![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fniunfv | Structured version Visualization version GIF version |
Description: The indexed union of a function's values is the union of its range. Compare Definition 5.4 of [Monk1] p. 50. (Contributed by NM, 27-Sep-2004.) |
Ref | Expression |
---|---|
fniunfv | ⊢ (𝐹 Fn 𝐴 → ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) = ∪ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnrnfv 6467 | . . 3 ⊢ (𝐹 Fn 𝐴 → ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)}) | |
2 | 1 | unieqd 4638 | . 2 ⊢ (𝐹 Fn 𝐴 → ∪ ran 𝐹 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)}) |
3 | fvex 6424 | . . 3 ⊢ (𝐹‘𝑥) ∈ V | |
4 | 3 | dfiun2 4744 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)} |
5 | 2, 4 | syl6reqr 2852 | 1 ⊢ (𝐹 Fn 𝐴 → ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) = ∪ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 {cab 2785 ∃wrex 3090 ∪ cuni 4628 ∪ ciun 4710 ran crn 5313 Fn wfn 6096 ‘cfv 6101 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-iota 6064 df-fun 6103 df-fn 6104 df-fv 6109 |
This theorem is referenced by: funiunfv 6734 dffi3 8579 jech9.3 8927 hsmexlem5 9540 wuncval2 9857 dprdspan 18742 tgcmp 21533 txcmplem1 21773 txcmplem2 21774 xkococnlem 21791 alexsubALT 22183 bcth3 23457 ovolfioo 23575 ovolficc 23576 voliunlem2 23659 voliunlem3 23660 volsup 23664 uniiccdif 23686 uniioovol 23687 uniiccvol 23688 uniioombllem2 23691 uniioombllem4 23694 volsup2 23713 itg1climres 23822 itg2monolem1 23858 itg2gt0 23868 sigapildsys 30741 omssubadd 30878 carsgclctunlem3 30898 dftrpred2 32231 volsupnfl 33943 hbt 38485 ovolval4lem1 41609 ovolval5lem3 41614 ovnovollem1 41616 ovnovollem2 41617 |
Copyright terms: Public domain | W3C validator |