Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfafn5a Structured version   Visualization version   GIF version

Theorem dfafn5a 47165
Description: Representation of a function in terms of its values, analogous to dffn5 6922 (only one direction of implication!). (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
dfafn5a (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹'''𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem dfafn5a
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fnrel 6623 . . . 4 (𝐹 Fn 𝐴 → Rel 𝐹)
2 dfrel4v 6166 . . . 4 (Rel 𝐹𝐹 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦})
31, 2sylib 218 . . 3 (𝐹 Fn 𝐴𝐹 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦})
4 fnbr 6629 . . . . . . 7 ((𝐹 Fn 𝐴𝑥𝐹𝑦) → 𝑥𝐴)
54ex 412 . . . . . 6 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦𝑥𝐴))
65pm4.71rd 562 . . . . 5 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥𝐴𝑥𝐹𝑦)))
7 eqcom 2737 . . . . . . 7 (𝑦 = (𝐹'''𝑥) ↔ (𝐹'''𝑥) = 𝑦)
8 fnbrafvb 47159 . . . . . . 7 ((𝐹 Fn 𝐴𝑥𝐴) → ((𝐹'''𝑥) = 𝑦𝑥𝐹𝑦))
97, 8bitrid 283 . . . . . 6 ((𝐹 Fn 𝐴𝑥𝐴) → (𝑦 = (𝐹'''𝑥) ↔ 𝑥𝐹𝑦))
109pm5.32da 579 . . . . 5 (𝐹 Fn 𝐴 → ((𝑥𝐴𝑦 = (𝐹'''𝑥)) ↔ (𝑥𝐴𝑥𝐹𝑦)))
116, 10bitr4d 282 . . . 4 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥𝐴𝑦 = (𝐹'''𝑥))))
1211opabbidv 5176 . . 3 (𝐹 Fn 𝐴 → {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹'''𝑥))})
133, 12eqtrd 2765 . 2 (𝐹 Fn 𝐴𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹'''𝑥))})
14 df-mpt 5192 . 2 (𝑥𝐴 ↦ (𝐹'''𝑥)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹'''𝑥))}
1513, 14eqtr4di 2783 1 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹'''𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   class class class wbr 5110  {copab 5172  cmpt 5191  Rel wrel 5646   Fn wfn 6509  '''cafv 47122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-res 5653  df-iota 6467  df-fun 6516  df-fn 6517  df-fv 6522  df-aiota 47090  df-dfat 47124  df-afv 47125
This theorem is referenced by:  dfafn5b  47166  fnrnafv  47167
  Copyright terms: Public domain W3C validator