Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fniunfv | Structured version Visualization version GIF version |
Description: The indexed union of a function's values is the union of its range. Compare Definition 5.4 of [Monk1] p. 50. (Contributed by NM, 27-Sep-2004.) |
Ref | Expression |
---|---|
fniunfv | ⊢ (𝐹 Fn 𝐴 → ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) = ∪ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6730 | . . 3 ⊢ (𝐹‘𝑥) ∈ V | |
2 | 1 | dfiun2 4942 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)} |
3 | fnrnfv 6772 | . . 3 ⊢ (𝐹 Fn 𝐴 → ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)}) | |
4 | 3 | unieqd 4833 | . 2 ⊢ (𝐹 Fn 𝐴 → ∪ ran 𝐹 = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)}) |
5 | 2, 4 | eqtr4id 2797 | 1 ⊢ (𝐹 Fn 𝐴 → ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥) = ∪ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 {cab 2714 ∃wrex 3062 ∪ cuni 4819 ∪ ciun 4904 ran crn 5552 Fn wfn 6375 ‘cfv 6380 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-iota 6338 df-fun 6382 df-fn 6383 df-fv 6388 |
This theorem is referenced by: funiunfv 7061 dffi3 9047 dftrpred2 9324 jech9.3 9430 hsmexlem5 10044 wuncval2 10361 dprdspan 19414 tgcmp 22298 txcmplem1 22538 txcmplem2 22539 xkococnlem 22556 alexsubALT 22948 bcth3 24228 ovolfioo 24364 ovolficc 24365 voliunlem2 24448 voliunlem3 24449 volsup 24453 uniiccdif 24475 uniioovol 24476 uniiccvol 24477 uniioombllem2 24480 uniioombllem4 24483 volsup2 24502 itg1climres 24612 itg2monolem1 24648 itg2gt0 24658 sigapildsys 31842 omssubadd 31979 carsgclctunlem3 31999 pibt2 35325 volsupnfl 35559 hbt 40658 ovolval4lem1 43862 ovolval5lem3 43867 ovnovollem1 43869 ovnovollem2 43870 |
Copyright terms: Public domain | W3C validator |