MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsle Structured version   Visualization version   GIF version

Theorem pwsle 16757
Description: Ordering in a structure power. (Contributed by Mario Carneiro, 16-Aug-2015.)
Hypotheses
Ref Expression
pwsle.y 𝑌 = (𝑅s 𝐼)
pwsle.v 𝐵 = (Base‘𝑌)
pwsle.o 𝑂 = (le‘𝑅)
pwsle.l = (le‘𝑌)
Assertion
Ref Expression
pwsle ((𝑅𝑉𝐼𝑊) → = ( ∘r 𝑂 ∩ (𝐵 × 𝐵)))

Proof of Theorem pwsle
Dummy variables 𝑓 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3444 . . . . . . 7 𝑓 ∈ V
2 vex 3444 . . . . . . 7 𝑔 ∈ V
31, 2prss 4713 . . . . . 6 ((𝑓𝐵𝑔𝐵) ↔ {𝑓, 𝑔} ⊆ 𝐵)
4 pwsle.v . . . . . . . 8 𝐵 = (Base‘𝑌)
5 pwsle.y . . . . . . . . . 10 𝑌 = (𝑅s 𝐼)
6 eqid 2798 . . . . . . . . . 10 (Scalar‘𝑅) = (Scalar‘𝑅)
75, 6pwsval 16751 . . . . . . . . 9 ((𝑅𝑉𝐼𝑊) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
87fveq2d 6649 . . . . . . . 8 ((𝑅𝑉𝐼𝑊) → (Base‘𝑌) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
94, 8syl5eq 2845 . . . . . . 7 ((𝑅𝑉𝐼𝑊) → 𝐵 = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
109sseq2d 3947 . . . . . 6 ((𝑅𝑉𝐼𝑊) → ({𝑓, 𝑔} ⊆ 𝐵 ↔ {𝑓, 𝑔} ⊆ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))))
113, 10syl5bb 286 . . . . 5 ((𝑅𝑉𝐼𝑊) → ((𝑓𝐵𝑔𝐵) ↔ {𝑓, 𝑔} ⊆ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))))
1211anbi1d 632 . . . 4 ((𝑅𝑉𝐼𝑊) → (((𝑓𝐵𝑔𝐵) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘((𝐼 × {𝑅})‘𝑥))(𝑔𝑥)) ↔ ({𝑓, 𝑔} ⊆ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘((𝐼 × {𝑅})‘𝑥))(𝑔𝑥))))
13 fvconst2g 6941 . . . . . . . . . . . 12 ((𝑅𝑉𝑥𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅)
1413ad4ant14 751 . . . . . . . . . . 11 ((((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑥𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅)
1514fveq2d 6649 . . . . . . . . . 10 ((((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑥𝐼) → (le‘((𝐼 × {𝑅})‘𝑥)) = (le‘𝑅))
16 pwsle.o . . . . . . . . . 10 𝑂 = (le‘𝑅)
1715, 16eqtr4di 2851 . . . . . . . . 9 ((((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑥𝐼) → (le‘((𝐼 × {𝑅})‘𝑥)) = 𝑂)
1817breqd 5041 . . . . . . . 8 ((((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑥𝐼) → ((𝑓𝑥)(le‘((𝐼 × {𝑅})‘𝑥))(𝑔𝑥) ↔ (𝑓𝑥)𝑂(𝑔𝑥)))
1918ralbidva 3161 . . . . . . 7 (((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) → (∀𝑥𝐼 (𝑓𝑥)(le‘((𝐼 × {𝑅})‘𝑥))(𝑔𝑥) ↔ ∀𝑥𝐼 (𝑓𝑥)𝑂(𝑔𝑥)))
20 eqid 2798 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
21 simpll 766 . . . . . . . . . 10 (((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) → 𝑅𝑉)
22 simplr 768 . . . . . . . . . 10 (((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) → 𝐼𝑊)
23 simprl 770 . . . . . . . . . 10 (((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) → 𝑓𝐵)
245, 20, 4, 21, 22, 23pwselbas 16754 . . . . . . . . 9 (((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) → 𝑓:𝐼⟶(Base‘𝑅))
2524ffnd 6488 . . . . . . . 8 (((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) → 𝑓 Fn 𝐼)
26 simprr 772 . . . . . . . . . 10 (((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) → 𝑔𝐵)
275, 20, 4, 21, 22, 26pwselbas 16754 . . . . . . . . 9 (((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) → 𝑔:𝐼⟶(Base‘𝑅))
2827ffnd 6488 . . . . . . . 8 (((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) → 𝑔 Fn 𝐼)
29 inidm 4145 . . . . . . . 8 (𝐼𝐼) = 𝐼
30 eqidd 2799 . . . . . . . 8 ((((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑥𝐼) → (𝑓𝑥) = (𝑓𝑥))
31 eqidd 2799 . . . . . . . 8 ((((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑥𝐼) → (𝑔𝑥) = (𝑔𝑥))
3225, 28, 22, 22, 29, 30, 31ofrfval 7397 . . . . . . 7 (((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) → (𝑓r 𝑂𝑔 ↔ ∀𝑥𝐼 (𝑓𝑥)𝑂(𝑔𝑥)))
3319, 32bitr4d 285 . . . . . 6 (((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) → (∀𝑥𝐼 (𝑓𝑥)(le‘((𝐼 × {𝑅})‘𝑥))(𝑔𝑥) ↔ 𝑓r 𝑂𝑔))
3433pm5.32da 582 . . . . 5 ((𝑅𝑉𝐼𝑊) → (((𝑓𝐵𝑔𝐵) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘((𝐼 × {𝑅})‘𝑥))(𝑔𝑥)) ↔ ((𝑓𝐵𝑔𝐵) ∧ 𝑓r 𝑂𝑔)))
35 brinxp2 5593 . . . . 5 (𝑓( ∘r 𝑂 ∩ (𝐵 × 𝐵))𝑔 ↔ ((𝑓𝐵𝑔𝐵) ∧ 𝑓r 𝑂𝑔))
3634, 35syl6bbr 292 . . . 4 ((𝑅𝑉𝐼𝑊) → (((𝑓𝐵𝑔𝐵) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘((𝐼 × {𝑅})‘𝑥))(𝑔𝑥)) ↔ 𝑓( ∘r 𝑂 ∩ (𝐵 × 𝐵))𝑔))
3712, 36bitr3d 284 . . 3 ((𝑅𝑉𝐼𝑊) → (({𝑓, 𝑔} ⊆ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘((𝐼 × {𝑅})‘𝑥))(𝑔𝑥)) ↔ 𝑓( ∘r 𝑂 ∩ (𝐵 × 𝐵))𝑔))
3837opabbidv 5096 . 2 ((𝑅𝑉𝐼𝑊) → {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘((𝐼 × {𝑅})‘𝑥))(𝑔𝑥))} = {⟨𝑓, 𝑔⟩ ∣ 𝑓( ∘r 𝑂 ∩ (𝐵 × 𝐵))𝑔})
39 pwsle.l . . . 4 = (le‘𝑌)
407fveq2d 6649 . . . 4 ((𝑅𝑉𝐼𝑊) → (le‘𝑌) = (le‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
4139, 40syl5eq 2845 . . 3 ((𝑅𝑉𝐼𝑊) → = (le‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
42 eqid 2798 . . . 4 ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))
43 fvexd 6660 . . . 4 ((𝑅𝑉𝐼𝑊) → (Scalar‘𝑅) ∈ V)
44 simpr 488 . . . . 5 ((𝑅𝑉𝐼𝑊) → 𝐼𝑊)
45 snex 5297 . . . . 5 {𝑅} ∈ V
46 xpexg 7453 . . . . 5 ((𝐼𝑊 ∧ {𝑅} ∈ V) → (𝐼 × {𝑅}) ∈ V)
4744, 45, 46sylancl 589 . . . 4 ((𝑅𝑉𝐼𝑊) → (𝐼 × {𝑅}) ∈ V)
48 eqid 2798 . . . 4 (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
49 snnzg 4670 . . . . . 6 (𝑅𝑉 → {𝑅} ≠ ∅)
5049adantr 484 . . . . 5 ((𝑅𝑉𝐼𝑊) → {𝑅} ≠ ∅)
51 dmxp 5763 . . . . 5 ({𝑅} ≠ ∅ → dom (𝐼 × {𝑅}) = 𝐼)
5250, 51syl 17 . . . 4 ((𝑅𝑉𝐼𝑊) → dom (𝐼 × {𝑅}) = 𝐼)
53 eqid 2798 . . . 4 (le‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (le‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
5442, 43, 47, 48, 52, 53prdsle 16727 . . 3 ((𝑅𝑉𝐼𝑊) → (le‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘((𝐼 × {𝑅})‘𝑥))(𝑔𝑥))})
5541, 54eqtrd 2833 . 2 ((𝑅𝑉𝐼𝑊) → = {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘((𝐼 × {𝑅})‘𝑥))(𝑔𝑥))})
56 relinxp 5651 . . . 4 Rel ( ∘r 𝑂 ∩ (𝐵 × 𝐵))
5756a1i 11 . . 3 ((𝑅𝑉𝐼𝑊) → Rel ( ∘r 𝑂 ∩ (𝐵 × 𝐵)))
58 dfrel4v 6014 . . 3 (Rel ( ∘r 𝑂 ∩ (𝐵 × 𝐵)) ↔ ( ∘r 𝑂 ∩ (𝐵 × 𝐵)) = {⟨𝑓, 𝑔⟩ ∣ 𝑓( ∘r 𝑂 ∩ (𝐵 × 𝐵))𝑔})
5957, 58sylib 221 . 2 ((𝑅𝑉𝐼𝑊) → ( ∘r 𝑂 ∩ (𝐵 × 𝐵)) = {⟨𝑓, 𝑔⟩ ∣ 𝑓( ∘r 𝑂 ∩ (𝐵 × 𝐵))𝑔})
6038, 55, 593eqtr4d 2843 1 ((𝑅𝑉𝐼𝑊) → = ( ∘r 𝑂 ∩ (𝐵 × 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wne 2987  wral 3106  Vcvv 3441  cin 3880  wss 3881  c0 4243  {csn 4525  {cpr 4527   class class class wbr 5030  {copab 5092   × cxp 5517  dom cdm 5519  Rel wrel 5524  cfv 6324  (class class class)co 7135  r cofr 7388  Basecbs 16475  Scalarcsca 16560  lecple 16564  Xscprds 16711  s cpws 16712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-ofr 7390  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-hom 16581  df-cco 16582  df-prds 16713  df-pws 16715
This theorem is referenced by:  pwsleval  16758
  Copyright terms: Public domain W3C validator