| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fniunfv | Structured version Visualization version GIF version | ||
| Description: The indexed union of a function's values is the union of its range. Compare Definition 5.4 of [Monk1] p. 50. (Contributed by NM, 27-Sep-2004.) |
| Ref | Expression |
|---|---|
| fniunfv | ⊢ (𝐹 Fn 𝐴 → ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) = ∪ ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6835 | . . 3 ⊢ (𝐹‘𝑥) ∈ V | |
| 2 | 1 | dfiun2 4980 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)} |
| 3 | fnrnfv 6881 | . . 3 ⊢ (𝐹 Fn 𝐴 → ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)}) | |
| 4 | 3 | unieqd 4869 | . 2 ⊢ (𝐹 Fn 𝐴 → ∪ ran 𝐹 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)}) |
| 5 | 2, 4 | eqtr4id 2785 | 1 ⊢ (𝐹 Fn 𝐴 → ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) = ∪ ran 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 {cab 2709 ∃wrex 3056 ∪ cuni 4856 ∪ ciun 4939 ran crn 5615 Fn wfn 6476 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6437 df-fun 6483 df-fn 6484 df-fv 6489 |
| This theorem is referenced by: funiunfv 7182 dffi3 9315 jech9.3 9707 hsmexlem5 10321 wuncval2 10638 dprdspan 19941 tgcmp 23316 txcmplem1 23556 txcmplem2 23557 xkococnlem 23574 alexsubALT 23966 bcth3 25258 ovolfioo 25395 ovolficc 25396 voliunlem2 25479 voliunlem3 25480 volsup 25484 uniiccdif 25506 uniioovol 25507 uniiccvol 25508 uniioombllem2 25511 uniioombllem4 25514 volsup2 25533 itg1climres 25642 itg2monolem1 25678 itg2gt0 25688 sigapildsys 34175 omssubadd 34313 carsgclctunlem3 34333 pibt2 37461 volsupnfl 37704 hbt 43222 ovolval4lem1 46746 ovolval5lem3 46751 ovnovollem1 46753 ovnovollem2 46754 |
| Copyright terms: Public domain | W3C validator |