| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fniunfv | Structured version Visualization version GIF version | ||
| Description: The indexed union of a function's values is the union of its range. Compare Definition 5.4 of [Monk1] p. 50. (Contributed by NM, 27-Sep-2004.) |
| Ref | Expression |
|---|---|
| fniunfv | ⊢ (𝐹 Fn 𝐴 → ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) = ∪ ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6835 | . . 3 ⊢ (𝐹‘𝑥) ∈ V | |
| 2 | 1 | dfiun2 4982 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)} |
| 3 | fnrnfv 6882 | . . 3 ⊢ (𝐹 Fn 𝐴 → ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)}) | |
| 4 | 3 | unieqd 4871 | . 2 ⊢ (𝐹 Fn 𝐴 → ∪ ran 𝐹 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)}) |
| 5 | 2, 4 | eqtr4id 2783 | 1 ⊢ (𝐹 Fn 𝐴 → ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) = ∪ ran 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 {cab 2707 ∃wrex 3053 ∪ cuni 4858 ∪ ciun 4941 ran crn 5620 Fn wfn 6477 ‘cfv 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6438 df-fun 6484 df-fn 6485 df-fv 6490 |
| This theorem is referenced by: funiunfv 7184 dffi3 9321 jech9.3 9710 hsmexlem5 10324 wuncval2 10641 dprdspan 19908 tgcmp 23286 txcmplem1 23526 txcmplem2 23527 xkococnlem 23544 alexsubALT 23936 bcth3 25229 ovolfioo 25366 ovolficc 25367 voliunlem2 25450 voliunlem3 25451 volsup 25455 uniiccdif 25477 uniioovol 25478 uniiccvol 25479 uniioombllem2 25482 uniioombllem4 25485 volsup2 25504 itg1climres 25613 itg2monolem1 25649 itg2gt0 25659 sigapildsys 34145 omssubadd 34284 carsgclctunlem3 34304 pibt2 37411 volsupnfl 37665 hbt 43123 ovolval4lem1 46650 ovolval5lem3 46655 ovnovollem1 46657 ovnovollem2 46658 |
| Copyright terms: Public domain | W3C validator |