Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fniunfv | Structured version Visualization version GIF version |
Description: The indexed union of a function's values is the union of its range. Compare Definition 5.4 of [Monk1] p. 50. (Contributed by NM, 27-Sep-2004.) |
Ref | Expression |
---|---|
fniunfv | ⊢ (𝐹 Fn 𝐴 → ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) = ∪ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6769 | . . 3 ⊢ (𝐹‘𝑥) ∈ V | |
2 | 1 | dfiun2 4959 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)} |
3 | fnrnfv 6811 | . . 3 ⊢ (𝐹 Fn 𝐴 → ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)}) | |
4 | 3 | unieqd 4850 | . 2 ⊢ (𝐹 Fn 𝐴 → ∪ ran 𝐹 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)}) |
5 | 2, 4 | eqtr4id 2798 | 1 ⊢ (𝐹 Fn 𝐴 → ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) = ∪ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 {cab 2715 ∃wrex 3064 ∪ cuni 4836 ∪ ciun 4921 ran crn 5581 Fn wfn 6413 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-fv 6426 |
This theorem is referenced by: funiunfv 7103 dffi3 9120 dftrpred2 9397 jech9.3 9503 hsmexlem5 10117 wuncval2 10434 dprdspan 19545 tgcmp 22460 txcmplem1 22700 txcmplem2 22701 xkococnlem 22718 alexsubALT 23110 bcth3 24400 ovolfioo 24536 ovolficc 24537 voliunlem2 24620 voliunlem3 24621 volsup 24625 uniiccdif 24647 uniioovol 24648 uniiccvol 24649 uniioombllem2 24652 uniioombllem4 24655 volsup2 24674 itg1climres 24784 itg2monolem1 24820 itg2gt0 24830 sigapildsys 32030 omssubadd 32167 carsgclctunlem3 32187 pibt2 35515 volsupnfl 35749 hbt 40871 ovolval4lem1 44077 ovolval5lem3 44082 ovnovollem1 44084 ovnovollem2 44085 |
Copyright terms: Public domain | W3C validator |