MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgphaus Structured version   Visualization version   GIF version

Theorem tgphaus 23176
Description: A topological group is Hausdorff iff the identity subgroup is closed. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
tgphaus.1 0 = (0g𝐺)
tgphaus.j 𝐽 = (TopOpen‘𝐺)
Assertion
Ref Expression
tgphaus (𝐺 ∈ TopGrp → (𝐽 ∈ Haus ↔ { 0 } ∈ (Clsd‘𝐽)))

Proof of Theorem tgphaus
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgpgrp 23137 . . . . 5 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
2 eqid 2738 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
3 tgphaus.1 . . . . . 6 0 = (0g𝐺)
42, 3grpidcl 18522 . . . . 5 (𝐺 ∈ Grp → 0 ∈ (Base‘𝐺))
51, 4syl 17 . . . 4 (𝐺 ∈ TopGrp → 0 ∈ (Base‘𝐺))
6 tgphaus.j . . . . . 6 𝐽 = (TopOpen‘𝐺)
76, 2tgptopon 23141 . . . . 5 (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘(Base‘𝐺)))
8 toponuni 21971 . . . . 5 (𝐽 ∈ (TopOn‘(Base‘𝐺)) → (Base‘𝐺) = 𝐽)
97, 8syl 17 . . . 4 (𝐺 ∈ TopGrp → (Base‘𝐺) = 𝐽)
105, 9eleqtrd 2841 . . 3 (𝐺 ∈ TopGrp → 0 𝐽)
11 eqid 2738 . . . . 5 𝐽 = 𝐽
1211sncld 22430 . . . 4 ((𝐽 ∈ Haus ∧ 0 𝐽) → { 0 } ∈ (Clsd‘𝐽))
1312expcom 413 . . 3 ( 0 𝐽 → (𝐽 ∈ Haus → { 0 } ∈ (Clsd‘𝐽)))
1410, 13syl 17 . 2 (𝐺 ∈ TopGrp → (𝐽 ∈ Haus → { 0 } ∈ (Clsd‘𝐽)))
15 eqid 2738 . . . . . 6 (-g𝐺) = (-g𝐺)
166, 15tgpsubcn 23149 . . . . 5 (𝐺 ∈ TopGrp → (-g𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
17 cnclima 22327 . . . . . 6 (((-g𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽) ∧ { 0 } ∈ (Clsd‘𝐽)) → ((-g𝐺) “ { 0 }) ∈ (Clsd‘(𝐽 ×t 𝐽)))
1817ex 412 . . . . 5 ((-g𝐺) ∈ ((𝐽 ×t 𝐽) Cn 𝐽) → ({ 0 } ∈ (Clsd‘𝐽) → ((-g𝐺) “ { 0 }) ∈ (Clsd‘(𝐽 ×t 𝐽))))
1916, 18syl 17 . . . 4 (𝐺 ∈ TopGrp → ({ 0 } ∈ (Clsd‘𝐽) → ((-g𝐺) “ { 0 }) ∈ (Clsd‘(𝐽 ×t 𝐽))))
20 cnvimass 5978 . . . . . . . . 9 ((-g𝐺) “ { 0 }) ⊆ dom (-g𝐺)
212, 15grpsubf 18569 . . . . . . . . . 10 (𝐺 ∈ Grp → (-g𝐺):((Base‘𝐺) × (Base‘𝐺))⟶(Base‘𝐺))
221, 21syl 17 . . . . . . . . 9 (𝐺 ∈ TopGrp → (-g𝐺):((Base‘𝐺) × (Base‘𝐺))⟶(Base‘𝐺))
2320, 22fssdm 6604 . . . . . . . 8 (𝐺 ∈ TopGrp → ((-g𝐺) “ { 0 }) ⊆ ((Base‘𝐺) × (Base‘𝐺)))
24 relxp 5598 . . . . . . . 8 Rel ((Base‘𝐺) × (Base‘𝐺))
25 relss 5682 . . . . . . . 8 (((-g𝐺) “ { 0 }) ⊆ ((Base‘𝐺) × (Base‘𝐺)) → (Rel ((Base‘𝐺) × (Base‘𝐺)) → Rel ((-g𝐺) “ { 0 })))
2623, 24, 25mpisyl 21 . . . . . . 7 (𝐺 ∈ TopGrp → Rel ((-g𝐺) “ { 0 }))
27 dfrel4v 6082 . . . . . . 7 (Rel ((-g𝐺) “ { 0 }) ↔ ((-g𝐺) “ { 0 }) = {⟨𝑥, 𝑦⟩ ∣ 𝑥((-g𝐺) “ { 0 })𝑦})
2826, 27sylib 217 . . . . . 6 (𝐺 ∈ TopGrp → ((-g𝐺) “ { 0 }) = {⟨𝑥, 𝑦⟩ ∣ 𝑥((-g𝐺) “ { 0 })𝑦})
2922ffnd 6585 . . . . . . . . . . 11 (𝐺 ∈ TopGrp → (-g𝐺) Fn ((Base‘𝐺) × (Base‘𝐺)))
30 elpreima 6917 . . . . . . . . . . 11 ((-g𝐺) Fn ((Base‘𝐺) × (Base‘𝐺)) → (⟨𝑥, 𝑦⟩ ∈ ((-g𝐺) “ { 0 }) ↔ (⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐺) × (Base‘𝐺)) ∧ ((-g𝐺)‘⟨𝑥, 𝑦⟩) ∈ { 0 })))
3129, 30syl 17 . . . . . . . . . 10 (𝐺 ∈ TopGrp → (⟨𝑥, 𝑦⟩ ∈ ((-g𝐺) “ { 0 }) ↔ (⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐺) × (Base‘𝐺)) ∧ ((-g𝐺)‘⟨𝑥, 𝑦⟩) ∈ { 0 })))
32 opelxp 5616 . . . . . . . . . . . 12 (⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐺) × (Base‘𝐺)) ↔ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)))
3332anbi1i 623 . . . . . . . . . . 11 ((⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐺) × (Base‘𝐺)) ∧ ((-g𝐺)‘⟨𝑥, 𝑦⟩) ∈ { 0 }) ↔ ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ ((-g𝐺)‘⟨𝑥, 𝑦⟩) ∈ { 0 }))
342, 3, 15grpsubeq0 18576 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → ((𝑥(-g𝐺)𝑦) = 0𝑥 = 𝑦))
35343expb 1118 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → ((𝑥(-g𝐺)𝑦) = 0𝑥 = 𝑦))
361, 35sylan 579 . . . . . . . . . . . . 13 ((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → ((𝑥(-g𝐺)𝑦) = 0𝑥 = 𝑦))
37 df-ov 7258 . . . . . . . . . . . . . . 15 (𝑥(-g𝐺)𝑦) = ((-g𝐺)‘⟨𝑥, 𝑦⟩)
3837eleq1i 2829 . . . . . . . . . . . . . 14 ((𝑥(-g𝐺)𝑦) ∈ { 0 } ↔ ((-g𝐺)‘⟨𝑥, 𝑦⟩) ∈ { 0 })
39 ovex 7288 . . . . . . . . . . . . . . 15 (𝑥(-g𝐺)𝑦) ∈ V
4039elsn 4573 . . . . . . . . . . . . . 14 ((𝑥(-g𝐺)𝑦) ∈ { 0 } ↔ (𝑥(-g𝐺)𝑦) = 0 )
4138, 40bitr3i 276 . . . . . . . . . . . . 13 (((-g𝐺)‘⟨𝑥, 𝑦⟩) ∈ { 0 } ↔ (𝑥(-g𝐺)𝑦) = 0 )
42 equcom 2022 . . . . . . . . . . . . 13 (𝑦 = 𝑥𝑥 = 𝑦)
4336, 41, 423bitr4g 313 . . . . . . . . . . . 12 ((𝐺 ∈ TopGrp ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺))) → (((-g𝐺)‘⟨𝑥, 𝑦⟩) ∈ { 0 } ↔ 𝑦 = 𝑥))
4443pm5.32da 578 . . . . . . . . . . 11 (𝐺 ∈ TopGrp → (((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ ((-g𝐺)‘⟨𝑥, 𝑦⟩) ∈ { 0 }) ↔ ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ 𝑦 = 𝑥)))
4533, 44syl5bb 282 . . . . . . . . . 10 (𝐺 ∈ TopGrp → ((⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐺) × (Base‘𝐺)) ∧ ((-g𝐺)‘⟨𝑥, 𝑦⟩) ∈ { 0 }) ↔ ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ 𝑦 = 𝑥)))
4631, 45bitrd 278 . . . . . . . . 9 (𝐺 ∈ TopGrp → (⟨𝑥, 𝑦⟩ ∈ ((-g𝐺) “ { 0 }) ↔ ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ 𝑦 = 𝑥)))
47 df-br 5071 . . . . . . . . 9 (𝑥((-g𝐺) “ { 0 })𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ ((-g𝐺) “ { 0 }))
48 eleq1w 2821 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (𝑦 ∈ (Base‘𝐺) ↔ 𝑥 ∈ (Base‘𝐺)))
4948biimparc 479 . . . . . . . . . . 11 ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 = 𝑥) → 𝑦 ∈ (Base‘𝐺))
5049pm4.71i 559 . . . . . . . . . 10 ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 = 𝑥) ↔ ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 = 𝑥) ∧ 𝑦 ∈ (Base‘𝐺)))
51 an32 642 . . . . . . . . . 10 (((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ 𝑦 = 𝑥) ↔ ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 = 𝑥) ∧ 𝑦 ∈ (Base‘𝐺)))
5250, 51bitr4i 277 . . . . . . . . 9 ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 = 𝑥) ↔ ((𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ 𝑦 = 𝑥))
5346, 47, 523bitr4g 313 . . . . . . . 8 (𝐺 ∈ TopGrp → (𝑥((-g𝐺) “ { 0 })𝑦 ↔ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 = 𝑥)))
5453opabbidv 5136 . . . . . . 7 (𝐺 ∈ TopGrp → {⟨𝑥, 𝑦⟩ ∣ 𝑥((-g𝐺) “ { 0 })𝑦} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 = 𝑥)})
55 opabresid 5946 . . . . . . 7 ( I ↾ (Base‘𝐺)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 = 𝑥)}
5654, 55eqtr4di 2797 . . . . . 6 (𝐺 ∈ TopGrp → {⟨𝑥, 𝑦⟩ ∣ 𝑥((-g𝐺) “ { 0 })𝑦} = ( I ↾ (Base‘𝐺)))
579reseq2d 5880 . . . . . 6 (𝐺 ∈ TopGrp → ( I ↾ (Base‘𝐺)) = ( I ↾ 𝐽))
5828, 56, 573eqtrd 2782 . . . . 5 (𝐺 ∈ TopGrp → ((-g𝐺) “ { 0 }) = ( I ↾ 𝐽))
5958eleq1d 2823 . . . 4 (𝐺 ∈ TopGrp → (((-g𝐺) “ { 0 }) ∈ (Clsd‘(𝐽 ×t 𝐽)) ↔ ( I ↾ 𝐽) ∈ (Clsd‘(𝐽 ×t 𝐽))))
6019, 59sylibd 238 . . 3 (𝐺 ∈ TopGrp → ({ 0 } ∈ (Clsd‘𝐽) → ( I ↾ 𝐽) ∈ (Clsd‘(𝐽 ×t 𝐽))))
61 topontop 21970 . . . . 5 (𝐽 ∈ (TopOn‘(Base‘𝐺)) → 𝐽 ∈ Top)
627, 61syl 17 . . . 4 (𝐺 ∈ TopGrp → 𝐽 ∈ Top)
6311hausdiag 22704 . . . . 5 (𝐽 ∈ Haus ↔ (𝐽 ∈ Top ∧ ( I ↾ 𝐽) ∈ (Clsd‘(𝐽 ×t 𝐽))))
6463baib 535 . . . 4 (𝐽 ∈ Top → (𝐽 ∈ Haus ↔ ( I ↾ 𝐽) ∈ (Clsd‘(𝐽 ×t 𝐽))))
6562, 64syl 17 . . 3 (𝐺 ∈ TopGrp → (𝐽 ∈ Haus ↔ ( I ↾ 𝐽) ∈ (Clsd‘(𝐽 ×t 𝐽))))
6660, 65sylibrd 258 . 2 (𝐺 ∈ TopGrp → ({ 0 } ∈ (Clsd‘𝐽) → 𝐽 ∈ Haus))
6714, 66impbid 211 1 (𝐺 ∈ TopGrp → (𝐽 ∈ Haus ↔ { 0 } ∈ (Clsd‘𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wss 3883  {csn 4558  cop 4564   cuni 4836   class class class wbr 5070  {copab 5132   I cid 5479   × cxp 5578  ccnv 5579  cres 5582  cima 5583  Rel wrel 5585   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  Basecbs 16840  TopOpenctopn 17049  0gc0g 17067  Grpcgrp 18492  -gcsg 18494  Topctop 21950  TopOnctopon 21967  Clsdccld 22075   Cn ccn 22283  Hauscha 22367   ×t ctx 22619  TopGrpctgp 23130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fo 6424  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-map 8575  df-0g 17069  df-topgen 17071  df-plusf 18240  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-sbg 18497  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-cn 22286  df-t1 22373  df-haus 22374  df-tx 22621  df-tmd 23131  df-tgp 23132
This theorem is referenced by:  tgpt1  23177  qustgphaus  23182
  Copyright terms: Public domain W3C validator