Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfafn5a Structured version   Visualization version   GIF version

Theorem dfafn5a 44652
Description: Representation of a function in terms of its values, analogous to dffn5 6828 (only one direction of implication!). (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
dfafn5a (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹'''𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem dfafn5a
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fnrel 6535 . . . 4 (𝐹 Fn 𝐴 → Rel 𝐹)
2 dfrel4v 6093 . . . 4 (Rel 𝐹𝐹 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦})
31, 2sylib 217 . . 3 (𝐹 Fn 𝐴𝐹 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦})
4 fnbr 6541 . . . . . . 7 ((𝐹 Fn 𝐴𝑥𝐹𝑦) → 𝑥𝐴)
54ex 413 . . . . . 6 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦𝑥𝐴))
65pm4.71rd 563 . . . . 5 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥𝐴𝑥𝐹𝑦)))
7 eqcom 2745 . . . . . . 7 (𝑦 = (𝐹'''𝑥) ↔ (𝐹'''𝑥) = 𝑦)
8 fnbrafvb 44646 . . . . . . 7 ((𝐹 Fn 𝐴𝑥𝐴) → ((𝐹'''𝑥) = 𝑦𝑥𝐹𝑦))
97, 8syl5bb 283 . . . . . 6 ((𝐹 Fn 𝐴𝑥𝐴) → (𝑦 = (𝐹'''𝑥) ↔ 𝑥𝐹𝑦))
109pm5.32da 579 . . . . 5 (𝐹 Fn 𝐴 → ((𝑥𝐴𝑦 = (𝐹'''𝑥)) ↔ (𝑥𝐴𝑥𝐹𝑦)))
116, 10bitr4d 281 . . . 4 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥𝐴𝑦 = (𝐹'''𝑥))))
1211opabbidv 5140 . . 3 (𝐹 Fn 𝐴 → {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹'''𝑥))})
133, 12eqtrd 2778 . 2 (𝐹 Fn 𝐴𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹'''𝑥))})
14 df-mpt 5158 . 2 (𝑥𝐴 ↦ (𝐹'''𝑥)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹'''𝑥))}
1513, 14eqtr4di 2796 1 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹'''𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106   class class class wbr 5074  {copab 5136  cmpt 5157  Rel wrel 5594   Fn wfn 6428  '''cafv 44609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-res 5601  df-iota 6391  df-fun 6435  df-fn 6436  df-fv 6441  df-aiota 44577  df-dfat 44611  df-afv 44612
This theorem is referenced by:  dfafn5b  44653  fnrnafv  44654
  Copyright terms: Public domain W3C validator