  alexsubALT  24074  bcth3  25378  ovolfioo  25515  ovolficc  25516  voliunlem2  25599  voliunlem3  25600  volsup  25604  uniiccdif  25626  uniioovol  25627  uniiccvol  25628  uniioombllem2  25631  uniioombllem4  25634  volsup2  25653  itg1climres  25763  itg2monolem1  25799  itg2gt0  25809  sigapildsys  34142  omssubadd  34281  carsgclctunlem3  34301  pibt2  37399  volsupnfl  37651  hbt  43118  ovolval4lem1  46604  ovolval5lem3  46609  ovnovollem1  46611  ovnovollem2  46612
  Copyright terms: Public domain W3C validator