MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsle Structured version   Visualization version   GIF version

Theorem pwsle 17414
Description: Ordering in a structure power. (Contributed by Mario Carneiro, 16-Aug-2015.)
Hypotheses
Ref Expression
pwsle.y 𝑌 = (𝑅s 𝐼)
pwsle.v 𝐵 = (Base‘𝑌)
pwsle.o 𝑂 = (le‘𝑅)
pwsle.l = (le‘𝑌)
Assertion
Ref Expression
pwsle ((𝑅𝑉𝐼𝑊) → = ( ∘r 𝑂 ∩ (𝐵 × 𝐵)))

Proof of Theorem pwsle
Dummy variables 𝑓 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3442 . . . . . . 7 𝑓 ∈ V
2 vex 3442 . . . . . . 7 𝑔 ∈ V
31, 2prss 4774 . . . . . 6 ((𝑓𝐵𝑔𝐵) ↔ {𝑓, 𝑔} ⊆ 𝐵)
4 pwsle.v . . . . . . . 8 𝐵 = (Base‘𝑌)
5 pwsle.y . . . . . . . . . 10 𝑌 = (𝑅s 𝐼)
6 eqid 2729 . . . . . . . . . 10 (Scalar‘𝑅) = (Scalar‘𝑅)
75, 6pwsval 17408 . . . . . . . . 9 ((𝑅𝑉𝐼𝑊) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
87fveq2d 6830 . . . . . . . 8 ((𝑅𝑉𝐼𝑊) → (Base‘𝑌) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
94, 8eqtrid 2776 . . . . . . 7 ((𝑅𝑉𝐼𝑊) → 𝐵 = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
109sseq2d 3970 . . . . . 6 ((𝑅𝑉𝐼𝑊) → ({𝑓, 𝑔} ⊆ 𝐵 ↔ {𝑓, 𝑔} ⊆ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))))
113, 10bitrid 283 . . . . 5 ((𝑅𝑉𝐼𝑊) → ((𝑓𝐵𝑔𝐵) ↔ {𝑓, 𝑔} ⊆ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))))
1211anbi1d 631 . . . 4 ((𝑅𝑉𝐼𝑊) → (((𝑓𝐵𝑔𝐵) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘((𝐼 × {𝑅})‘𝑥))(𝑔𝑥)) ↔ ({𝑓, 𝑔} ⊆ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘((𝐼 × {𝑅})‘𝑥))(𝑔𝑥))))
13 fvconst2g 7142 . . . . . . . . . . . 12 ((𝑅𝑉𝑥𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅)
1413ad4ant14 752 . . . . . . . . . . 11 ((((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑥𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅)
1514fveq2d 6830 . . . . . . . . . 10 ((((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑥𝐼) → (le‘((𝐼 × {𝑅})‘𝑥)) = (le‘𝑅))
16 pwsle.o . . . . . . . . . 10 𝑂 = (le‘𝑅)
1715, 16eqtr4di 2782 . . . . . . . . 9 ((((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑥𝐼) → (le‘((𝐼 × {𝑅})‘𝑥)) = 𝑂)
1817breqd 5106 . . . . . . . 8 ((((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑥𝐼) → ((𝑓𝑥)(le‘((𝐼 × {𝑅})‘𝑥))(𝑔𝑥) ↔ (𝑓𝑥)𝑂(𝑔𝑥)))
1918ralbidva 3150 . . . . . . 7 (((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) → (∀𝑥𝐼 (𝑓𝑥)(le‘((𝐼 × {𝑅})‘𝑥))(𝑔𝑥) ↔ ∀𝑥𝐼 (𝑓𝑥)𝑂(𝑔𝑥)))
20 eqid 2729 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
21 simpll 766 . . . . . . . . . 10 (((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) → 𝑅𝑉)
22 simplr 768 . . . . . . . . . 10 (((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) → 𝐼𝑊)
23 simprl 770 . . . . . . . . . 10 (((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) → 𝑓𝐵)
245, 20, 4, 21, 22, 23pwselbas 17411 . . . . . . . . 9 (((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) → 𝑓:𝐼⟶(Base‘𝑅))
2524ffnd 6657 . . . . . . . 8 (((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) → 𝑓 Fn 𝐼)
26 simprr 772 . . . . . . . . . 10 (((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) → 𝑔𝐵)
275, 20, 4, 21, 22, 26pwselbas 17411 . . . . . . . . 9 (((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) → 𝑔:𝐼⟶(Base‘𝑅))
2827ffnd 6657 . . . . . . . 8 (((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) → 𝑔 Fn 𝐼)
29 inidm 4180 . . . . . . . 8 (𝐼𝐼) = 𝐼
30 eqidd 2730 . . . . . . . 8 ((((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑥𝐼) → (𝑓𝑥) = (𝑓𝑥))
31 eqidd 2730 . . . . . . . 8 ((((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) ∧ 𝑥𝐼) → (𝑔𝑥) = (𝑔𝑥))
3225, 28, 23, 26, 29, 30, 31ofrfvalg 7625 . . . . . . 7 (((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) → (𝑓r 𝑂𝑔 ↔ ∀𝑥𝐼 (𝑓𝑥)𝑂(𝑔𝑥)))
3319, 32bitr4d 282 . . . . . 6 (((𝑅𝑉𝐼𝑊) ∧ (𝑓𝐵𝑔𝐵)) → (∀𝑥𝐼 (𝑓𝑥)(le‘((𝐼 × {𝑅})‘𝑥))(𝑔𝑥) ↔ 𝑓r 𝑂𝑔))
3433pm5.32da 579 . . . . 5 ((𝑅𝑉𝐼𝑊) → (((𝑓𝐵𝑔𝐵) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘((𝐼 × {𝑅})‘𝑥))(𝑔𝑥)) ↔ ((𝑓𝐵𝑔𝐵) ∧ 𝑓r 𝑂𝑔)))
35 brinxp2 5701 . . . . 5 (𝑓( ∘r 𝑂 ∩ (𝐵 × 𝐵))𝑔 ↔ ((𝑓𝐵𝑔𝐵) ∧ 𝑓r 𝑂𝑔))
3634, 35bitr4di 289 . . . 4 ((𝑅𝑉𝐼𝑊) → (((𝑓𝐵𝑔𝐵) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘((𝐼 × {𝑅})‘𝑥))(𝑔𝑥)) ↔ 𝑓( ∘r 𝑂 ∩ (𝐵 × 𝐵))𝑔))
3712, 36bitr3d 281 . . 3 ((𝑅𝑉𝐼𝑊) → (({𝑓, 𝑔} ⊆ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘((𝐼 × {𝑅})‘𝑥))(𝑔𝑥)) ↔ 𝑓( ∘r 𝑂 ∩ (𝐵 × 𝐵))𝑔))
3837opabbidv 5161 . 2 ((𝑅𝑉𝐼𝑊) → {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘((𝐼 × {𝑅})‘𝑥))(𝑔𝑥))} = {⟨𝑓, 𝑔⟩ ∣ 𝑓( ∘r 𝑂 ∩ (𝐵 × 𝐵))𝑔})
39 pwsle.l . . . 4 = (le‘𝑌)
407fveq2d 6830 . . . 4 ((𝑅𝑉𝐼𝑊) → (le‘𝑌) = (le‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
4139, 40eqtrid 2776 . . 3 ((𝑅𝑉𝐼𝑊) → = (le‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
42 eqid 2729 . . . 4 ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))
43 fvexd 6841 . . . 4 ((𝑅𝑉𝐼𝑊) → (Scalar‘𝑅) ∈ V)
44 simpr 484 . . . . 5 ((𝑅𝑉𝐼𝑊) → 𝐼𝑊)
45 snex 5378 . . . . 5 {𝑅} ∈ V
46 xpexg 7690 . . . . 5 ((𝐼𝑊 ∧ {𝑅} ∈ V) → (𝐼 × {𝑅}) ∈ V)
4744, 45, 46sylancl 586 . . . 4 ((𝑅𝑉𝐼𝑊) → (𝐼 × {𝑅}) ∈ V)
48 eqid 2729 . . . 4 (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
49 snnzg 4728 . . . . . 6 (𝑅𝑉 → {𝑅} ≠ ∅)
5049adantr 480 . . . . 5 ((𝑅𝑉𝐼𝑊) → {𝑅} ≠ ∅)
51 dmxp 5875 . . . . 5 ({𝑅} ≠ ∅ → dom (𝐼 × {𝑅}) = 𝐼)
5250, 51syl 17 . . . 4 ((𝑅𝑉𝐼𝑊) → dom (𝐼 × {𝑅}) = 𝐼)
53 eqid 2729 . . . 4 (le‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (le‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
5442, 43, 47, 48, 52, 53prdsle 17384 . . 3 ((𝑅𝑉𝐼𝑊) → (le‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘((𝐼 × {𝑅})‘𝑥))(𝑔𝑥))})
5541, 54eqtrd 2764 . 2 ((𝑅𝑉𝐼𝑊) → = {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘((𝐼 × {𝑅})‘𝑥))(𝑔𝑥))})
56 relinxp 5761 . . . 4 Rel ( ∘r 𝑂 ∩ (𝐵 × 𝐵))
5756a1i 11 . . 3 ((𝑅𝑉𝐼𝑊) → Rel ( ∘r 𝑂 ∩ (𝐵 × 𝐵)))
58 dfrel4v 6143 . . 3 (Rel ( ∘r 𝑂 ∩ (𝐵 × 𝐵)) ↔ ( ∘r 𝑂 ∩ (𝐵 × 𝐵)) = {⟨𝑓, 𝑔⟩ ∣ 𝑓( ∘r 𝑂 ∩ (𝐵 × 𝐵))𝑔})
5957, 58sylib 218 . 2 ((𝑅𝑉𝐼𝑊) → ( ∘r 𝑂 ∩ (𝐵 × 𝐵)) = {⟨𝑓, 𝑔⟩ ∣ 𝑓( ∘r 𝑂 ∩ (𝐵 × 𝐵))𝑔})
6038, 55, 593eqtr4d 2774 1 ((𝑅𝑉𝐼𝑊) → = ( ∘r 𝑂 ∩ (𝐵 × 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  Vcvv 3438  cin 3904  wss 3905  c0 4286  {csn 4579  {cpr 4581   class class class wbr 5095  {copab 5157   × cxp 5621  dom cdm 5623  Rel wrel 5628  cfv 6486  (class class class)co 7353  r cofr 7616  Basecbs 17138  Scalarcsca 17182  lecple 17186  Xscprds 17367  s cpws 17368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-ofr 7618  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-fz 13429  df-struct 17076  df-slot 17111  df-ndx 17123  df-base 17139  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-hom 17203  df-cco 17204  df-prds 17369  df-pws 17371
This theorem is referenced by:  pwsleval  17415
  Copyright terms: Public domain W3C validator