Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfafn5a Structured version   Visualization version   GIF version

Theorem dfafn5a 46531
Description: Representation of a function in terms of its values, analogous to dffn5 6952 (only one direction of implication!). (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
dfafn5a (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹'''𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem dfafn5a
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fnrel 6651 . . . 4 (𝐹 Fn 𝐴 → Rel 𝐹)
2 dfrel4v 6189 . . . 4 (Rel 𝐹𝐹 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦})
31, 2sylib 217 . . 3 (𝐹 Fn 𝐴𝐹 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦})
4 fnbr 6657 . . . . . . 7 ((𝐹 Fn 𝐴𝑥𝐹𝑦) → 𝑥𝐴)
54ex 412 . . . . . 6 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦𝑥𝐴))
65pm4.71rd 562 . . . . 5 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥𝐴𝑥𝐹𝑦)))
7 eqcom 2735 . . . . . . 7 (𝑦 = (𝐹'''𝑥) ↔ (𝐹'''𝑥) = 𝑦)
8 fnbrafvb 46525 . . . . . . 7 ((𝐹 Fn 𝐴𝑥𝐴) → ((𝐹'''𝑥) = 𝑦𝑥𝐹𝑦))
97, 8bitrid 283 . . . . . 6 ((𝐹 Fn 𝐴𝑥𝐴) → (𝑦 = (𝐹'''𝑥) ↔ 𝑥𝐹𝑦))
109pm5.32da 578 . . . . 5 (𝐹 Fn 𝐴 → ((𝑥𝐴𝑦 = (𝐹'''𝑥)) ↔ (𝑥𝐴𝑥𝐹𝑦)))
116, 10bitr4d 282 . . . 4 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥𝐴𝑦 = (𝐹'''𝑥))))
1211opabbidv 5209 . . 3 (𝐹 Fn 𝐴 → {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹'''𝑥))})
133, 12eqtrd 2768 . 2 (𝐹 Fn 𝐴𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹'''𝑥))})
14 df-mpt 5227 . 2 (𝑥𝐴 ↦ (𝐹'''𝑥)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹'''𝑥))}
1513, 14eqtr4di 2786 1 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹'''𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099   class class class wbr 5143  {copab 5205  cmpt 5226  Rel wrel 5678   Fn wfn 6538  '''cafv 46488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5294  ax-nul 5301  ax-pr 5424
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4526  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-int 4946  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5571  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-res 5685  df-iota 6495  df-fun 6545  df-fn 6546  df-fv 6551  df-aiota 46456  df-dfat 46490  df-afv 46491
This theorem is referenced by:  dfafn5b  46532  fnrnafv  46533
  Copyright terms: Public domain W3C validator