MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fniunfv Structured version   Visualization version   GIF version

Theorem fniunfv 6733
Description: The indexed union of a function's values is the union of its range. Compare Definition 5.4 of [Monk1] p. 50. (Contributed by NM, 27-Sep-2004.)
Assertion
Ref Expression
fniunfv (𝐹 Fn 𝐴 𝑥𝐴 (𝐹𝑥) = ran 𝐹)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem fniunfv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fnrnfv 6467 . . 3 (𝐹 Fn 𝐴 → ran 𝐹 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)})
21unieqd 4638 . 2 (𝐹 Fn 𝐴 ran 𝐹 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)})
3 fvex 6424 . . 3 (𝐹𝑥) ∈ V
43dfiun2 4744 . 2 𝑥𝐴 (𝐹𝑥) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)}
52, 4syl6reqr 2852 1 (𝐹 Fn 𝐴 𝑥𝐴 (𝐹𝑥) = ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1653  {cab 2785  wrex 3090   cuni 4628   ciun 4710  ran crn 5313   Fn wfn 6096  cfv 6101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pr 5097
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3387  df-sbc 3634  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-id 5220  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-iota 6064  df-fun 6103  df-fn 6104  df-fv 6109
This theorem is referenced by:  funiunfv  6734  dffi3  8579  jech9.3  8927  hsmexlem5  9540  wuncval2  9857  dprdspan  18742  tgcmp  21533  txcmplem1  21773  txcmplem2  21774  xkococnlem  21791  alexsubALT  22183  bcth3  23457  ovolfioo  23575  ovolficc  23576  voliunlem2  23659  voliunlem3  23660  volsup  23664  uniiccdif  23686  uniioovol  23687  uniiccvol  23688  uniioombllem2  23691  uniioombllem4  23694  volsup2  23713  itg1climres  23822  itg2monolem1  23858  itg2gt0  23868  sigapildsys  30741  omssubadd  30878  carsgclctunlem3  30898  dftrpred2  32231  volsupnfl  33943  hbt  38485  ovolval4lem1  41609  ovolval5lem3  41614  ovnovollem1  41616  ovnovollem2  41617
  Copyright terms: Public domain W3C validator