MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsle Structured version   Visualization version   GIF version

Theorem pwsle 17537
Description: Ordering in a structure power. (Contributed by Mario Carneiro, 16-Aug-2015.)
Hypotheses
Ref Expression
pwsle.y 𝑌 = (𝑅s 𝐼)
pwsle.v 𝐵 = (Base‘𝑌)
pwsle.o 𝑂 = (le‘𝑅)
pwsle.l = (le‘𝑌)
Assertion
Ref Expression
pwsle ((𝑅𝑉𝐼𝑊) → = ( ∘r 𝑂 ∩ (𝐵 × 𝐵)))

Proof of Theorem pwsle
Dummy variables 𝑓 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3484 . . . . . . 7 𝑓 ∈ V
2 vex 3484 . . . . . . 7 𝑔 ∈ V
31, 2prss 4820 . . . . . 6 ((𝑓𝐵𝑔𝐵) ↔ {𝑓, 𝑔} ⊆ 𝐵)
4 pwsle.v . . . . . . . 8 𝐵 = (Base‘𝑌)
5 pwsle.y . . . . . . . . . 10 𝑌 = (𝑅s 𝐼)
6 eqid 2737 . . . . . . . . . 10 (Scalar‘𝑅) = (Scalar‘𝑅)
75, 6pwsval 17531 . . . . . . . . 9 ((𝑅𝑉𝐼𝑊) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
87fveq2d 6910 . . . . . . . 8 ((𝑅𝑉𝐼𝑊) → (Base‘𝑌) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
94, 8eqtrid 2789 . . . . . . 7 ((𝑅𝑉𝐼𝑊) → 𝐵 = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
109sseq2d 4016 . . . . . 6 ((𝑅𝑉𝐼𝑊) → ({𝑓, 𝑔} ⊆ 𝐵 ↔ {𝑓, 𝑔} ⊆ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))))
113, 10bitrid 283 . . . . 5 ((𝑅𝑉𝐼𝑊) → ((𝑓𝐵𝑔𝐵) ↔ {𝑓, 𝑔} ⊆ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))))
1211anbi1d 631 . . . 4 ((𝑅𝑉𝐼𝑊) → (((𝑓𝐵𝑔𝐵) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘((𝐼 × {𝑅})‘𝑥))(𝑔𝑥)) ↔ ({𝑓, 𝑔} ⊆ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘((𝐼 × {𝑅})‘𝑥))(𝑔𝑥))))
13 fvconst2g 7222 . . . . . . . . . . . 12 ((𝑅𝑉𝑥𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅)
1413ad4ant14 752 . . . . . . . . . . 11 ((((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑥𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅)
1514fveq2d 6910 . . . . . . . . . 10 ((((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑥𝐼) → (le‘((𝐼 × {𝑅})‘𝑥)) = (le‘𝑅))
16 pwsle.o . . . . . . . . . 10 𝑂 = (le‘𝑅)
1715, 16eqtr4di 2795 . . . . . . . . 9 ((((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑥𝐼) → (le‘((𝐼 × {𝑅})‘𝑥)) = 𝑂)
1817breqd 5154 . . . . . . . 8 ((((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑥𝐼) → ((𝑓𝑥)(le‘((𝐼 × {𝑅})‘𝑥))(𝑔𝑥) ↔ (𝑓𝑥)𝑂(𝑔𝑥)))
1918ralbidva 3176 . . . . . . 7 (((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) → (∀𝑥𝐼 (𝑓𝑥)(le‘((𝐼 × {𝑅})‘𝑥))(𝑔𝑥) ↔ ∀𝑥𝐼 (𝑓𝑥)𝑂(𝑔𝑥)))
20 eqid 2737 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
21 simpll 767 . . . . . . . . . 10 (((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) → 𝑅𝑉)
22 simplr 769 . . . . . . . . . 10 (((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) → 𝐼𝑊)
23 simprl 771 . . . . . . . . . 10 (((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) → 𝑓𝐵)
245, 20, 4, 21, 22, 23pwselbas 17534 . . . . . . . . 9 (((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) → 𝑓:𝐼⟶(Base‘𝑅))
2524ffnd 6737 . . . . . . . 8 (((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) → 𝑓 Fn 𝐼)
26 simprr 773 . . . . . . . . . 10 (((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) → 𝑔𝐵)
275, 20, 4, 21, 22, 26pwselbas 17534 . . . . . . . . 9 (((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) → 𝑔:𝐼⟶(Base‘𝑅))
2827ffnd 6737 . . . . . . . 8 (((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) → 𝑔 Fn 𝐼)
29 inidm 4227 . . . . . . . 8 (𝐼𝐼) = 𝐼
30 eqidd 2738 . . . . . . . 8 ((((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑥𝐼) → (𝑓𝑥) = (𝑓𝑥))
31 eqidd 2738 . . . . . . . 8 ((((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑥𝐼) → (𝑔𝑥) = (𝑔𝑥))
3225, 28, 23, 26, 29, 30, 31ofrfvalg 7705 . . . . . . 7 (((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) → (𝑓r 𝑂𝑔 ↔ ∀𝑥𝐼 (𝑓𝑥)𝑂(𝑔𝑥)))
3319, 32bitr4d 282 . . . . . 6 (((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) → (∀𝑥𝐼 (𝑓𝑥)(le‘((𝐼 × {𝑅})‘𝑥))(𝑔𝑥) ↔ 𝑓r 𝑂𝑔))
3433pm5.32da 579 . . . . 5 ((𝑅𝑉𝐼𝑊) → (((𝑓𝐵𝑔𝐵) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘((𝐼 × {𝑅})‘𝑥))(𝑔𝑥)) ↔ ((𝑓𝐵𝑔𝐵) ∧ 𝑓r 𝑂𝑔)))
35 brinxp2 5763 . . . . 5 (𝑓( ∘r 𝑂 ∩ (𝐵 × 𝐵))𝑔 ↔ ((𝑓𝐵𝑔𝐵) ∧ 𝑓r 𝑂𝑔))
3634, 35bitr4di 289 . . . 4 ((𝑅𝑉𝐼𝑊) → (((𝑓𝐵𝑔𝐵) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘((𝐼 × {𝑅})‘𝑥))(𝑔𝑥)) ↔ 𝑓( ∘r 𝑂 ∩ (𝐵 × 𝐵))𝑔))
3712, 36bitr3d 281 . . 3 ((𝑅𝑉𝐼𝑊) → (({𝑓, 𝑔} ⊆ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘((𝐼 × {𝑅})‘𝑥))(𝑔𝑥)) ↔ 𝑓( ∘r 𝑂 ∩ (𝐵 × 𝐵))𝑔))
3837opabbidv 5209 . 2 ((𝑅𝑉𝐼𝑊) → {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘((𝐼 × {𝑅})‘𝑥))(𝑔𝑥))} = {⟨𝑓, 𝑔⟩ ∣ 𝑓( ∘r 𝑂 ∩ (𝐵 × 𝐵))𝑔})
39 pwsle.l . . . 4 = (le‘𝑌)
407fveq2d 6910 . . . 4 ((𝑅𝑉𝐼𝑊) → (le‘𝑌) = (le‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
4139, 40eqtrid 2789 . . 3 ((𝑅𝑉𝐼𝑊) → = (le‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
42 eqid 2737 . . . 4 ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))
43 fvexd 6921 . . . 4 ((𝑅𝑉𝐼𝑊) → (Scalar‘𝑅) ∈ V)
44 simpr 484 . . . . 5 ((𝑅𝑉𝐼𝑊) → 𝐼𝑊)
45 snex 5436 . . . . 5 {𝑅} ∈ V
46 xpexg 7770 . . . . 5 ((𝐼𝑊 ∧ {𝑅} ∈ V) → (𝐼 × {𝑅}) ∈ V)
4744, 45, 46sylancl 586 . . . 4 ((𝑅𝑉𝐼𝑊) → (𝐼 × {𝑅}) ∈ V)
48 eqid 2737 . . . 4 (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
49 snnzg 4774 . . . . . 6 (𝑅𝑉 → {𝑅} ≠ ∅)
5049adantr 480 . . . . 5 ((𝑅𝑉𝐼𝑊) → {𝑅} ≠ ∅)
51 dmxp 5939 . . . . 5 ({𝑅} ≠ ∅ → dom (𝐼 × {𝑅}) = 𝐼)
5250, 51syl 17 . . . 4 ((𝑅𝑉𝐼𝑊) → dom (𝐼 × {𝑅}) = 𝐼)
53 eqid 2737 . . . 4 (le‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (le‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
5442, 43, 47, 48, 52, 53prdsle 17507 . . 3 ((𝑅𝑉𝐼𝑊) → (le‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘((𝐼 × {𝑅})‘𝑥))(𝑔𝑥))})
5541, 54eqtrd 2777 . 2 ((𝑅𝑉𝐼𝑊) → = {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘((𝐼 × {𝑅})‘𝑥))(𝑔𝑥))})
56 relinxp 5824 . . . 4 Rel ( ∘r 𝑂 ∩ (𝐵 × 𝐵))
5756a1i 11 . . 3 ((𝑅𝑉𝐼𝑊) → Rel ( ∘r 𝑂 ∩ (𝐵 × 𝐵)))
58 dfrel4v 6210 . . 3 (Rel ( ∘r 𝑂 ∩ (𝐵 × 𝐵)) ↔ ( ∘r 𝑂 ∩ (𝐵 × 𝐵)) = {⟨𝑓, 𝑔⟩ ∣ 𝑓( ∘r 𝑂 ∩ (𝐵 × 𝐵))𝑔})
5957, 58sylib 218 . 2 ((𝑅𝑉𝐼𝑊) → ( ∘r 𝑂 ∩ (𝐵 × 𝐵)) = {⟨𝑓, 𝑔⟩ ∣ 𝑓( ∘r 𝑂 ∩ (𝐵 × 𝐵))𝑔})
6038, 55, 593eqtr4d 2787 1 ((𝑅𝑉𝐼𝑊) → = ( ∘r 𝑂 ∩ (𝐵 × 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2940  wral 3061  Vcvv 3480  cin 3950  wss 3951  c0 4333  {csn 4626  {cpr 4628   class class class wbr 5143  {copab 5205   × cxp 5683  dom cdm 5685  Rel wrel 5690  cfv 6561  (class class class)co 7431  r cofr 7696  Basecbs 17247  Scalarcsca 17300  lecple 17304  Xscprds 17490  s cpws 17491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-ofr 7698  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-struct 17184  df-slot 17219  df-ndx 17231  df-base 17248  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-hom 17321  df-cco 17322  df-prds 17492  df-pws 17494
This theorem is referenced by:  pwsleval  17538
  Copyright terms: Public domain W3C validator