![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfafn5a | Structured version Visualization version GIF version |
Description: Representation of a function in terms of its values, analogous to dffn5 6941 (only one direction of implication!). (Contributed by Alexander van der Vekens, 25-May-2017.) |
Ref | Expression |
---|---|
dfafn5a | ⊢ (𝐹 Fn 𝐴 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹'''𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnrel 6642 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
2 | dfrel4v 6180 | . . . 4 ⊢ (Rel 𝐹 ↔ 𝐹 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦}) | |
3 | 1, 2 | sylib 217 | . . 3 ⊢ (𝐹 Fn 𝐴 → 𝐹 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦}) |
4 | fnbr 6648 | . . . . . . 7 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥𝐹𝑦) → 𝑥 ∈ 𝐴) | |
5 | 4 | ex 412 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 → 𝑥 ∈ 𝐴)) |
6 | 5 | pm4.71rd 562 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦))) |
7 | eqcom 2731 | . . . . . . 7 ⊢ (𝑦 = (𝐹'''𝑥) ↔ (𝐹'''𝑥) = 𝑦) | |
8 | fnbrafvb 46372 | . . . . . . 7 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐹'''𝑥) = 𝑦 ↔ 𝑥𝐹𝑦)) | |
9 | 7, 8 | bitrid 283 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑦 = (𝐹'''𝑥) ↔ 𝑥𝐹𝑦)) |
10 | 9 | pm5.32da 578 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹'''𝑥)) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦))) |
11 | 6, 10 | bitr4d 282 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹'''𝑥)))) |
12 | 11 | opabbidv 5205 | . . 3 ⊢ (𝐹 Fn 𝐴 → {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹'''𝑥))}) |
13 | 3, 12 | eqtrd 2764 | . 2 ⊢ (𝐹 Fn 𝐴 → 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹'''𝑥))}) |
14 | df-mpt 5223 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ (𝐹'''𝑥)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹'''𝑥))} | |
15 | 13, 14 | eqtr4di 2782 | 1 ⊢ (𝐹 Fn 𝐴 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹'''𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 class class class wbr 5139 {copab 5201 ↦ cmpt 5222 Rel wrel 5672 Fn wfn 6529 '''cafv 46335 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-int 4942 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-res 5679 df-iota 6486 df-fun 6536 df-fn 6537 df-fv 6542 df-aiota 46303 df-dfat 46337 df-afv 46338 |
This theorem is referenced by: dfafn5b 46379 fnrnafv 46380 |
Copyright terms: Public domain | W3C validator |