| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fniunfv | Structured version Visualization version GIF version | ||
| Description: The indexed union of a function's values is the union of its range. Compare Definition 5.4 of [Monk1] p. 50. (Contributed by NM, 27-Sep-2004.) |
| Ref | Expression |
|---|---|
| fniunfv | ⊢ (𝐹 Fn 𝐴 → ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) = ∪ ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6874 | . . 3 ⊢ (𝐹‘𝑥) ∈ V | |
| 2 | 1 | dfiun2 5000 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)} |
| 3 | fnrnfv 6923 | . . 3 ⊢ (𝐹 Fn 𝐴 → ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)}) | |
| 4 | 3 | unieqd 4887 | . 2 ⊢ (𝐹 Fn 𝐴 → ∪ ran 𝐹 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)}) |
| 5 | 2, 4 | eqtr4id 2784 | 1 ⊢ (𝐹 Fn 𝐴 → ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) = ∪ ran 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 {cab 2708 ∃wrex 3054 ∪ cuni 4874 ∪ ciun 4958 ran crn 5642 Fn wfn 6509 ‘cfv 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fn 6517 df-fv 6522 |
| This theorem is referenced by: funiunfv 7225 dffi3 9389 jech9.3 9774 hsmexlem5 10390 wuncval2 10707 dprdspan 19966 tgcmp 23295 txcmplem1 23535 txcmplem2 23536 xkococnlem 23553 alexsubALT 23945 bcth3 25238 ovolfioo 25375 ovolficc 25376 voliunlem2 25459 voliunlem3 25460 volsup 25464 uniiccdif 25486 uniioovol 25487 uniiccvol 25488 uniioombllem2 25491 uniioombllem4 25494 volsup2 25513 itg1climres 25622 itg2monolem1 25658 itg2gt0 25668 sigapildsys 34159 omssubadd 34298 carsgclctunlem3 34318 pibt2 37412 volsupnfl 37666 hbt 43126 ovolval4lem1 46654 ovolval5lem3 46659 ovnovollem1 46661 ovnovollem2 46662 |
| Copyright terms: Public domain | W3C validator |