![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfafn5a | Structured version Visualization version GIF version |
Description: Representation of a function in terms of its values, analogous to dffn5 6952 (only one direction of implication!). (Contributed by Alexander van der Vekens, 25-May-2017.) |
Ref | Expression |
---|---|
dfafn5a | ⊢ (𝐹 Fn 𝐴 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹'''𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnrel 6651 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
2 | dfrel4v 6189 | . . . 4 ⊢ (Rel 𝐹 ↔ 𝐹 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦}) | |
3 | 1, 2 | sylib 217 | . . 3 ⊢ (𝐹 Fn 𝐴 → 𝐹 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦}) |
4 | fnbr 6657 | . . . . . . 7 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥𝐹𝑦) → 𝑥 ∈ 𝐴) | |
5 | 4 | ex 412 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 → 𝑥 ∈ 𝐴)) |
6 | 5 | pm4.71rd 562 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦))) |
7 | eqcom 2735 | . . . . . . 7 ⊢ (𝑦 = (𝐹'''𝑥) ↔ (𝐹'''𝑥) = 𝑦) | |
8 | fnbrafvb 46525 | . . . . . . 7 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐹'''𝑥) = 𝑦 ↔ 𝑥𝐹𝑦)) | |
9 | 7, 8 | bitrid 283 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑦 = (𝐹'''𝑥) ↔ 𝑥𝐹𝑦)) |
10 | 9 | pm5.32da 578 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹'''𝑥)) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦))) |
11 | 6, 10 | bitr4d 282 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹'''𝑥)))) |
12 | 11 | opabbidv 5209 | . . 3 ⊢ (𝐹 Fn 𝐴 → {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹'''𝑥))}) |
13 | 3, 12 | eqtrd 2768 | . 2 ⊢ (𝐹 Fn 𝐴 → 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹'''𝑥))}) |
14 | df-mpt 5227 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ (𝐹'''𝑥)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹'''𝑥))} | |
15 | 13, 14 | eqtr4di 2786 | 1 ⊢ (𝐹 Fn 𝐴 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹'''𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 class class class wbr 5143 {copab 5205 ↦ cmpt 5226 Rel wrel 5678 Fn wfn 6538 '''cafv 46488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pr 5424 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-int 4946 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-res 5685 df-iota 6495 df-fun 6545 df-fn 6546 df-fv 6551 df-aiota 46456 df-dfat 46490 df-afv 46491 |
This theorem is referenced by: dfafn5b 46532 fnrnafv 46533 |
Copyright terms: Public domain | W3C validator |