![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fniunfv | Structured version Visualization version GIF version |
Description: The indexed union of a function's values is the union of its range. Compare Definition 5.4 of [Monk1] p. 50. (Contributed by NM, 27-Sep-2004.) |
Ref | Expression |
---|---|
fniunfv | ⊢ (𝐹 Fn 𝐴 → ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) = ∪ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6933 | . . 3 ⊢ (𝐹‘𝑥) ∈ V | |
2 | 1 | dfiun2 5056 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)} |
3 | fnrnfv 6981 | . . 3 ⊢ (𝐹 Fn 𝐴 → ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)}) | |
4 | 3 | unieqd 4944 | . 2 ⊢ (𝐹 Fn 𝐴 → ∪ ran 𝐹 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)}) |
5 | 2, 4 | eqtr4id 2799 | 1 ⊢ (𝐹 Fn 𝐴 → ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) = ∪ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 {cab 2717 ∃wrex 3076 ∪ cuni 4931 ∪ ciun 5015 ran crn 5701 Fn wfn 6568 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fn 6576 df-fv 6581 |
This theorem is referenced by: funiunfv 7285 dffi3 9500 jech9.3 9883 hsmexlem5 10499 wuncval2 10816 dprdspan 20071 tgcmp 23430 txcmplem1 23670 txcmplem2 23671 xkococnlem 23688 alexsubALT 24080 bcth3 25384 ovolfioo 25521 ovolficc 25522 voliunlem2 25605 voliunlem3 25606 volsup 25610 uniiccdif 25632 uniioovol 25633 uniiccvol 25634 uniioombllem2 25637 uniioombllem4 25640 volsup2 25659 itg1climres 25769 itg2monolem1 25805 itg2gt0 25815 sigapildsys 34126 omssubadd 34265 carsgclctunlem3 34285 pibt2 37383 volsupnfl 37625 hbt 43087 ovolval4lem1 46570 ovolval5lem3 46575 ovnovollem1 46577 ovnovollem2 46578 |
Copyright terms: Public domain | W3C validator |