![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfafn5a | Structured version Visualization version GIF version |
Description: Representation of a function in terms of its values, analogous to dffn5 6980 (only one direction of implication!). (Contributed by Alexander van der Vekens, 25-May-2017.) |
Ref | Expression |
---|---|
dfafn5a | ⊢ (𝐹 Fn 𝐴 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹'''𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnrel 6681 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Rel 𝐹) | |
2 | dfrel4v 6221 | . . . 4 ⊢ (Rel 𝐹 ↔ 𝐹 = {〈𝑥, 𝑦〉 ∣ 𝑥𝐹𝑦}) | |
3 | 1, 2 | sylib 218 | . . 3 ⊢ (𝐹 Fn 𝐴 → 𝐹 = {〈𝑥, 𝑦〉 ∣ 𝑥𝐹𝑦}) |
4 | fnbr 6687 | . . . . . . 7 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥𝐹𝑦) → 𝑥 ∈ 𝐴) | |
5 | 4 | ex 412 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 → 𝑥 ∈ 𝐴)) |
6 | 5 | pm4.71rd 562 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦))) |
7 | eqcom 2747 | . . . . . . 7 ⊢ (𝑦 = (𝐹'''𝑥) ↔ (𝐹'''𝑥) = 𝑦) | |
8 | fnbrafvb 47069 | . . . . . . 7 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐹'''𝑥) = 𝑦 ↔ 𝑥𝐹𝑦)) | |
9 | 7, 8 | bitrid 283 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑦 = (𝐹'''𝑥) ↔ 𝑥𝐹𝑦)) |
10 | 9 | pm5.32da 578 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹'''𝑥)) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦))) |
11 | 6, 10 | bitr4d 282 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹'''𝑥)))) |
12 | 11 | opabbidv 5232 | . . 3 ⊢ (𝐹 Fn 𝐴 → {〈𝑥, 𝑦〉 ∣ 𝑥𝐹𝑦} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹'''𝑥))}) |
13 | 3, 12 | eqtrd 2780 | . 2 ⊢ (𝐹 Fn 𝐴 → 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹'''𝑥))}) |
14 | df-mpt 5250 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ (𝐹'''𝑥)) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐹'''𝑥))} | |
15 | 13, 14 | eqtr4di 2798 | 1 ⊢ (𝐹 Fn 𝐴 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹'''𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 {copab 5228 ↦ cmpt 5249 Rel wrel 5705 Fn wfn 6568 '''cafv 47032 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-res 5712 df-iota 6525 df-fun 6575 df-fn 6576 df-fv 6581 df-aiota 47000 df-dfat 47034 df-afv 47035 |
This theorem is referenced by: dfafn5b 47076 fnrnafv 47077 |
Copyright terms: Public domain | W3C validator |