MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgphaus Structured version   Visualization version   GIF version

Theorem tgphaus 22213
Description: A topological group is Hausdorff iff the identity subgroup is closed. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
tgphaus.1 0 = (0g𝐺)
tgphaus.j 𝐽 = (TopOpen‘𝐺)
Assertion
Ref Expression
tgphaus (𝐺 ∈ TopGrp → (𝐽 ∈ Haus ↔ { 0 } ∈ (Clsd‘𝐽)))

Proof of Theorem tgphaus
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgpgrp 22175 . . . . 5 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
2 eqid 2765 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
3 tgphaus.1 . . . . . 6 0 = (0g𝐺)
42, 3grpidcl 17731 . . . . 5 (𝐺 ∈ Grp → 0 ∈ (Base‘𝐺))
51, 4syl 17 . . . 4 (𝐺 ∈ TopGrp → 0 ∈ (Base‘𝐺))
6 tgphaus.j . . . . . 6 𝐽 = (TopOpen‘𝐺)
76, 2tgptopon 22179 . . . . 5 (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘(Base‘𝐺)))
8 toponuni 21012 . . . . 5 (𝐽 ∈ (TopOn‘(Base‘𝐺)) → (Base‘𝐺) = 𝐽)
97, 8syl 17 . . . 4 (𝐺 ∈ TopGrp → (Base‘𝐺) = 𝐽)
105, 9eleqtrd 2846 . . 3 (𝐺 ∈ TopGrp → 0 𝐽)
11 eqid 2765 . . . . 5 𝐽 = 𝐽
1211sncld 21469 . . . 4 ((𝐽 ∈ Haus ∧ 0 𝐽) → { 0 } ∈ (Clsd‘𝐽))
1312expcom 402 . . 3 ( 0 𝐽 → (𝐽 ∈ Haus → { 0 } ∈ (Clsd‘𝐽)))
1410, 13syl 17 . 2 (𝐺 ∈ TopGrp → (𝐽 ∈ Haus → { 0 } ∈ (Clsd‘𝐽)))
15 eqid 2765 . . . . . 6 (-g𝐺) = (-g𝐺)
166, 15tgpsubcn 22187 . . . . 5 (𝐺 ∈ TopGrp → (-g𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
17 cnclima 21366 . . . . . 6 (((-g𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽) ∧ { 0 } ∈ (Clsd‘𝐽)) → ((-g𝐺) “ { 0 }) ∈ (Clsd‘(𝐽 ×t 𝐽)))
1817ex 401 . . . . 5 ((-g𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽) → ({ 0 } ∈ (Clsd‘𝐽) → ((-g𝐺) “ { 0 }) ∈ (Clsd‘(𝐽 ×t 𝐽))))
1916, 18syl 17 . . . 4 (𝐺 ∈ TopGrp → ({ 0 } ∈ (Clsd‘𝐽) → ((-g𝐺) “ { 0 }) ∈ (Clsd‘(𝐽 ×t 𝐽))))
20 cnvimass 5669 . . . . . . . . 9 ((-g𝐺) “ { 0 }) ⊆ dom (-g𝐺)
212, 15grpsubf 17775 . . . . . . . . . 10 (𝐺 ∈ Grp → (-g𝐺):((Base‘𝐺) × (Base‘𝐺))⟶(Base‘𝐺))
221, 21syl 17 . . . . . . . . 9 (𝐺 ∈ TopGrp → (-g𝐺):((Base‘𝐺) × (Base‘𝐺))⟶(Base‘𝐺))
2320, 22fssdm 6241 . . . . . . . 8 (𝐺 ∈ TopGrp → ((-g𝐺) “ { 0 }) ⊆ ((Base‘𝐺) × (Base‘𝐺)))
24 relxp 5297 . . . . . . . 8 Rel ((Base‘𝐺) × (Base‘𝐺))
25 relss 5378 . . . . . . . 8 (((-g𝐺) “ { 0 }) ⊆ ((Base‘𝐺) × (Base‘𝐺)) → (Rel ((Base‘𝐺) × (Base‘𝐺)) → Rel ((-g𝐺) “ { 0 })))
2623, 24, 25mpisyl 21 . . . . . . 7 (𝐺 ∈ TopGrp → Rel ((-g𝐺) “ { 0 }))
27 dfrel4v 5769 . . . . . . 7 (Rel ((-g𝐺) “ { 0 }) ↔ ((-g𝐺) “ { 0 }) = {⟨𝑥, 𝑦⟩ ∣ 𝑥((-g𝐺) “ { 0 })𝑦})
2826, 27sylib 209 . . . . . 6 (𝐺 ∈ TopGrp → ((-g𝐺) “ { 0 }) = {⟨𝑥, 𝑦⟩ ∣ 𝑥((-g𝐺) “ { 0 })𝑦})
2922ffnd 6226 . . . . . . . . . . 11 (𝐺 ∈ TopGrp → (-g𝐺) Fn ((Base‘𝐺) × (Base‘𝐺)))
30 elpreima 6531 . . . . . . . . . . 11 ((-g𝐺) Fn ((Base‘𝐺) × (Base‘𝐺)) → (⟨𝑥, 𝑦⟩ ∈ ((-g𝐺) “ { 0 }) ↔ (⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐺) × (Base‘𝐺)) ∧ ((-g𝐺)‘⟨𝑥, 𝑦⟩) ∈ { 0 })))
3129, 30syl 17 . . . . . . . . . 10 (𝐺 ∈ TopGrp → (⟨𝑥, 𝑦⟩ ∈ ((-g𝐺) “ { 0 }) ↔ (⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐺) × (Base‘𝐺)) ∧ ((-g𝐺)‘⟨𝑥, 𝑦⟩) ∈ { 0 })))
32 opelxp 5315 . . . . . . . . . . . 12 (⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐺) × (Base‘𝐺)) ↔ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)))
3332anbi1i 617 . . . . . . . . . . 11 ((⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐺) × (Base‘𝐺)) ∧ ((-g𝐺)‘⟨𝑥, 𝑦⟩) ∈ { 0 }) ↔ ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ ((-g𝐺)‘⟨𝑥, 𝑦⟩) ∈ { 0 }))
342, 3, 15grpsubeq0 17782 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → ((𝑥(-g𝐺)𝑦) = 0𝑥 = 𝑦))
35343expb 1149 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → ((𝑥(-g𝐺)𝑦) = 0𝑥 = 𝑦))
361, 35sylan 575 . . . . . . . . . . . . 13 ((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → ((𝑥(-g𝐺)𝑦) = 0𝑥 = 𝑦))
37 df-ov 6849 . . . . . . . . . . . . . . 15 (𝑥(-g𝐺)𝑦) = ((-g𝐺)‘⟨𝑥, 𝑦⟩)
3837eleq1i 2835 . . . . . . . . . . . . . 14 ((𝑥(-g𝐺)𝑦) ∈ { 0 } ↔ ((-g𝐺)‘⟨𝑥, 𝑦⟩) ∈ { 0 })
39 ovex 6878 . . . . . . . . . . . . . . 15 (𝑥(-g𝐺)𝑦) ∈ V
4039elsn 4351 . . . . . . . . . . . . . 14 ((𝑥(-g𝐺)𝑦) ∈ { 0 } ↔ (𝑥(-g𝐺)𝑦) = 0 )
4138, 40bitr3i 268 . . . . . . . . . . . . 13 (((-g𝐺)‘⟨𝑥, 𝑦⟩) ∈ { 0 } ↔ (𝑥(-g𝐺)𝑦) = 0 )
42 equcom 2115 . . . . . . . . . . . . 13 (𝑦 = 𝑥𝑥 = 𝑦)
4336, 41, 423bitr4g 305 . . . . . . . . . . . 12 ((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → (((-g𝐺)‘⟨𝑥, 𝑦⟩) ∈ { 0 } ↔ 𝑦 = 𝑥))
4443pm5.32da 574 . . . . . . . . . . 11 (𝐺 ∈ TopGrp → (((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ ((-g𝐺)‘⟨𝑥, 𝑦⟩) ∈ { 0 }) ↔ ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ 𝑦 = 𝑥)))
4533, 44syl5bb 274 . . . . . . . . . 10 (𝐺 ∈ TopGrp → ((⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐺) × (Base‘𝐺)) ∧ ((-g𝐺)‘⟨𝑥, 𝑦⟩) ∈ { 0 }) ↔ ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ 𝑦 = 𝑥)))
4631, 45bitrd 270 . . . . . . . . 9 (𝐺 ∈ TopGrp → (⟨𝑥, 𝑦⟩ ∈ ((-g𝐺) “ { 0 }) ↔ ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ 𝑦 = 𝑥)))
47 df-br 4812 . . . . . . . . 9 (𝑥((-g𝐺) “ { 0 })𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ ((-g𝐺) “ { 0 }))
48 eleq1w 2827 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (𝑦 ∈ (Base‘𝐺) ↔ 𝑥 ∈ (Base‘𝐺)))
4948biimparc 471 . . . . . . . . . . 11 ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 = 𝑥) → 𝑦 ∈ (Base‘𝐺))
5049pm4.71i 555 . . . . . . . . . 10 ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 = 𝑥) ↔ ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 = 𝑥) ∧ 𝑦 ∈ (Base‘𝐺)))
51 an32 636 . . . . . . . . . 10 (((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ 𝑦 = 𝑥) ↔ ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 = 𝑥) ∧ 𝑦 ∈ (Base‘𝐺)))
5250, 51bitr4i 269 . . . . . . . . 9 ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 = 𝑥) ↔ ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ 𝑦 = 𝑥))
5346, 47, 523bitr4g 305 . . . . . . . 8 (𝐺 ∈ TopGrp → (𝑥((-g𝐺) “ { 0 })𝑦 ↔ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 = 𝑥)))
5453opabbidv 4877 . . . . . . 7 (𝐺 ∈ TopGrp → {⟨𝑥, 𝑦⟩ ∣ 𝑥((-g𝐺) “ { 0 })𝑦} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 = 𝑥)})
55 opabresid 5641 . . . . . . 7 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 = 𝑥)} = ( I ↾ (Base‘𝐺))
5654, 55syl6eq 2815 . . . . . 6 (𝐺 ∈ TopGrp → {⟨𝑥, 𝑦⟩ ∣ 𝑥((-g𝐺) “ { 0 })𝑦} = ( I ↾ (Base‘𝐺)))
579reseq2d 5567 . . . . . 6 (𝐺 ∈ TopGrp → ( I ↾ (Base‘𝐺)) = ( I ↾ 𝐽))
5828, 56, 573eqtrd 2803 . . . . 5 (𝐺 ∈ TopGrp → ((-g𝐺) “ { 0 }) = ( I ↾ 𝐽))
5958eleq1d 2829 . . . 4 (𝐺 ∈ TopGrp → (((-g𝐺) “ { 0 }) ∈ (Clsd‘(𝐽 ×t 𝐽)) ↔ ( I ↾ 𝐽) ∈ (Clsd‘(𝐽 ×t 𝐽))))
6019, 59sylibd 230 . . 3 (𝐺 ∈ TopGrp → ({ 0 } ∈ (Clsd‘𝐽) → ( I ↾ 𝐽) ∈ (Clsd‘(𝐽 ×t 𝐽))))
61 topontop 21011 . . . . 5 (𝐽 ∈ (TopOn‘(Base‘𝐺)) → 𝐽 ∈ Top)
627, 61syl 17 . . . 4 (𝐺 ∈ TopGrp → 𝐽 ∈ Top)
6311hausdiag 21742 . . . . 5 (𝐽 ∈ Haus ↔ (𝐽 ∈ Top ∧ ( I ↾ 𝐽) ∈ (Clsd‘(𝐽 ×t 𝐽))))
6463baib 531 . . . 4 (𝐽 ∈ Top → (𝐽 ∈ Haus ↔ ( I ↾ 𝐽) ∈ (Clsd‘(𝐽 ×t 𝐽))))
6562, 64syl 17 . . 3 (𝐺 ∈ TopGrp → (𝐽 ∈ Haus ↔ ( I ↾ 𝐽) ∈ (Clsd‘(𝐽 ×t 𝐽))))
6660, 65sylibrd 250 . 2 (𝐺 ∈ TopGrp → ({ 0 } ∈ (Clsd‘𝐽) → 𝐽 ∈ Haus))
6714, 66impbid 203 1 (𝐺 ∈ TopGrp → (𝐽 ∈ Haus ↔ { 0 } ∈ (Clsd‘𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  wss 3734  {csn 4336  cop 4342   cuni 4596   class class class wbr 4811  {copab 4873   I cid 5186   × cxp 5277  ccnv 5278  cres 5281  cima 5282  Rel wrel 5284   Fn wfn 6065  wf 6066  cfv 6070  (class class class)co 6846  Basecbs 16144  TopOpenctopn 16362  0gc0g 16380  Grpcgrp 17703  -gcsg 17705  Topctop 20991  TopOnctopon 21008  Clsdccld 21114   Cn ccn 21322  Hauscha 21406   ×t ctx 21657  TopGrpctgp 22168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-op 4343  df-uni 4597  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-id 5187  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-riota 6807  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-1st 7370  df-2nd 7371  df-map 8066  df-0g 16382  df-topgen 16384  df-plusf 17521  df-mgm 17522  df-sgrp 17564  df-mnd 17575  df-grp 17706  df-minusg 17707  df-sbg 17708  df-top 20992  df-topon 21009  df-topsp 21031  df-bases 21044  df-cld 21117  df-cn 21325  df-t1 21412  df-haus 21413  df-tx 21659  df-tmd 22169  df-tgp 22170
This theorem is referenced by:  tgpt1  22214  qustgphaus  22219
  Copyright terms: Public domain W3C validator