MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgphaus Structured version   Visualization version   GIF version

Theorem tgphaus 24033
Description: A topological group is Hausdorff iff the identity subgroup is closed. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
tgphaus.1 0 = (0g𝐺)
tgphaus.j 𝐽 = (TopOpen‘𝐺)
Assertion
Ref Expression
tgphaus (𝐺 ∈ TopGrp → (𝐽 ∈ Haus ↔ { 0 } ∈ (Clsd‘𝐽)))

Proof of Theorem tgphaus
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgpgrp 23994 . . . . 5 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
2 eqid 2733 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
3 tgphaus.1 . . . . . 6 0 = (0g𝐺)
42, 3grpidcl 18880 . . . . 5 (𝐺 ∈ Grp → 0 ∈ (Base‘𝐺))
51, 4syl 17 . . . 4 (𝐺 ∈ TopGrp → 0 ∈ (Base‘𝐺))
6 tgphaus.j . . . . . 6 𝐽 = (TopOpen‘𝐺)
76, 2tgptopon 23998 . . . . 5 (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘(Base‘𝐺)))
8 toponuni 22830 . . . . 5 (𝐽 ∈ (TopOn‘(Base‘𝐺)) → (Base‘𝐺) = 𝐽)
97, 8syl 17 . . . 4 (𝐺 ∈ TopGrp → (Base‘𝐺) = 𝐽)
105, 9eleqtrd 2835 . . 3 (𝐺 ∈ TopGrp → 0 𝐽)
11 eqid 2733 . . . . 5 𝐽 = 𝐽
1211sncld 23287 . . . 4 ((𝐽 ∈ Haus ∧ 0 𝐽) → { 0 } ∈ (Clsd‘𝐽))
1312expcom 413 . . 3 ( 0 𝐽 → (𝐽 ∈ Haus → { 0 } ∈ (Clsd‘𝐽)))
1410, 13syl 17 . 2 (𝐺 ∈ TopGrp → (𝐽 ∈ Haus → { 0 } ∈ (Clsd‘𝐽)))
15 eqid 2733 . . . . . 6 (-g𝐺) = (-g𝐺)
166, 15tgpsubcn 24006 . . . . 5 (𝐺 ∈ TopGrp → (-g𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
17 cnclima 23184 . . . . . 6 (((-g𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽) ∧ { 0 } ∈ (Clsd‘𝐽)) → ((-g𝐺) “ { 0 }) ∈ (Clsd‘(𝐽 ×t 𝐽)))
1817ex 412 . . . . 5 ((-g𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽) → ({ 0 } ∈ (Clsd‘𝐽) → ((-g𝐺) “ { 0 }) ∈ (Clsd‘(𝐽 ×t 𝐽))))
1916, 18syl 17 . . . 4 (𝐺 ∈ TopGrp → ({ 0 } ∈ (Clsd‘𝐽) → ((-g𝐺) “ { 0 }) ∈ (Clsd‘(𝐽 ×t 𝐽))))
20 cnvimass 6035 . . . . . . . . 9 ((-g𝐺) “ { 0 }) ⊆ dom (-g𝐺)
212, 15grpsubf 18934 . . . . . . . . . 10 (𝐺 ∈ Grp → (-g𝐺):((Base‘𝐺) × (Base‘𝐺))⟶(Base‘𝐺))
221, 21syl 17 . . . . . . . . 9 (𝐺 ∈ TopGrp → (-g𝐺):((Base‘𝐺) × (Base‘𝐺))⟶(Base‘𝐺))
2320, 22fssdm 6675 . . . . . . . 8 (𝐺 ∈ TopGrp → ((-g𝐺) “ { 0 }) ⊆ ((Base‘𝐺) × (Base‘𝐺)))
24 relxp 5637 . . . . . . . 8 Rel ((Base‘𝐺) × (Base‘𝐺))
25 relss 5726 . . . . . . . 8 (((-g𝐺) “ { 0 }) ⊆ ((Base‘𝐺) × (Base‘𝐺)) → (Rel ((Base‘𝐺) × (Base‘𝐺)) → Rel ((-g𝐺) “ { 0 })))
2623, 24, 25mpisyl 21 . . . . . . 7 (𝐺 ∈ TopGrp → Rel ((-g𝐺) “ { 0 }))
27 dfrel4v 6142 . . . . . . 7 (Rel ((-g𝐺) “ { 0 }) ↔ ((-g𝐺) “ { 0 }) = {⟨𝑥, 𝑦⟩ ∣ 𝑥((-g𝐺) “ { 0 })𝑦})
2826, 27sylib 218 . . . . . 6 (𝐺 ∈ TopGrp → ((-g𝐺) “ { 0 }) = {⟨𝑥, 𝑦⟩ ∣ 𝑥((-g𝐺) “ { 0 })𝑦})
2922ffnd 6657 . . . . . . . . . . 11 (𝐺 ∈ TopGrp → (-g𝐺) Fn ((Base‘𝐺) × (Base‘𝐺)))
30 elpreima 6997 . . . . . . . . . . 11 ((-g𝐺) Fn ((Base‘𝐺) × (Base‘𝐺)) → (⟨𝑥, 𝑦⟩ ∈ ((-g𝐺) “ { 0 }) ↔ (⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐺) × (Base‘𝐺)) ∧ ((-g𝐺)‘⟨𝑥, 𝑦⟩) ∈ { 0 })))
3129, 30syl 17 . . . . . . . . . 10 (𝐺 ∈ TopGrp → (⟨𝑥, 𝑦⟩ ∈ ((-g𝐺) “ { 0 }) ↔ (⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐺) × (Base‘𝐺)) ∧ ((-g𝐺)‘⟨𝑥, 𝑦⟩) ∈ { 0 })))
32 opelxp 5655 . . . . . . . . . . . 12 (⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐺) × (Base‘𝐺)) ↔ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)))
3332anbi1i 624 . . . . . . . . . . 11 ((⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐺) × (Base‘𝐺)) ∧ ((-g𝐺)‘⟨𝑥, 𝑦⟩) ∈ { 0 }) ↔ ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ ((-g𝐺)‘⟨𝑥, 𝑦⟩) ∈ { 0 }))
342, 3, 15grpsubeq0 18941 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → ((𝑥(-g𝐺)𝑦) = 0𝑥 = 𝑦))
35343expb 1120 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → ((𝑥(-g𝐺)𝑦) = 0𝑥 = 𝑦))
361, 35sylan 580 . . . . . . . . . . . . 13 ((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → ((𝑥(-g𝐺)𝑦) = 0𝑥 = 𝑦))
37 df-ov 7355 . . . . . . . . . . . . . . 15 (𝑥(-g𝐺)𝑦) = ((-g𝐺)‘⟨𝑥, 𝑦⟩)
3837eleq1i 2824 . . . . . . . . . . . . . 14 ((𝑥(-g𝐺)𝑦) ∈ { 0 } ↔ ((-g𝐺)‘⟨𝑥, 𝑦⟩) ∈ { 0 })
39 ovex 7385 . . . . . . . . . . . . . . 15 (𝑥(-g𝐺)𝑦) ∈ V
4039elsn 4590 . . . . . . . . . . . . . 14 ((𝑥(-g𝐺)𝑦) ∈ { 0 } ↔ (𝑥(-g𝐺)𝑦) = 0 )
4138, 40bitr3i 277 . . . . . . . . . . . . 13 (((-g𝐺)‘⟨𝑥, 𝑦⟩) ∈ { 0 } ↔ (𝑥(-g𝐺)𝑦) = 0 )
42 equcom 2019 . . . . . . . . . . . . 13 (𝑦 = 𝑥𝑥 = 𝑦)
4336, 41, 423bitr4g 314 . . . . . . . . . . . 12 ((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → (((-g𝐺)‘⟨𝑥, 𝑦⟩) ∈ { 0 } ↔ 𝑦 = 𝑥))
4443pm5.32da 579 . . . . . . . . . . 11 (𝐺 ∈ TopGrp → (((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ ((-g𝐺)‘⟨𝑥, 𝑦⟩) ∈ { 0 }) ↔ ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ 𝑦 = 𝑥)))
4533, 44bitrid 283 . . . . . . . . . 10 (𝐺 ∈ TopGrp → ((⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐺) × (Base‘𝐺)) ∧ ((-g𝐺)‘⟨𝑥, 𝑦⟩) ∈ { 0 }) ↔ ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ 𝑦 = 𝑥)))
4631, 45bitrd 279 . . . . . . . . 9 (𝐺 ∈ TopGrp → (⟨𝑥, 𝑦⟩ ∈ ((-g𝐺) “ { 0 }) ↔ ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ 𝑦 = 𝑥)))
47 df-br 5094 . . . . . . . . 9 (𝑥((-g𝐺) “ { 0 })𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ ((-g𝐺) “ { 0 }))
48 eleq1w 2816 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (𝑦 ∈ (Base‘𝐺) ↔ 𝑥 ∈ (Base‘𝐺)))
4948biimparc 479 . . . . . . . . . . 11 ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 = 𝑥) → 𝑦 ∈ (Base‘𝐺))
5049pm4.71i 559 . . . . . . . . . 10 ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 = 𝑥) ↔ ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 = 𝑥) ∧ 𝑦 ∈ (Base‘𝐺)))
51 an32 646 . . . . . . . . . 10 (((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ 𝑦 = 𝑥) ↔ ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 = 𝑥) ∧ 𝑦 ∈ (Base‘𝐺)))
5250, 51bitr4i 278 . . . . . . . . 9 ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 = 𝑥) ↔ ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ 𝑦 = 𝑥))
5346, 47, 523bitr4g 314 . . . . . . . 8 (𝐺 ∈ TopGrp → (𝑥((-g𝐺) “ { 0 })𝑦 ↔ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 = 𝑥)))
5453opabbidv 5159 . . . . . . 7 (𝐺 ∈ TopGrp → {⟨𝑥, 𝑦⟩ ∣ 𝑥((-g𝐺) “ { 0 })𝑦} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 = 𝑥)})
55 opabresid 6003 . . . . . . 7 ( I ↾ (Base‘𝐺)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 = 𝑥)}
5654, 55eqtr4di 2786 . . . . . 6 (𝐺 ∈ TopGrp → {⟨𝑥, 𝑦⟩ ∣ 𝑥((-g𝐺) “ { 0 })𝑦} = ( I ↾ (Base‘𝐺)))
579reseq2d 5932 . . . . . 6 (𝐺 ∈ TopGrp → ( I ↾ (Base‘𝐺)) = ( I ↾ 𝐽))
5828, 56, 573eqtrd 2772 . . . . 5 (𝐺 ∈ TopGrp → ((-g𝐺) “ { 0 }) = ( I ↾ 𝐽))
5958eleq1d 2818 . . . 4 (𝐺 ∈ TopGrp → (((-g𝐺) “ { 0 }) ∈ (Clsd‘(𝐽 ×t 𝐽)) ↔ ( I ↾ 𝐽) ∈ (Clsd‘(𝐽 ×t 𝐽))))
6019, 59sylibd 239 . . 3 (𝐺 ∈ TopGrp → ({ 0 } ∈ (Clsd‘𝐽) → ( I ↾ 𝐽) ∈ (Clsd‘(𝐽 ×t 𝐽))))
61 topontop 22829 . . . . 5 (𝐽 ∈ (TopOn‘(Base‘𝐺)) → 𝐽 ∈ Top)
627, 61syl 17 . . . 4 (𝐺 ∈ TopGrp → 𝐽 ∈ Top)
6311hausdiag 23561 . . . . 5 (𝐽 ∈ Haus ↔ (𝐽 ∈ Top ∧ ( I ↾ 𝐽) ∈ (Clsd‘(𝐽 ×t 𝐽))))
6463baib 535 . . . 4 (𝐽 ∈ Top → (𝐽 ∈ Haus ↔ ( I ↾ 𝐽) ∈ (Clsd‘(𝐽 ×t 𝐽))))
6562, 64syl 17 . . 3 (𝐺 ∈ TopGrp → (𝐽 ∈ Haus ↔ ( I ↾ 𝐽) ∈ (Clsd‘(𝐽 ×t 𝐽))))
6660, 65sylibrd 259 . 2 (𝐺 ∈ TopGrp → ({ 0 } ∈ (Clsd‘𝐽) → 𝐽 ∈ Haus))
6714, 66impbid 212 1 (𝐺 ∈ TopGrp → (𝐽 ∈ Haus ↔ { 0 } ∈ (Clsd‘𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wss 3898  {csn 4575  cop 4581   cuni 4858   class class class wbr 5093  {copab 5155   I cid 5513   × cxp 5617  ccnv 5618  cres 5621  cima 5622  Rel wrel 5624   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7352  Basecbs 17122  TopOpenctopn 17327  0gc0g 17345  Grpcgrp 18848  -gcsg 18850  Topctop 22809  TopOnctopon 22826  Clsdccld 22932   Cn ccn 23140  Hauscha 23224   ×t ctx 23476  TopGrpctgp 23987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fo 6492  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-map 8758  df-0g 17347  df-topgen 17349  df-plusf 18549  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-grp 18851  df-minusg 18852  df-sbg 18853  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-cld 22935  df-cn 23143  df-t1 23230  df-haus 23231  df-tx 23478  df-tmd 23988  df-tgp 23989
This theorem is referenced by:  tgpt1  24034  qustgphaus  24039
  Copyright terms: Public domain W3C validator