| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fniunfv | Structured version Visualization version GIF version | ||
| Description: The indexed union of a function's values is the union of its range. Compare Definition 5.4 of [Monk1] p. 50. (Contributed by NM, 27-Sep-2004.) |
| Ref | Expression |
|---|---|
| fniunfv | ⊢ (𝐹 Fn 𝐴 → ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) = ∪ ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6889 | . . 3 ⊢ (𝐹‘𝑥) ∈ V | |
| 2 | 1 | dfiun2 5009 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)} |
| 3 | fnrnfv 6938 | . . 3 ⊢ (𝐹 Fn 𝐴 → ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)}) | |
| 4 | 3 | unieqd 4896 | . 2 ⊢ (𝐹 Fn 𝐴 → ∪ ran 𝐹 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)}) |
| 5 | 2, 4 | eqtr4id 2789 | 1 ⊢ (𝐹 Fn 𝐴 → ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) = ∪ ran 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 {cab 2713 ∃wrex 3060 ∪ cuni 4883 ∪ ciun 4967 ran crn 5655 Fn wfn 6526 ‘cfv 6531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6484 df-fun 6533 df-fn 6534 df-fv 6539 |
| This theorem is referenced by: funiunfv 7240 dffi3 9443 jech9.3 9828 hsmexlem5 10444 wuncval2 10761 dprdspan 20010 tgcmp 23339 txcmplem1 23579 txcmplem2 23580 xkococnlem 23597 alexsubALT 23989 bcth3 25283 ovolfioo 25420 ovolficc 25421 voliunlem2 25504 voliunlem3 25505 volsup 25509 uniiccdif 25531 uniioovol 25532 uniiccvol 25533 uniioombllem2 25536 uniioombllem4 25539 volsup2 25558 itg1climres 25667 itg2monolem1 25703 itg2gt0 25713 sigapildsys 34193 omssubadd 34332 carsgclctunlem3 34352 pibt2 37435 volsupnfl 37689 hbt 43154 ovolval4lem1 46678 ovolval5lem3 46683 ovnovollem1 46685 ovnovollem2 46686 |
| Copyright terms: Public domain | W3C validator |